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Abstract: Cadmium (Cd), a heavy metal toxic to humans, easily accumulates in rice grains. Rice
with unacceptable Cd content has become a serious food safety problem in many rice production
regions due to contaminations by industrialization and inappropriate waste management. The
development of rice varieties with low grain Cd content is seen as an economic and long-term
solution of this problem. The cation/H+ exchanger (CAX) family has been shown to play important
roles in Cd uptake, transport and accumulation in plants. Here, we report the characterization
of the rice CAX family. The six rice CAX genes all have homologous genes in Arabidopsis thaliana.
Phylogenetic analysis identified two subfamilies with three rice and three Arabidopsis thaliana genes
in both of them. All rice CAX genes have trans-member structures. OsCAX1a and OsCAX1c were
localized in the vacuolar while OsCAX4 were localized in the plasma membrane in rice cell. The
consequences of qRT-PCR analysis showed that all the six genes strongly expressed in the leaves
under the different Cd treatments. Their expression in roots increased in a Cd dose-dependent manner.
GUS staining assay showed that all the six rice CAX genes strongly expressed in roots, whereas
OsCAX1c and OsCAX4 also strongly expressed in rice leaves. The yeast (Saccharomyces cerevisiae) cells
expressing OsCAX1a, OsCAX1c and OsCAX4 grew better than those expressing the vector control on
SD-Gal medium containing CdCl2. OsCAX1a and OsCAX1c enhanced while OsCAX4 reduced Cd
accumulation in yeast. No auto-inhibition was found for all the rice CAX genes. Therefore, OsCAX1a,
OsCAX1c and OsCAX4 are likely to involve in Cd uptake and translocation in rice, which need to be
further validated.

Keywords: cadmium; cadmium translocation; cadmium tolerance; cation/H+ exchanger; rice (Oryza
sativa L.)

1. Introduction

Cadmium (Cd) is one of the most toxic heavy metal elements in the environment and
has an inhibitory effect on the photosynthesis rate, enzyme activity and ion absorption of
plant [1–4]. Cd stress causes the overproduction of reactive oxygen species (ROS), resulting
in oxidative stress and negatively affects the defense system of plants [5–7], which, in
turn, affects the growth and development, and ultimately reduces the yield, nutritional
quality and taste of rice [8]. Moreover, Cd can be easily absorbed by rice and accumulated
in grains, which are the staple food for more half of the world population [9,10]. Rice
with unacceptable Cd content has become a serious food safety problem in many rice
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production regions due to contaminations caused by industrialization and inappropriate
waste management [11,12]. The development of rice varieties with low grain Cd content is
seen as an economic and long-term solution of this problem [13–15], since rice varieties
show significant genetic variation in the ability to accumulate Cd [16,17]. Identification of
varieties with high tolerance to Cd and low grain Cd content is feasible. To facilitate the use
of molecular breeding methods, including marker-assisted selection, genetic engineering
and genome editing, it is important to identify quantitative trait loci (QTLs) and key
genes for the regulation of Cd absorption, transport, distribution and accumulation. QTLs
identified by using linkage mapping and association analysis in rice have been summarized
by Chen et al. (2019) [18].

Cd is absorbed from soil by roots and then translocated into shoots, and finally
accumulated in the grains and other tissues [19]. Mechanisms are found to regulate
absorption, transportation and accumulation of Cd in plants. Therefore, many genes are
involved in the determination of Cd tolerance and acumination and have been reported
to play some roles in Cd regulation in rice [18]. The following gene families appear to
be particularly important: the mitogen-activated protein kinase (MAPK) family [20–22],
the cation diffusion facilitator (CDT) family [23], ATP-binding cassette transporter (ABC)
superfamily [24–26], the ZRT/IRT-like protein (ZIP) family [27–30], the heavy metal ATPase
(HMA) family [31–36], the metal tolerance protein (MTP) family [37,38] and the natural
resistance-associated macrophage protein (NRAMP) family [39–44].

In recent years, the tonoplast Ca2+/H+ exchanger (CAX) family, a member of the
Ca2+/cation antiporter superfamily [45], has drawn great interest of researchers. Studies in
Arabidopsis and other plant species have shown that CAX genes play important roles in the
tolerance of multi-cation, metal transport, elemental distribution and abundance, ion home-
ostasis and the responses to other abiotic stresses [46,47]. Transgenic lines of CAX genes
in multiple species have been shown to be involved in Cd regulation. The cax1 mutant
in Arabidopsis thaliana caused higher Cd sensitivity at low concentrations of calcium (Ca),
and a stronger accumulation of reactive oxygen species after Cd treatment [48,49]. AtCAX2
and AtCAX4 were reported to confer tolerance to high toxic levels of Cd, zinc (Zn) and
manganese (Mn) in tobacco (Nicotiana tabacum L.) [50,51], while root-selective expression
of AtCAX4 and AtCAX2 resulted in reduced leaf Cd in tobacco [52]. Overexpression of Tu-
CAX1a and TuCAX1b from Triticum urartu could improve the tolerance and translocation to
exogenous Ca and Zn, and inhibit Cd translocation in Arabidopsis [53]. The overexpression
of SaCAX2h from Sedum alfredii enhanced the accumulation of Cd in transgenic tobacco [54].
In addition, all Arabidopsis CAX genes except the uncharacterized AtCAX6 involved in
low Ca tolerance and Ca transport in yeast [55–57]. AtCAX5 was also involved in Mn
transport and ion homeostasis in yeast [47,58]. AtCAX2 was found to participate in Ca
transport and accumulation in both tomato (Lycopersicon esculentum L.) and potato (Solanum
tuberosum L.) [59]. The Atcax1 mutant displayed tolerance to Mn and Mg (magnesium)
toxicity and Ca deficiency [60] and increased CBF/DREB1 expression and cold-acclimation
response in Arabidopsis [55]. The loss-of-function of both AtCAX3 and AtCAX4 exhibited
salt sensitivity in Arabidopsis [61,62]. Heterologous expression in yeast indicates that all rice
CAX genes, except OsCAX2, confer tolerance to low Ca [63], and OsCAX4 is also involved
in the transport of Ca, Mn and copper (Cu) [64]. However, the roles of the rice CAX trans-
porter family in Cd uptake and transport have not yet been explored. Therefore, this study
aimed to characterize rice CAX genes, paying particular attention to the regulation of Cd.
Bioinformatics approaches were used to conduct phylogenetic analysis and gene-structure
analysis, including the number of exons and introns, and transmembrane structure. The
expression pattern was studied by using qRT-PCR. Tissue-specificity of expression in the
seedling stage was detected by GUS staining. Subcellular localization of the functional
genes was investigated by transiently expressing GFP-gene fusion into rice protoplasts.
Cd transport activity was tested by transforming yeast strains BY4741. In addition, the
functions of the CAX family genes in ion transport in multiple species were summarized to
assist in studying the roles of the rice CAX genes in other metals and ions. The results of
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this study have important theoretical significance and application value for rice genetics
and breeding.

2. Results
2.1. Bioinformatics Analyses of CAX Family Genes in Oryza sativa and Arabidopsis thaliana

Both Arabidopsis and rice have six CAX genes. All identified CAX members were
named based on their phylogenetic relationships (Figure 1). The two subfamilies (Type
IA and Type IB) formed by the two main branches of the phylogenetic tree each have
three genes from Arabidopsis and three genes from rice (Figure 1). Chromosome mapping
showed that the six rice CAX genes are distributed on chromosomes 1, 2 (two genes),
3, 4 and 5 (Figure 1 and Table 1). The six CAX genes of Arabidopsis are distributed on
chromosomes 1 (two genes), 2, 3 (two genes) and 5 (Figure 1 and Table 1). The CDS regions
of the rice CAX genes range in length from 1089 to 1362 bp and encoded proteins with
lengths of 363–454 amino acid residues, molecular weights of 39.07–49.11 KDa and pI
values of 4.57–7.00 (Table 1). The length of CDS, encoded proteins with lengths, molecular
weights and pI values of the Arabidopsis CAX genes range in length from 1326 to 1428 bp,
441–475 amino acid residues, 48.10–51.84 KDa and pI values of 4.45–6.51, respectively
(Table 1). AtCAX1, with a relatively long length, appears to be distinct from the other
five members of the Subfamily IA proteins (Table 1). OsCAX4, with a relatively short
length, appears to be divergent from the other five members of the Subfamily IB proteins
(Table 1). Gene structures were different in each of the two main subfamilies, as illustrated
in Figure 1. Subfamily IA members have 8–11 exons and 7–10 introns. Subfamily IB
members have 10–12 exons and 9–11 introns. The four members of the IB subfamily
(AtCAX2, AtCAX5, AtCAX6 and OsCAX4) all have 12 exons and 11 introns. In particular,
OsCAX4 was classified into Type IB phylogenetically and has no UTR (Figure 1). The rice
CAX proteins have 8–11 putative transmembrane domains (TMDs) (Table 1 and Figure
S1). Except for AtCAX3, which contains 11 TDMs, all other Arabidopsis CAX proteins have
10 putative TDMs (Table 1 and Figure S1).
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Figure 1. Phylogenetic relationship of CAX family genes of Oryza sativa and Arabidopsis thaliana. The
phylogenetic tree was constructed based on sequence alignment of CAX homologs from Arabidopsis
(At) and rice (Os), using the neighbor-joining method with bootstrapping analysis implemented
in MEGA 7.0. The CAX proteins are clustered into two groups (Type IA and Type IB). Gene struc-
tures were drawn, using Gene Structure Display Server 2.0 with genomic sequences and CDS
sequences. Introns and exons are represented by black lines and yellow boxes, respectively. Blue
boxes represent UTRs.
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Table 1. Basic characteristics of CAX family genes in Oryza sativa and Arabidopsis thaliana.

Gene Locus Length of
CDS (bp)

No. of
Amino

Acids (aa)
Chromosome MW (KDa) pI Type

No. of
Transmembrane

Domains

OsCAX2 LOC_Os03g27960 1317 439 3 47.48 4.57 IB 10
OsCAX3 LOC_Os04g55940 1254 418 4 45.45 4.76 IB 11
OsCAX4 LOC_Os02g04630 1089 363 2 39.07 7.00 IB 8
OsCAX1a LOC_Os01g37690 1356 452 1 47.71 6.78 IA 10
OsCAX1b LOC_Os05g51610 1362 454 5 49.11 6.34 IA 10
OsCAX1c LOC_Os02g21009 1353 451 2 48.16 5.62 IA 8
AtCAX1 AT2G38170 1428 475 2 51.64 6.25 IA 10
AtCAX2 AT3G13320 1326 441 3 48.21 4.45 IB 10
AtCAX3 AT3G51860 1380 459 3 49.85 5.39 IA 11
AtCAX4 AT5G01490 1365 454 5 49.61 6.51 IA 10
AtCAX5 AT1G55730 1326 441 1 48.10 4.61 IB 10
AtCAX6 AT1G55720 1404 467 1 51.84 5.40 IB 10

In BLASTP analysis, the identity between the CAX genes is high with a minimum
value of 54%, indicating that they are relatively conservative (Figure S2a). The Subfamily IB
members have a higher degree of similarities, reaching 71% (Figure S2b), in comparison to
the Subfamily IA members, which have their highest identity as 64% (Figure S2c). Sequence
identity in aligned regions ranges from 31 to 88% outside of selfhits (Table 2), with the
highest percentage of identity being between AtCAX5 and AtCAX6. The lowest identity
is between OsCAX1c and OsCAX4 (Table 2). These results indicated that the CAX gene
family has high homology in Oryza sativa and Arabidopsis thaliana.

Table 2. Percentage of protein sequence identity among the CAX family proteins of Oryza sativa and Arabidopsis thaliana.

% Identity
OsCAX1a OsCAX1b OsCAX1c OsCAX2 OsCAX3 OsCAX4 AtCAX1 AtCAX2 AtCAX3 AtCAX4 AtCAX5 AtCAX6

% % % % % % % % % % % %

OsCAX1a 100
OsCAX1b 69 100
OsCAX1c 59 58 100
OsCAX2 50 52 43 100
OsCAX3 49 51 40 74 100
OsCAX4 36 38 31 55 55 100
AtCAX1 64 62 57 48 49 38 100
AtCAX2 46 49 44 72 72 54 46 100
AtCAX3 67 66 56 50 48 39 79 48 100
AtCAX4 56 59 49 46 47 34 57 47 59 100
AtCAX5 48 49 44 72 73 52 48 87 49 47 100
AtCAX6 47 45 38 66 65 53 46 82 47 45 88

2.2. Response of Rice CAX Family Genes to Cd Stress

The CAX genes of Arabidopsis and a few other species to Cd stress have been widely
reported [58,65]. We analyzed the expression profiles of all the six rice CAX family genes, us-
ing qRT-PCR, under different CdCl2 treatments. The transcription levels of all the six genes
were significantly upregulated in roots under the 30 and 100 µM CdCl2 treatments, and
the expressions were increased with increasing Cd concentrations (Figure 2A). The highest
expression was observed for OsCAX1a in roots treated with 100 µM CdCl2 (Figure 2A).
Under 10 µM CdCl2 treatment, the expression of OsCAX1b, OsCAX1c and OsCAX4 in roots
was similar to the untreated control (Figure 2A). The transcription levels in leaves were
also significantly induced by all Cd treatments (Figure 2B). OsCAX1b and OsCAX2 showed
relatively high expression in leaves under 100 µM CdCl2, with OsCAX1b being the highest
among the six genes, while the other four CAX genes were highly expressed in leaves when
treated at 30 µM CdCl2 (Figure 2B). These results suggested that the rice CAX genes could
respond to Cd stress.
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Figure 2. Expression of rice CAX genes under CdCl2 treatments. The relative transcript levels were quantified by qRT–PCR
in (A) roots and (B) leaves (mixed collection of shoots and leaves) of rice variety Nipponbare grown in hydroponic culture
under 0, 10, 30 or 100 µM CdCl2 treatment with the IRRI solution for 7 days. The rice actin gene (Rac1) was used as an
internal reference to normalize gene-expression data. Statistical comparison was performed by one-side t-test (* p < 0.05 and
** p < 0.01). Values are mean ± SE (n = 3, three replicates with tissues being collected from three plants per replicate, three
plants per pool).

2.3. Functional Analysis of Rice CAX Genes in Yeast

Since the phenomena of auto-inhibition at the N-terminus have been reported for CAX
genes in multiple species [58,66–69], the full-length rice CAX genes and their 15 N-terminal
truncated versions were included in our functional test by using heterologous yeast assay.
To create the truncated version without affecting the transmembrane structure, we removed
several amino acids from the N-terminal (Figure S4). The truncated versions used were
three ∆OsCAX1a (OsCAX1a-12AA, OsCAX1a-28AA and OsCAX1a-40AA), three ∆OsCAX1b
(OsCAX1b-11AA, OsCAX1b-22AA and OsCAX1b-33AA), three ∆OsCAX1c (OsCAX1c-14AA,
OsCAX1c-24AA and OsCAX1c-37AA), two ∆OsCAX2 (OsCAX2-16AA and OsCAX2-40AA),
three ∆OsCAX3 (OsCAX3-10AA, OsCAX3-19AA and OsCAX3-40AA) and one ∆OsCAX4
(OsCAX4-29AA). Then they were expressed in wild-type yeast strain BY4741(MATa his3∆1
leu2∆0 met15∆0 ura3∆0). On a SD-Gal medium without Cd, there were no differences
in growth between the control carrying an empty vector (vector control) and the CAX-
carrying yeast strains (Figure 3A). For the truncated versions of genes, the yeast cells
expressing OsCAX1a, OsCAX1c, OsCAX4 had better growth than the vector control on
SD-Gal medium containing 160 µmol/L CdCl2, while the other three genes showed no
significant difference with the vector control on the SD-Gal medium containing 40 or
160 µmol/L CdCl2 (Figure 3A). Consequently, we did not find N-terminal auto-inhibition
of the rice CAX genes.

Further experiments using liquid media with different Cd concentrations were con-
ducted to confirm their Cd transport activity. Without Cd, all CAX genes expressing
yeast cells showed similar growth to the control. However, the growth of BY4741 was
significantly promoted by OsCAX1a (∆OsCAX1a), OsCAX1c (∆OsCAX1c) and OsCAX4
(∆OsCAX4) when 10, 20 or 40 µmol/L CdCl2 was supplemented (Figure 3B–D and Figure
S3). In addition, N-terminal auto-inhibition was still not observed in experiments using
liquid medium either (Figure S3). Under the 24 h Cd exposure, OsCAX1a and OsCAX1c
enhanced Cd accumulation, while OsCAX4 reduced Cd accumulation (Figure 3E). These
results indicated that OsCAX1a, OsCAX1c and OsCAX4 had Cd transport activity in yeasts
and might be involved in Cd uptake, transport and accumulation in rice.
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Figure 3. Functional assay of rice CAX genes by heterologous expression in yeast. (A) Yeast mutant strain expressing the
empty vector pYES2 or vectors for CAX genes grown in SD-Ura medium containing galactose without Cd or with different
Cd concentrations. Pictures were taken after 2 days of growth at 30 ◦C. The growth curve of empty vector, OsCAX1a,
OsCAX1c and OsCAX4 transformed yeast BY4741 strain in liquid medium with (B) 0, (C) 20 or (D) 40 µM CdCl2. The
absorbance at 600 nm (OD600) of cell cultures was measured every 5 h. (E) Cd accumulation in the wild-type BY4741 (gray)
and BY4741 expressing OsCAX1a (green), OsCAX1C (red) and OsCAX4 (orange) treated with 5 µM CdCl2 for 24 h. Statistical
comparison was performed by one-side t-test (* p < 0.05 and ** p < 0.01). Error bar indicates standard deviation, and the
data are presented as means ± SD (n = 3).

2.4. Expression Pattern and Subcellular Localization of the Rice CAX Genes

To investigate the expression patterns of rice CAX genes, the expression in tissues of
seedlings, booting, flowering and grain filling stages grown under normal field conditions
were measured by qRT-PCR. We found that OsCAX1c was specifically expressed in leaves,
with very limited expression elsewhere, while other genes were detected in all tissues of
different growth stages (Figure 4A). It was obvious that OsCAX1c, OsCAX3 and OsCAX4
were strongly expressed in leaves (Figure 4A). Both OsCAX1a and OsCAX2 were expressed
at a high level in flowering spikelet but weakly in leaves. The expression of OsCAX1b in
roots and leaves was slightly higher than in other tissues (Figure 4A).
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To further investigate their tissue-specific expression, we developed stable transgenic
rice lines expressing the GUS reporter gene driven by the OsCAX1a, OsCAX1b, OsCAX1c,
OsCAX2, OsCAX3 or OsCAX4 (−2000 bp from the start codon) promoter. Transgenic
seedlings were cultured in deionized water for 14 days, and then various tissues were
collected and stained for GUS detection (Figure 4B). All the six genes were observed in
roots including the root tip (0.2 cm from the root tip), root hair (2 to 3 cm from the root tip)
and root lateral branching zones. OsCAX3 and OsCAX4 expressed abundantly throughout
the primary and lateral roots. OsCAX3 strongly expressed throughout the stele in primary
roots, whereas other genes weakly expressed or hardly expressed at the base of the stele
(Figure 4B). All genes, except OsCAX1b, expressed in the primary root tip. In the root–shoot
junction, OsCAX1a, OsCAX1b and OsCAX3 strongly expressed, with OsCAX3 showing
slightly higher expression than OsCAX1a and OsCAX1b. OsCAX1a and OsCAX2 hardly
expressed in leaves; OsCAX1c, OsCAX3 and OsCAX4 were more strongly expressed in
leaves than OsCAX1b (Figure 4B). These results were consistent with the (qRT–qPCR)
results shown in Figure 4A.

To determine the subcellular localization of OsCAX1a, OsCAX1c and OsCAX4 proteins
in plant cells, we constructed GFP fusion protein and transformed it into rice-sheath
protoplasts. OsCAX1a, OsCAX1c and OsCAX4 fused with GFP was observed at the
periphery protoplasts (Figure 5). Moreover, OsCAX1a and OsCAX1c were co-localized with
the tonoplast membrane marker AtTPK, suggesting that both OsCAX1a and OsCAX1c were
localized in the vacuolar membrane (Figure 5). The merge images of OsCAX4-GFP and
FMTM4–64 indicated the plasma membrane subcellular localization of OsCAX4 (Figure 5).
Vacuolar localization of OsCAX1a has been reported previously by Kamiya et al. (2005) [63].
The membrane localizations of OsCAX1a, OsCAX1c and OsCAX4 were consistent with
their cation/H+ exchanger functions, which suggested that the rice CAX genes might play
important roles in Cd regulation.
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3. Discussion
3.1. The CAX Family Genes in Rice Have High Identity to Their Homologues in Arabidopsis
Thaliana

It is well-known that the homeostasis of intracellular Ca2+ plays an important role
in signal transduction of stresses and is necessary for normal cell growth [44]. Hence,
control of Ca2+ concentration is critical to cellular function. The Ca2+/cation antiporter
(CaCA) superfamily members, including MHX (Mg2+/H+ exchanger), CCX (cation/Ca2+

exchanger) and CAX, are the most important Ca2+ transporters. The CaCA exchangers
family structure is highly conserved in related plants [70]. Here, we explored the structural
characteristics of CAX transporters through phylogenetic tree analysis, transmembrane
structure and homology identification of CAX family proteins in rice and Arabidopsis. It
was found that the two subfamilies formed by the two main branches of the phylogenetic
tree each have three Arabidopsis genes and three rice genes (Figure 1), and the length of
the CDS region and the encoded proteins, the molecular weight and the range of pI values
were all relatively close in rice and Arabidopsis (Table 1). The gene structures of the two
main subfamilies are slightly different. The members of Subfamily IA have 8–11 exons
and 7–10 introns. The members of Subfamily IB have 10–12 exons and 9–11 introns, which
were one more than those of the Subfamily IA members (Figure 1). CAX family proteins
have 8–11 putative transmembrane domains (Figure S1). It is worth noting that the identity
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between CAX genes is high, the sequence identity in the aligned region ranges from 31
to 88% outside of selfhits (Table 2) and the homology among all CAX genes reached 54%
(Mate Figure S2). Taken together, the CAX family genes in rice have high identity to their
homologues in Arabidopsis thaliana, indicating that functional similarities are expectable,
which is advantageous in leveraging the relatively more abundant information accumulated
in Arabidopsis to speed up studies in rice.

3.2. N-Terminal Auto-Inhibition Was Not Found for the Rice CAX Genes Tested Using Cd
Treatment

N-terminal auto-inhibition has been widely reported for CAX genes in different
species [58,67–69], and it is most widely studied in Arabidopsis [66,71,72]. For instance, we
found that deleting 36 amino acids at the N-terminus of AtCAX1 ORF improved Ca and
Mn tolerance compared to the full-length AtCAX1 ORF by heterologous transformation
of yeast [71,72]. The modified AtCAX2 (sCAX2A) with a domain of AtCAX2 and without
the N-terminal autoinhibitory domain elevated Ca accumulation in the fruits of tomato.
Mn transport in yeast was controlled by the N-terminus of tomato LeCAX2 [58]. The
absence of N-terminal regulatory region (NRR) of the cotton (Gossypium hirsutum) GhCAX3
altered cold tolerance compared to full-length of GhCAX3 [68]. It has also been reported
in rice that the N-terminus of CAX family genes (Type IA) regulates Ca tolerance and
transport in yeast. OsCAX1a∆27 and OsCAX1c∆47 strongly enhanced the Ca tolerance
of yeast, and OsCAX1b was more sensitive to 100 mM CaCl2 than OsCAX1b∆36 was [63].
We transformed the yeast strain BY4741 with all members of the rice CAX genes and their
corresponding truncated versions with the removal of the 10–40 amino acids from the
N-terminal. The Cd transport activity in yeast did not show any differences, indicating
that the N-terminal auto-inhibition was not shown for Cd in rice. However, it is best not to
interpret this as an indication that the N-terminal auto-inhibition is not present in the rice
CAX genes, since we only tested for Cd. Kamiya et al. (2005) [63] reported that OsCAX2
and the N-terminal truncation mutants of OsCAX2 (OsCAX2∆26) expressed in yeast did
not show Ca tolerance. The modified Arabidopsis CAX2 (sCAX2A) also showed almost no
changes in Mn, Cu and Fe accumulation in the fruits, compared to the overexpression of
AtCAX2 in tomato [73]. More detailed studies are needed to (dis)validate this observation.

3.3. Rice CAX Genes, Particularly OsCAX1a, OsCAX1c and OsCAX4, Might Be Important in
Controlling Cd Uptake and Translocation in Rice

Existing studies have shown that the CAX genes in plants are involved in ion tolerance,
transport and homeostasis, as shown in Figure 6 and Table S3. However, the response of
rice CAX genes to Cd has not been studied. Our results showed that the expression of all
the six rice CAX genes were upregulated by high-concentration CdCl2 treatments. This
was particularly true in roots, for which gene expression increased with increasing Cd
concentration (Figure 2). By transforming the BY4741 yeast strain, we found that OsCAX1a,
OsCAX1c and OsCAX4 had better Cd tolerance than the control on a SD-Gal medium con-
taining 160 µmol/L CdCl2 and more active in liquid media containing Cd (Figure 3A–D).
OsCAX1a and OsCAX1c increased, while OsCAX4 decreased, the accumulation of Cd in
yeast (Figure 3E). Thus, OsCAX1a, OsCAX1c and OsCAX4 involve in Cd tolerance and
transport in yeast, implying that they might involve in Cd tolerance and accumulation in
rice as well. As discussed above, the rice CAX family genes have high identity to their
homologous genes in Arabidopsis, indicating that their functions may be conserved. Three
Arabidopsis CAX genes, namely AtCAX1 [48,49], AtCAX2 and AtCAX4 [50–52], were ver-
ified by transgenic methods to participate in Cd tolerance, transport and accumulation
(Figure 6 and Table S3). OsCAX1a has very high homology with AtCAX1 and AtCAX4,
reaching 64% and 56%, respectively (Figure 1 and Table 2). OsCAX1c has high homology
with AtCAX1 (57%) and AtCAX4 (49%) (Figure 1 and Table 2). OsCAX1a strongly expressed
in spikelet and nodes, while OsCAX1c very strongly expressed in leaves (Figure 4A). Both
of OsCAX1a and OsCAX1c are most likely to locate on the vacuolar membrane. OsCAX4
on plasma membrane has the highest identity (54%) to AtCAX2 (Figure 1 and Table 2) and



Int. J. Mol. Sci. 2021, 22, 8186 10 of 17

is strongly expressed in roots and grains. Taken together, we speculate that OsCAX1a, Os-
CAX1c and OsCAX4 may play different roles in the key processes, including the absorption
by the roots, the xylem loading, the distribution and transportation via the nodes, and
the redistribution in the leaf via phloem. These processes collectively determine the plant
tolerance and accumulation of Cd.
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Although OsCAX1b, OsCAX2 and OsCAX3 did not show Cd transport activity in our
yeast assay (Figure 3), their roles in Cd regulation could not be completely ruled out. Firstly,
their expression levels in roots and leaves were all induced by Cd treatments (Figure 2).
Secondly, OsCAX1b and OsCAX3 were previously reported to involve in tolerance to Ca,
and OsCAX3 also confers Mn tolerance in yeast [63]. Thirdly, CAX proteins function as
Ca2+/H+ and/or heavy metal/H+ exchangers [56,73]. The importance of Ca2+ acts as a
secondary messenger in the signal transduction of various biotic and abiotic stimuli in
plants has been well documented [74–76]. Changes in apoplastic pH or Ca2+ concentrations
can be expected to strongly affect Cd binding capacity, since Cd2+ and Ca2+ have similar
ionic radii [77]. Fourthly, CAX genes interact with other genes to form regulatory network
controlling tolerance to metals. Yeast two-hybrid analysis showed that AtCAX1 directly
interacts with AtSOS2, which is a serine/threonine kinase whose function is essential for
salt tolerance in Arabidopsis [78]. Co-expression of AtSOS2 specifically activated AtCAX1
and integrated Ca transport in yeast and salt tolerance in Arabidopsis [79]. Therefore, it
is likely that CAX genes interact with key genes for Cd absorption and accumulation, or
are regulated by transcription factors or phosphorylated by receptor kinases to affect Cd
transport. Fifthly, since CAX genes have high degree of genetic identity, it is likely that
some of the genes may have functional redundancy (Table 2). Thus, any test/assay using a
single gene, as we performed, may fail to identify the function of a gene. Indeed, it has
been reported that the AtCAX1 and AtCAX3 function as dimers, and co-expressing both
AtCAX1 and AtCAX3 mediated Ca, lithium (Li) and salt tolerance in yeast [61,80], and
affected element distribution and abundant Arabidopsis seeds [81].

In conclusion, we investigated all rice CAX genes and demonstrated that OsCAX1a,
OsCAX1c and OsCAX4 were associated with Cd tolerance and Cd transport in yeast. They
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are also highly likely to involve in Cd tolerance, absorption and accumulation in rice;
however, further validation through transgenic methods in rice is needed.

4. Materials and Method
4.1. Identification and Bioinformatics Analyses of the Cation/H+ Antiporters from Oryza sativa
and Arabidopsis thaliana Species

To identify CAX homologs in rice, the nucleic acid and amino acid sequences of all
reported CAX genes in Arabidopsis and rice were downloaded from the rice (accessed on 16
December 2019; http://www.ricedata.cn/gene/) and Arabidopsis (accessed on 16 December
2019; https://www.arabidopsis.org/) databases. CAX genes were named according to the
phylogenetic relationship between proteins. The protein molecular weight and theoretical
isoelectric point (pI) value were calculated by ProtParam (accessed on 16 December 2019;
http://web.expasy.org/protparam/). The DNAMAN software (accessed on 1 March 2019;
https://www.lynnon.com/dnaman.html) was used to determine the sequence identity
between rice and Arabidopsis CAX proteins, and the homology between subfamilies. The
transmembrane structures in the proteins were predicted through TMHMM Server v2.0
(accessed on 3 June 2021; http://www.cbs.dtu.dk/services/TMHMM/). The subcellular
localization of unreported CAX proteins were predicted by using CELLO v2.5 (http://cello.
life.nctu.edu.tw/ (accessed on 21 May 2021; http://cello.life.nctu.edu.tw/). Multi-sequence
alignment was performed with Clustal W (accessed on 1 January 2021; Clustal Omega,
ClustalW and ClustalX Multiple Sequence Alignment) and drawn in Genedoc. Phylogenetic
trees based on full-length protein-sequence alignments were constructed by the neighbor-
joining method with 1000 bootstrap replicates, using MEGA 7.0 software (accessed on 1
January 2021; http://www.megasoftware.net/download_form). The downloaded coding
DNA sequences (CDS) and genome sequences of CAX genes were used to construct
gene structure by the Gene Structure Display Server 2.0 (accessed on 16 December 2019;
http://gsds.cbi.pku.edu.cn/index.php).

4.2. Plant Materials and Growth Conditions

Rice (Oryza sativa L. cv. Nipponbare) seeds were surface-sterilized with 10% (v/v)
hydrogen peroxide solution for 30 min, thoroughly rinsed, washed six times with deionized
water and germinated for 48 h under dark conditions and a temperature of 30 ◦C [82]. The
dew-white and uniformly growing seeds were sown in a 96-well polymerase chain reaction
(PCR) plate (8 × 12) with perforated wells at the bottom to facilitate the roots to fully
contact with the nutrient solution [83]. The nutrient solution was prepared according to the
composition of IRRI solution: 1.0 mM MgSO4·7H2O, 1.25 mM NH4NO3, 0.3 mM KH2PO4,
1.0 mM CaCl2, 0.35 mM K2SO4, 0.5 mM Na2SiO3, 20.0µM Fe-EDTA, 20.0µM H3BO3, 9.0µM
MnCl2, 0.77µM ZnSO4, 0.32µM CuSO4 and 0.39 µM (NH4)6Mo7O24, at pH 5.5. The
nutrient solution was replaced every three days. Rice seedlings were grown for 10 days.

The seedlings that grew consistently were moved to a rectangle 3.5 L box containing
2 L of normal nutrient solution, with a 3 × 8 foam board being used as bed, and grown for
a week. Then the seedlings were grown under treatment conditions of 0, 10, 30 or 100 µM
CdCl2. The nutrient solution was changed every two days and the night before sampling.
Culture was conducted in a greenhouse, under natural light, at day/night temperatures of
30 ◦C/22 ◦C and 60% relative humidity. After a 2-week treatment, root and leave samples
were rapidly taken, frozen in liquid nitrogen and stored in a refrigerator, at −80 ◦C, for
RNA extraction and real-time quantitative reverse-transcription PCR (qRT-PCR) analysis.

4.3. RNA Extraction and Real-Time PCR

Total RNA was extracted by using the TRIzol reagent (Vazyme Biotech Co. Ltd.,
Nanjing, China). DNaseI-treated total RNAs were subjected to reverse transcription (RT)
with the HiScript II Q Select RT SuperMix for qPCR (+gDNA wiper) kit (Vazyme Biotech
Co. Ltd., Nanjing, China). Transcript levels of selected genes were measured by qRT-PCR,
using the CFX96® Real-Time PCR System using the 2 × T5 Fast qPCR Mix (SYBRGreenI)
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kit (Vazyme Biotech Co. Ltd., Nanjing, China). Rice actin gene (Rac1) was used for nor-
malization. The ∆∆Ct method was used to calculate the relative transcript abundance [78].
The primers for qRT-PCR are given in Table S1.

4.4. Functional Analysis of Rice CAX Genes in Yeast

The heterologous yeast assay was utilized to identify the Cd transport ability of rice
CAX proteins by transforming the BY4741 yeast strain (MATa his3∆1 leu2∆0 met15∆0
ura3∆0). All CAX genes were amplified from full-length cDNA clones, using the PCR
primers lying downstream from the start codon and just upstream of the stop codon
(Table S2). The protocol for removing some amino acids from the N-terminus of the CAX
transporters was described in detail by Shigaki et al. (2010) [72]. Using BamH I and EcoR I,
we ligated each rice CAX gene into the pYES2 vector (Invitrogen), with correct direction,
using a ClonExpress® Ultra One Step Cloning Kit (Vazyme Biotech Co. Ltd., Nanjing,
China), resulting in the pYES2-OsCAXs construct. The vectors truncated were verified by
Sanger sequencing. Empty vector pYES2 and the CAX gene vectors were then transformed
into BY4741 yeast cells, respectively, according to the manufacturer’s protocol (Yeast
Transformation Kit; Beijing Coolaber Technology Co. Ltd., Beijing, China). Transformants
were selected on synthetic dextrose medium without uracil (SD-Ura) and verified by PCR
with yeast plasmid extraction (Yeast Plasmid Extraction Kit; Beijing Solarbio Technology
Co. Ltd., Beijing, China). Positive clones were cultured on an SD-Ura liquid medium until
the early logarithmic phase. For plate growth tests, yeast transformants were diluted to an
OD600 of 1.0, 0.1, 0.01 and 0.001, step by step, with sterile water; 6 µL of the cell suspension
was spotted on SD-Ura plates containing 0, 40 or 160 µmol/L CdCl2, respectively. The
plates were incubated at 30 ◦C for 2 days before the growth phenotypes were evaluated.

To quantify the growth of BY4741 yeast strain transformed with various plasmids in
liquid SD-Ura media containing CdCl2 overnight yeast cells were prepared and the optical
density (OD) at 600 nm was adjusted to 0.8 with sterile distilled water. Then 20 µL of cell
suspensions was added to 20 mL liquid SD-Ura media containing 0, 10, 20 or 40 µmol/L
CdCl2. The OD values at 600 nm were determined at the indicated time.

For the Cd concentration determination, the yeast transformants were cultured
overnight with a liquid SD-Ura medium with 2% galactose, at 30 ◦C and 200 rpm, until
the OD600 reached 0.8. Then the yeast transformants were treated with 5 µM CdCl2 for
24 h. The yeast strain carrying empty vector was used as control. The cultures of each
set were harvested in pre-weighed microfuge tubes by centrifugation and washed with
sterile water for three times. After aspirating the supernatant, pelleted cells were dried in
the oven, overnight, at 60 ◦C. The samples were wet-digested by using 5 mL concentrated
HNO3+HClO4 (4 + 1), at 120 ◦C, in a heating block for 30 min. After cooling, the digested
solution was diluted to 15 mL with deionized water. The Cd concentrations were deter-
mined by inductively coupled plasma–mass spectrometry (ICP–MS). All the assays were
performed at least three times.

4.5. Tissue Expression Assay

For histochemical analysis of GUS activity, the upstream 2.0 kb genomic fragment
of each gene was cloned into pCAMBIA1300 to generate OsCAXs promoter: GUS vector.
The vectors were then transformed into Nipponbare to produce transgenetic plants. The
GUS staining Solution (1 mg/mL) from (Beijing Coolaber Technology Co., Ltd., Beijing,
China) was used to determine the activity of GUS. The samples were incubated at 37 ◦C
for 24 h, and the solution containing (X-gluc dry powder + X-gluc solution): GUS staining
buffer = 1:50. After staining, green tissue materials (such as leaves) were treated 2 or 3 times
by 75% ethanol to remove chlorophyll and decolorize until the negative control material
was white. GUS activity was detected by a stereoscopic fluorescence microscopy (TL5000;
Leica Microsystems).
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4.6. Subcellular-Localization Assay

Subcellular localization was investigated by transiently expressing GFP-OsCAXs fu-
sion into rice protoplasts. The ORF of OsCAX1a, OsCAX1c and OsCAX4 were amplified by
PCR from rice (‘Nipponbare’) root cDNA, using primers (Table S2). Protoplasts generated
from the young stems of 3-week-old rice seedlings grown under light were transformed
with transient expression plasmids, according to Bart et al. (2006) [84]. GFP fluorescence sig-
nals were detected with a TCS SP5 confocal laser scanning microscope (Leica Microsystems)
at 500–535 nm, after excitation at 488 nm, while FMTM 4–64 (plasma membrane specific
localization dye) was excited at 543 nm and scanned at 600–630 nm. Double staining using
AtTPK (red signal) as the tonoplast membrane marker was used for further confirmation
of the subcellular localization. For co-localization experiments, sequential scanning was
done for both of the channels and then merged together to show overlapping signals. All
the images were further processed by using Leica LAS AF Lite software.
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