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Abstract: Excessive fetal growth is associated with DNA methylation alterations in human hematopoi-
etic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented
an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro
analyses to functionally link DNA methylation changes to putative alterations of HSPC functions.
We showed in hematopoietic stem cells (HSC) from large for gestational age neonates that both DNA
hypermethylation and chromatin rearrangements target a specific network of transcription factors
known to sustain stem cell quiescence. In parallel, we found a decreased expression of key genes
regulating HSC differentiation including EGR1, KLF2, SOCS3, and JUNB. Our functional analyses
showed that this epigenetic programming was associated with a decreased ability for HSCs to re-
main quiescent. Taken together, our multimodal approach using single-cell (epi)genomics showed
that human fetal overgrowth affects hematopoietic stem cells’ quiescence signaling via epigenetic
programming.

Keywords: epigenomics; single-cell; stem-cells; fetal programming; hematopoiesis

1. Introduction

Hematopoietic stem cells (HSC) are involved in essential processes such as inflam-
mation, cardiovascular repair, and immunity throughout the entire lifespan [1,2]. Thus,
alterations in HSC’s ability to self-renew and to adequately produce differentiated progeny
have been suggested to contribute to the onset and progression of age-related diseases
such as cancer and cardiovascular diseases [3,4]. Systemic alterations or the action of
various stressors like aging [5,6] can result in alteration of HSC destiny, and ultimately
hematopoietic functions. The early mechanisms that control their long-term functions in
humans are not well understood, in part due to the diversity of phenotypes and behaviors
of HSCs [1].

Int. J. Mol. Sci. 2022, 23, 7323. https://doi.org/10.3390/ijms23137323 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23137323
https://doi.org/10.3390/ijms23137323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2979-2470
https://orcid.org/0000-0002-9200-7685
https://orcid.org/0000-0002-3396-4549
https://orcid.org/0000-0001-5801-4526
https://orcid.org/0000-0001-9976-3005
https://orcid.org/0000-0002-9921-8653
https://doi.org/10.3390/ijms23137323
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23137323?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 7323 2 of 18

In mice, a maternal high-fat diet during gestation limits fetal hematopoietic stem and
progenitor cells (HSPC) expansion and ability to repopulate while inducing myeloid-biased
differentiation [2]. In humans, a limited number of studies have been conducted. Fetal
growth was shown to alter the number of circulating CD34+ HSCs [7,8]. We previously
described a global increase of DNA methylation in cord blood-derived CD34+ HSPCs
from large for gestational age (LGA) infants compared to neonates with normal birth
weight [3]. Still, the functional impacts of these early epigenetic alterations remain to be
elucidated. Such an effort is essential to determine how these epigenetic modifications
could mediate the association between early-life exposures and the induction of persistent
life-long functional changes within the hematopoietic system.

We conducted a multimodal analysis combining single-cell epigenomics, single-cell
transcriptomics, and in vitro analyses to link the DNA methylation alterations observed
in LGA neonates with functional alterations in human cord blood-derived HSPCs. We
developed novel analytical approaches to improve the integration of epigenomic and
transcriptomic data. We found that the DNA hyper-methylation observed in LGA HSPC is
associated with an HSC-specific decreased chromatin accessibility and gene expression of
key genes involved in the HSC quiescence signaling as well as an alteration of the HSC
colony-forming capacity.

2. Results
2.1. Optimized Methylation Gene Set Analysis Reveals Association between LGA DNA
Hypermethylation and Stem Cell Differentiation Pathways

To confirm the LGA-associated DNA hypermethylation we previously observed,
we significantly increased the power of our analysis. We expanded our original study
through additional patient inclusions, thereby doubling the size of our cohort [3]. Using
the HELP-tagging assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR),
we generated genome-wide DNA methylation data on 16 CTRL and 16 LGA cord-blood
derived human CD34+ HSPC samples. We independently retrieved in this new dataset the
global DNA hypermethylation initially found in LGA compared to controls [3] (Figure 1A).
Then, to increase our detection power, we pooled both datasets and detected a total
of 4815 differentially methylated CpGs (DMC) with 4787 CpGs hypermethylated and
28 CpGs hypomethylated in LGA (n = 36) compared to CTRL (n = 34, p-value < 0.001 and
|methylation difference| > 25%; Figure 1A, Supplemental Table S1). This new set of DMCs
was then used throughout the following analysis.

As the functional interpretation is performed at the gene level, each CpG (or DMC)
must be linked to a specific gene. Thus, our ability to adequately infer the regulatory effect
of a CpG and its target gene will affect our ability to identify relevant pathways. Standard
analytical approaches usually rely on the distance between CpG and transcription start
site (TSS) of the targeted gene and often only consider the top candidate DMC per gene,
not taking into account the cell specific genomic context. Therefore, we refined the CpG-
gene association to optimally assess the influence of DNA methylation changes on gene
expression and enhance functional interpretation. We built a novel gene-methylation score
considering (1) the distance between TSS and CpG; (2) the CpG overlap with expression
quantitative trait loci (eQTL) annotation, as eQTL information allows us to identify tissue-
specific genomic region links to gene expression changes; and (3) the regulatory annotation
(e.g., Promoter, Enhancer) based on cell-specific histone marks [4] and on the Ensembl
Regulatory database, as we know that the relationship between change in DNA methylation
and change in gene expression will depend on a cell-specific genomic context (Figure 1B).
We established 756,470 CpG-gene associations including 34% of them found through eQTL
annotation. We then summarized the CpG information at the gene level, generating a gene-
methylation score for each gene (n = 24,857, Supplemental Table S2). We first confirmed that
the gene-methylation score properly recapitulates the influence of key parameters in DMC
analysis such as significance and effect size of the methylation change, number of DMCs per
gene, and distance from TSS, as well as promoter and enhancer localization (Figure 1C). We
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also confirmed that while preserving key information from standard methylation metrics,
the gene-methylation score presented a better association with DEGs than significance
or methylation change alone. Thus, the gene-methylation score appears to be a better
predictor of the methylation influence on gene expression (Figure 1C). We then used our
gene-methylation score to perform pathway enrichment analysis and data integration,
especially considering integration with gene expression data.

Figure 1. LGA is associated with DNA hypermethylation targeting key stem cell signaling path-
ways. (A) Overview of study design (B) Volcano plot of DNA methylation score differences for
LGA compared to CTRL in cohort 1, cohort 2, and cohort 1 + 2. Differentially methylated loci with
p-value < 0.001 and |methylation difference| > 25% are shown in red. (C) Summary of calculation
for the gene-methylation score. (D) Validation of the gene-methylation score. Gene-methylation score
distribution. Bar plot of the association between gene-methylation score and genomic or methylation-
related features. Bar plots representing the significance of the difference in gene-methylation score of
DEGs compared to non-DEGs considering different metrics. eQTR, region with expression quantita-
tive traits loci; DMC, differentially methylated CpGs. (E) Network representation of GO Biological
Process enriched in hypermethylated genes. Significantly enriched GO terms were identified using GSEA
based on the gene-methylation score. Edges represent interactions (gene overlap) between pathways.
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Using the gene ontology (GO) reference database, we performed methylation gene-set
enrichment analysis (GSEA) based on the gene-methylation score. We found that change in
DNA methylation in LGA HSPC samples targeted genes involved in signaling regulating
fetal development as well as in key stem cell pathways such as Wnt signaling, cell fate
specification, and cell fate commitment pathways (adjusted p-value < 0.01, Figure 1D)
confirming previous findings [3].

2.2. Single-Cell Transcriptomic Analysis Confirms Alteration of Hyper-Methylated Genes in
Pathways Regulating Stem Cell Differentiation among LGA HSCs

To identify genes altered in LGA and to obtain further biological insight into the
functional consequences of the DNA methylation modifications observed in LGA, we
performed a single-cell transcriptomic analysis comparing CTRL and LGA HSPCs.

To enable lineage-specific transcriptomic analysis, we created a hematopoietic reference
map (i.e., hematomap) by integrating data generated from cord blood-derived CD34+ HSPC
cells (n = 18,520) from 7 control neonates (Figure 2A). Based on cluster-specific gene expres-
sion, we identified 18 distinct clusters representative of major lineages (Long-Term HSC,
HSC, Multi-Potent progenitor, Lymphoid, Myeloid, and Erythroid) of the hematopoietic
compartment (Figure 2B, Supplemental Figure S2). Each cluster was annotated using cell-
type-specific markers. Markers were then ranked based on their expression fold change and
the specificity of the cluster. Top cluster-specific markers were compared with published
cell-type-specific genes [5,6,9,10] (Supplemental Table S3). Candidate cell subpopulations
were distributed as follows: 1% LT-HSC (ID1); 24% HSC (AVP); 45% MPP/LMPP (CDK6);
Lymphoid (CD99, LTB); 1% B cell (IGHM); 1% T cell (CD7); 14% Erythro-Mas (GATA1);
<1%Mk/Er (PLEK, HBD); 8% Myeloid (MPO); <1% DC (CST3, CD83).

To identify differentially expressed genes (DEG) between CTRL and LGA samples,
we implemented the Hash Tag Oligonucleotide (HTO) multiplexing strategy [7] allowing
simultaneous processing of CTRL and LGA samples. Multiplexing is a means to limit the
influence of technique-driven batch effects at every stage of the analysis to improve the
biological relevance of the finding. We generated multiplexed single-cell transcriptomic
data from 6 LGA (n = 6861 cells) and 7 CTRL (n = 5823 cells) samples. In LGA samples, we
observed a shift toward downregulated genes (Supplemental Figure S3) especially in the
HSC subpopulation (n = 285 downregulated genes over 373 DEGs, adjusted p-value < 0.05
and log2FC < (−0.5), Figure 2C; Supplemental Table S4). Notably, the well-known EGR1,
JUNB, and KLF2 genes were among the top affected genes. Using GO enrichment analysis,
we found that downregulated genes were enriched in growth-related pathways (e.g., regula-
tion of growth) as well as in stress-related biological processes (e.g., response to temperature
stimulus, cellular response to chemical stress; Figure 2D, adjusted p-value < 0.05).

To assess if these HSC-specific transcriptomic changes may be associated with epi-
genetic changes, we integrated bulk DNA methylation with single-cell gene expression
data using the gene-methylation score. We found that DEGs, and particularly the down-
regulated genes, mostly showed high gene-methylation scores (Figure 3A,B). We then
assessed the association between changes in DNA methylation and gene expression at the
pathway level. We looked for enrichment for differentially methylated genes considering
pathways that were identified based on DEGs. We found a significant overlap between GO
terms enriched in LGA HSC downregulated genes and GO terms enriched in hyperme-
thylated genes (10 out of 46; p-value < 0.05, hypergeometric test). The most co-enriched
term is “regulation of growth” including notably SOCS3, SIRT1 and SESN2 genes that are
both downregulated and within the top 10% of hypermethylated genes (Figure 3C). These
results suggest that the epigenetic change in LGA could lead to an HSC-specific alteration
of the regulation of growth signaling.
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Figure 2. Lineage-specific transcriptomic analysis. (A) Hematomap, UMAP representation of dis-
tinct HSPC lineages. (B) Dot plot representing key markers used to annotate cell populations.
LT-HSC, long-term hematopoietic stem cell; HSC, hematopoietic stem cell; MPP, multipotent progeni-
tor; LMPP, lymphoid-primed multipotent progenitors; Erythro-Mas, erythroid and mast precursor;
Mk/Er, megakaryocyte and erythrocyte; DC, dendritic cell. (C) MA plots representing gene expres-
sion analysis in HSCs comparing LGA vs. CTRL. Differentially expressed genes with adjusted p-value
< 0.05 and |log2FC| > 0.5 are shown in red. (D) Network representation of significantly enriched
pathways identified through GO GSEA analysis comparing LGA vs. CTRL. Non-redundant pathway
annotations have been used. Edges represent interactions between pathways.

2.3. DNA Methylation Changes Occurs in HSCs and DEGs Associated Open Chromatin Regions

To assess if the HSC-specific transcriptional alteration could be due to HSC-specific
epigenetic change, we profiled chromatin accessibility at the single-cell level (i.e., single-cell
ATAC-seq). We generated open chromatin data across 8733 cells in HSPCs from 6 CTRL
and 5 LGA neonates. We first annotated subpopulations using the label transfer approach
between ATAC-seq data and the lineage labels from the Hematomap (Figure 4A, Supple-
mental Figure S4A). To validate the relevance of our lineage annotation, we performed TF
motif enrichment and observed that lineage-specific peaks were effectively associated with
well-known lineage-specific TF (Supplemental Figure S4B).
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Figure 3. Association between changes in DNA methylation and in gene expression. (A) Dot plot
representing the correlation between DNA methylation and gene expression changes. Differentially
expressed genes with adjusted p-value < 0.05 and |log2FC| > 0.5 are shown in red. (B) Boxplots
representing gene-methylation score distribution associated with non-DEG, up-regulated, and down-
regulated genes (Wilcoxon test). (C) Network representation of significantly enriched pathways
identified through GO GSEA analysis based on DEG identified comparing LGA vs. CTRL. Nodes
are color-coded based on enrichment for differentially methylated genes using the gene-methylation
score. Edges represent interactions between pathways.

We then integrated our bulk DNA methylation data with our single-cell ATAC-seq
data to assess DMCs distribution within open chromatin regions (OCRs). Overall, 31%
of the 211,479 peaks contain CpGs queried by our genome-wide methylation assay. We
first observed a strong enrichment for DMCs in OCRs with 74% of them located in OCRs
compare to only 34% of overall queried CpGs (p-value < 0.001, hypergeometric test). Such
enrichment further supports the putative regulatory influence of our DMCs. By performing
lineage-specific analysis, we observed DMCs enrichment in HSC-specific open chromatin
region with a total of 11% of HSC-specific peaks containing DMCs (adjusted p-value < 0.001,
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Figure 4B), while no enrichment was observed for the other lineages. This result corroborates
the HSC-specific transcriptional impact of the DNA methylation changes observed in LGA.
Furthermore, we observed that DEGs in LGA HSC and especially down-regulated genes
were enriched for OCRs containing DMCs (Figure 4C).

Figure 4. Chromatin accessibility analysis. (A) UMAP representing HSPCs lineage based on chro-
matin accessibility. Annotations are based on the Hematomap using the transfer label approach.
(B) Dot plot representing enrichment for DMC within lineage-specific peaks. (C) Bar plots represent-
ing enrichment for peaks containing CpG or peaks containing DMC associated to DEGs, up-regulated
and down-regulated genes (* p-value < 0.05; ** p-value < 0.01, *** p-value < 0.001, hypergeometric
test). (D) Dot plot representing enrichment for transcription factor motif within Down peaks iden-
tified comparing chromatin accessibility between LGA and CTRL. Dots are color-coded based on
percentage of peaks with motif and y-axis represents the significance of the enrichment. (E) Bar
plots representing enrichment analysis considering accessible, down, and up peaks. Enrichment
is performed using peaks in expressed genes (expressed), peaks with CpGs (CpGs), peaks in DEG
(DEGs), peaks with DMC (DMCs), and peaks in DEG with DMC (DMCs_DEGs) as reference gene
sets (** p-value < 0.01, *** p-value < 0.001, hypergeometric test).

Not limiting our analysis to the regulatory role of DMCs within open chromatin
regions, we then assessed the change in chromatin accessibility in LGA HSCs. We identified
278 open chromatin regions that significantly differ between LGA and CTRL HSCs, with
215 showing decreased and 63 showing increased accessibility (adjusted p-value < 0.001
and |log2FC| > 0.25, Supplemental Figure S4C). By performing TF Motif analysis on
regions with decreased accessibility, we identified that the motif of the transcriptionally
downregulated TFs EGR1 and KLF2 are highly enriched (p-value < 1.10−40) and among the
top 6 enriched motifs (Figure 4D, Supplemental Figure S4D).
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We then assessed the interaction between DNA methylation, gene expression, and
chromatin accessibility. Regions with decreased accessibility were also strongly enriched
in peaks including DMCs and peaks associated with DEGs (Figure 4E), with 3-fold and a
2.5-fold enrichment, respectively. Furthermore, these regions were strongly enriched for
peaks containing both DMCs and associated with DEGs (23-fold enrichment) illustrating
that early epigenetic programming is actually not limited to changes in DNA methylation
but also involves chromatin rearrangement targeting altered genes.

2.4. EGR1, KLF2, and KLF4 Are Key Upstream Regulators Influenced by Early Epigenetic
Programming in LGA

To further characterize the molecular mechanisms affected in LGA HSCs and identified
master regulators, we leveraged the single-cell resolution of our approaches to perform a co-
regulatory network analysis. This approach allowed us to model the influence of upstream
transcription factors (TF) on expression changes of downstream target genes. We performed
co-expression analysis to identify genes co-regulated by the same TF, i.e., regulons, and filter
each regulon based on the presence of TF motif within a cis-regulatory region (SCENIC). We
identified a total of 250 regulons but only considered for further analyses the 106 regulons
identified based on high confidence cis-regulatory motif. These regulons only rely on
associations for which the presence of the TF motif was experimentally validated. We then
scored the regulons activity in each cell using gene expression profiles of the entire regulons
(AUCell). We observed that lineage-specific regulons are associated with concordant
lineage determining hematopoietic TFs such as GATA2, GATA3, MEIS1, TAL1, TCF3, EGR1,
CEBPB, HOXB4, SPI1, and STAT1/3 further supporting our subpopulation annotation and
the SCENIC approach (Supplemental Figure S5A, Supplemental Table S5) [8].

To identify TF associated with the changes in gene expression observed in LGA HSC,
we compared the regulon activity between CTRL and LGA. We found seven regulons with
a significant decrease in activity in the LGA HSC population (adjusted p-value < 0.001 and
|activity score fold change| > 10%, Supplemental Table S6). No regulons were upregulated.
These regulons were associated with ARID5A, EGR1, KLF2, KLF4, KLF10, FOSB, and JUN
(Figure 5A). Among them, ARID5A, EGR1, KLF2, FOSB, and JUN were part of the 10 top
active regulons in HSCs (Supplemental Table S7). Based on functional enrichment analysis
using as reference GO:BP gene sets, and HSC signatures of quiescence or proliferative
state [11], we showed that these regulons were enriched in genes regulating stress response,
proliferation, and HSC differentiation (Figure 5B).

To further support the association between change in DNA methylation and change
in gene expression previously identified at the gene level, we performed GSEA analysis
to identify regulon enriched for both differentially methylated and differentially expressed
genes. We found 9 regulons enriched in both hypermethylated and downregulated genes
(adjusted p-value < 0.01 and NES <−1.6), including the differentially active regulons ARID5A,
EGR1, FOSB, JUN, KLF2, and KLF4 (Figure 5C). We also found 9 regulons enriched in
hypermethylated and upregulated genes (adjusted p-value < 0.01 and NES > 1.6) with key
HSPC-specific regulons such as SPI1 promoting myeloid differentiation; Ref. [12] and HOX
family (HOXA9, HOXA10, HOXB4) promoting HSPC expansion (Figure 5C) [13–15].

To confirm the putative influence of methylation change on TF activity, we performed
TF motif analysis considering the proximal regions surrounding each DMCs (±20 bp). We
found significant enrichment for 23 TF motifs (adjusted p-value < 0.05, Figure 5D). Among
them, we found EGR1 and several members of the Kruppel-like factors (KLF) family: KLF14,
KLF5, KLF1, and KLF6. Furthermore, by taking advantage of our single-cell ATAC-seq data,
we looked at the enrichment of the TF motif in open chromatin regions of HSC containing
DMCs. We found a strong enrichment in EGR1, KLF2, and KLF4 motifs indicating that
DNA methylation change occurred in active regions of the EGR1/KLF2/KLF4 TF network
(Figure 5E).
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Figure 5. Epigenetic programming of HSC-specific regulons altered in LGA neonates. Regulons
and TF target information were obtained through the SCENIC workflow. (A) Boxplots representing
regulon activity score in CTRL and LGA HSC lineage. Barplot representing the change in regulon
activity and significance comparing LGA vs. CTRL. Only significantly affected regulons are repre-
sented (adjusted p-value < 0.001 and |activity score fold change| > 10%). (B) Heatmap representing
association between altered regulons and selected gene sets annotation. (C) Volcano plot representing
enrichment in the change in expression and DNA methylation in regulons. Regulons enriched con-
sidering both expression and methylation (adjusted p-value < 0.01 and NES > 1.6) are in red. (D) Dot
plot representing enrichment for TF binding motifs using HOMER considering a ±20 bp region
around DMCs. Dots are color-coded based on the significance of the enrichment and y-axis represent
the number of regions with binding motif among DMCs. (E) Dot plot representing enrichment for
TF binding motifs using HOMER considering peaks with DMCs. Dots are color-coded based on the
fold-enrichment and y-axis represents the significance of the enrichment.
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2.5. Multimodal Co-Regulatory Network Recapitulating TF-Gene Interactions Influenced by Early
Epigenetic Programming in LGA

Based on the integration of the DNA methylation, single-cell ATAC-seq, and single-
cell RNA-seq data, we built a network recapitulating interaction between main TFs and
downstream target genes within the principal regulons altered in LGA neonates: EGR1,
KLF2, and KLF4 (Figure 6). EGR1, KLF2, and KLF4 regulons rely on highly interconnected
(co-regulated) genes (Figure 6A). For each target gene, we confirmed the presence of a
unique or shared upstream TF binding motif within the open chromatin regions. We
observed a high concordance between the regulons and open chromatin motif analysis:
96%, 91%, and 95% of genes included in EGR1, KLF2, and KLF4 regulons, respectively, were
associated with at least one peak containing the corresponding TF motif supporting the
association between genes and TFs. We then looked for evidence of epigenetic modifications
that may alter TF-target interactions. We annotated genes with associated open chromatin
regions containing at least one DMC (middle area) or identified as differentially accessible
between CTRL and LGA (inside area) (Figure 6B). Overall, 23% (n = 27) of genes targeted
by these TFs networks have epigenetic alteration (DMCs or decrease accessibility) in open
chromatin regions while 22% (n = 26 genes) appear downregulated in LGA. Finally, we
highlight KLF2 as possible master regulators influenced by early programming. Indeed, we
identified KLF2 as a hypermethylated and downregulated gene that interacts directly with
EGR1 and KLF4 suggesting the downstream influence of KLF2 on these TFs. Conversely,
KLF2 was not identified as part of EGR1 and KLF4 regulons suggesting that KLF2 is not
a target of these TFs. This network also further validated JUNB and SOCS3 being highly
epigenetically altered in cis-regulatory regions (Figure 6C), as well as ID1, CDKN1A, IER2,
IER3, and IER5 as key downstream altered targets of KLF2, EGR1, and/or KLF4, again
highlighting how early programming alters signaling involved in the regulation of cell
proliferation and differentiation.

2.6. In Vitro Analysis Confirms the Alteration of HSPCs Differentiation Capacities in LGA

Our integrative analyses highlighted epigenetic and transcriptomic alterations tar-
geting signaling pathways involved in the regulation of HSC differentiation and prolif-
eration. Thus, we decided to challenge HSPC differentiation and proliferation potential
in vitro using colony-forming unit (CFU) assays. After 14 days of expansion, colonies
from 4 CTRL and 4 LGA samples were classified into three categories: those derived
from common myeloid progenitors (CFU_GEMM), erythroid progenitors (BFU-E), and
granulocyte-macrophage progenitors (CFU_GM) based on the morphology of each colony.
We observed a significant decrease in the number of common myeloid progenitor colonies
in LGA samples (p-value < 0.05; Figure 7A) as well as striking differences in shape and
size of more differentiated colonies (Figure 7B). CFU_GEMM colonies are the product
of a non-committed hematopoietic progenitor able to differentiate in both erythroid and
myeloid lineage. In our samples, only HSC and MPP have these features, suggesting that
the decreased CFU GEMM proportion in LGA reflects either fewer HSC/MPP in starting
cell subpopulation composition or a decreased proliferation and differentiation capacity of
these cells.

To evaluate these two possibilities, we monitored cell population distribution across condi-
tions at molecular resolution using our single-cell expression dataset. We observed a decrease in
HSC cells (p-value = 0.015) and a trend toward increased MPP cells (p-value = 0.13, Figure 7C)
in LGA compared to CTRL. Another way to look at population shift is to use pseudotime,
i.e., a measure that reflects how far an individual cell is in a differentiation process. Indeed,
cord-blood-derived CD34+ HSPCs represent a heterogeneous population of cells ranging from
progenitors to progressively restricted cells of the erythroid, myeloid, or lymphoid lineages as
confirmed by our single-cell transcriptomic analysis. To follow cell distribution through these
levels of differentiation and assess the influence of the LGA environment we used the pseudo-
time tool from Monocle [16] Collecting the pseudotimes across our different cell populations,
we observed a positive correlation between pseudotime and lineage differentiation as expected
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(r = 0.99, Pearson correlation, Figure 7D, Supplemental Figure S6A). We then compared the
distribution of the pseudotime between LGA and CTRL using the least differentiated cells as
roots, i.e., the long-term HSCs. At the population level, we observed an increase in pseudotime
in LGA (p-value < 0.001, Figure 7E). Indeed, we observed a decrease in the number of cells
presenting pseudotime associated with the HSC state in LGA samples (p-value < 0.05) and a
shift toward cells presenting elevated pseudotime suggesting that LGA HSCs exit quiescence
and differentiate more quickly compared to CTRL HSCs (Figure 7E). Altogether, our analysis
supports the association between LGA exposure and cell growth signaling targeted by DNA
methylation and gene expression changes with alteration of differentiation and proliferation
capacities.

Figure 6. Network recapitulating interaction between the epigenomic and transcriptomic alter-
ations in LGA. (A) Network representing interactions between target genes and transcription factors
considering our top affected regulons ARID5A, EGR1, KLF2, KLF4, FOSB, and JUN. Each dot repre-
sents a gene within the network, the triangle represents a transcription factor, the arrow represents
the interaction between the transcription factor and target genes, shapes are color-coded to reflect
the change in gene-methylation score, and DEGs are labeled in red. Size of the shape represents
the number of interactions. Only genes with two or more interactions are represented. (B) Tracks
representing DNA methylation and chromatin accessibility for selected representative regions. His-
togram representing change in DNA methylation at CpG level comparing LGA vs CTRL. Violin
plot representing gene expression for selected genes (C) Network-based on the integration of DNA
methylation, gene expression, and chromatin accessibility representing transcription factors and
downstream target interactions within EGR1, KLF2, and KLF4 regulons. Only genes associated with
peaks with TF motifs of interest are annotated. Donuts represent different levels of interactions.
***: significant change of peak accessibility (logistic regression) or gene expression (Wilcoxon test) in
LGA compared to Control HSCs, adjusted p-value < 0.001.
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Figure 7. LGA is associated with decreased expansion capacity and an HSC shift toward more dif-
ferentiated cells. (A) Bar plot representing colonies distribution after CFU assays. (B) Representative
capture of colonies’ morphological differences found in CTRL and LGA. (C) Boxplots representing
the cell distribution across hematopoietic main lineages in CTRL and LGA. (D) UMAPs represent-
ing pseudotimes across lineages. (E) Box plots representing the cumulative percentage of cells per
pseudotime in CTRL and LGA. Boxplots in the vignette represent overall pseudotime distribution
in CTRL and LGA. Density plots correspond to cell populations distribution across pseudotimes.
(F) Model recapitulating the influence of LGA on the hematopoietic compartment. (LT-HSC, long-
term hematopoietic stem cell; HSC, hematopoietic stem cell; MPP, multipotent progenitor; LMPP,
lymphoid-primed multipotent progenitors; Erythro-Mas, erythroid and mast precursor; Mk/Er,
megakaryocyte and erythrocyte; DC, dendritic cell; CFU-GEMM, common myeloid progenitors;
BFU-E, erythroid progenitors; CFU-GM, granulocyte-macrophage progenitors.

3. Discussion

Here, we interrogated three major layers of the regulatory landscape in cord-blood-
derived CD34+ HPSCs, DNA methylation, chromatin conformation, and gene expression.
We characterized, in-depth and at single-cell resolution, the functional consequences as-
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sociated with early DNA methylation changes observed in LGA neonates. Through, the
integration of multiple datasets and the development of novel analytical approaches, we
addressed a very challenging aspect of functional (epi)genomics, the interpretation of DNA
methylation changes. Focusing on HSPCs, we believe that we contributed to a better under-
standing of how early environment shapes the hematopoietic compartment development
and long-term function.

We demonstrated in LGA neonates a correlated increase in DNA methylation and
change in chromatin accessibility associated with decreased expression of downstream
target genes under the influence of key HSC transcription factors EGR1, KLF2, and KLF4.
EGR1, KLF2, and KLF4 are zinc-finger transcription factors involved in HSC quiescence
signaling. EGR1 has a known role in regulating cell growth, development, and stress
response in many tissues. In HSPC, EGR1 plays a role in the homeostasis of HSCs regulat-
ing proliferation [17]. EGR1 promotes quiescence and decreases through differentiation.
Interestingly, EGR1 has also been shown to interact with epigenetic regulators forming
a complex with DNMT3 and HDAC1 [18] suggesting a possible role in the epigenetic
remodeling observed in LGA HSC. The KLF family is implicated in key stem cell functions.
KLF4 is the most well-known factor in this family due to its role in reprogramming somatic
cells into induced pluripotent stem cells [19]. KLF4 has been identified as a target for
PU.1 transcription factor required for lineage commitment in HSPCs [20]. KLF2 and KLF4
promote self-renewal in embryonic stem cells [21] but no study has looked specifically at
KLF2 and KLF2/KLF4 interactions in HSPCs. Our data suggest direct and indirect (shared
downstream target) interactions between these three transcription factors in HSPCs. EGR1,
KLF2, and KLF4 represent targets to be further explored in order to challenge causality.
Still, our findings lead to a better understanding of how early exposure can affect long-term
hematopoietic maintenance in humans via epigenetic programming of the EGR1, KLF2,
and KLF4 signaling. Furthermore, these coordinated epigenetic and transcriptomic changes
target genes regulating growth signaling, such as SOCS3, SIRT1, and SESN2 [22–24]. Alter-
ation of growth signaling highlights the tight correlation between in utero environment and
the epigenetic programming. Indeed, excessive fetal growth observed in LGA neonates
results in part from gestational hyperglycemia, dyslipidemia, or over secretion of placental
insulin-like growth factors [25–27]. Altogether, these results further illustrate how DNA
methylation and chromatin accessibility are key co-epigenetics actors regulating TF activity.
Such interplay was already observed in the context of lineage commitment [28,29], but not
yet in the context of developmental programming of HSCs. This highlights the interest in
considering both methylation and chromatin rearrangement in fetal programming studies
to decipher putative epigenetic imprinting and functional consequences.

Interestingly, EGR1, KLF2, and KLF4 are not only involved in the regulation of prolifer-
ation and differentiation per se but are key factors of the immediate, early response involved
in stimulation-related cell activation. EGR1 and KLF2 expression increase in response
to extrinsic stimulation. Elevated EGR1 and KLF2 expression promote self-renewal and
quiescence in HSC [17,21]. Our transcriptomic data suggests that such activation may be
occurring in our samples with the activation of stress-related signaling. The primary scope
of our study was not to characterize the environmental exposure that would trigger such
responses. However, one can speculate that the activation could result from stress due to
cold exposure or handling time inherent to sample preparation. Still, the decreased activity
observed in LGA suggests that LGA HSCs’ capacities to respond to environmental chal-
lenges are diminished. This hypothesis fits with the concept of early programming in which
disease susceptibility relies not only on early impairment of organ development but also on
a decreased adaptability to further environmental challenges to trigger disease [30]. Indeed,
fine-tuning HSC quiescence mechanisms is of crucial relevance for optimal hematopoiesis.
Not responsive dormant HSC would lead to hematopoietic failure due to a lack of differ-
entiated blood cells. Although highly responsive HSC would lead to exhaustion of the
population and a lack of long-term maintenance of the hematopoietic system [31].
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To validate findings from our integrative approach, we challenged HSPCs in vitro and
found a significant decrease in the number of CFU-GEMM colonies, colonies containing
both erythroid and myeloid cells. These colonies are likely to originate from HSC or MPP
cells, as only these cells have this multi-potential. These alterations could result from the
decreased differentiation and proliferation capacities of these CD34+ cells or a decrease in
their initial proportion in LGA cord blood. Our data suggest that both are altered in LGA.
Indeed, the cell population analysis at the transcriptomic level revealed a decrease in HSCs
in LGA neonates but a tendency to an increase in MPPs. We also observed epigenomic
and transcriptomic alterations in signaling pathways and transcription factors regulating
differentiation and proliferations of HSCs. Yet, this loss of stemness capacities in HSC is
likely to drive the decrease in HSC subpopulations observed in our data and the decreased
colony-forming capacity.

These findings corroborate previous studies on the developmental programming
of the hematopoietic system [7,8]. A reduction in self-renewal of HSPCs and increased
differentiation in both lymphoid and myeloid lineages have been observed in a mouse
model of maternal obesity [2]. These effects may drive long-term consequences in human
health as illustrated by the study performed by Kotowski et al. in which the integrity
of the hematopoietic system in neonates was associated with susceptibility to onset of
hematopoietic pathologies [32].

Hematopoietic stem cell differentiation and self-renew rely on a synergic interplay
between genetically encoded signaling, cell-intrinsic, and cell-extrinsic factors as well
as epigenetic modifiers [33]. This interplay appears altered in LGA neonates. We here
provide a comprehensive model recapitulating the functional influence of the epigenetic
early programming on HSPCs fitness to later environmental exposure (Figure 7F). We
also linked LGA-associated epigenetic modifications to gene expression and functional
alterations through a novel integrative approach. In this regard, we identified targets to
be further explored. We also brought a better understanding of how early exposure can
affect long-term tissue maintenance via epigenetic programming of EGR1, KLF2, and KLF4
associated regulation of growth signaling.

4. Methods

See the Supplemental Methods for additional information.

4.1. Clinical Sample Collection

Cord blood samples were obtained from CTRL and LGA neonates. LGA were defined
by birth weight and ponderal index values greater than the 90th percentile for gestational
age and sex. Control infants had normal parameters (between 10th and 90th percentiles)
for both birth weight and ponderal index. Maternal and infant characteristics are shown in
Supplemental Table S8.

4.2. Isolation of CD34+ HSPCs

Mononuclear cells were separated using PrepaCyte-WBC following which CD34+ cells
were obtained by positive immunomagnetic bead selection, using the AutoMACS Separator
(Miltenyi Biotech, Cologne, Germany). Cells were cryopreserved in 10% dimethyl sulfoxide
using controlled rate freezing upon analysis.

4.3. Genome-Wide DNA Methylation Assay

DNA methylation levels for >1.7 M CpGs were obtained using the HELP-tagging
assay as previously described [34].

4.4. Single-Cell RNA Sequencing Libraries Preparation

After cell count and viability check, the cell suspension was loaded into the Chromium
controller (10× Genomics, Pleasanton, CA, USA) and library was generated using the
chromium single-cell v3 chemistry following manufacturer recommendations. Gene ex-
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pression library was sequenced using 100 bp paired-end reads on the Illumina NovaSeq
6000 system (Illumina, San Diego, CA, USA).

4.5. Single-Cell ATAC Sequen1cing Libraries Preparation

After cell count and viability check, nuclei were isolated from cell suspension and
incubated with transposase. Transposed nuclei were then loaded into the Chromium 10×
Genomics controller and library was generated using the chromium single-cell ATAC
v1.1 chemistry following manufacturer recommendations. Gene expression library was
sequenced using 150 bp paired-end reads on the Illumina NovaSeq 6000 system.

4.6. HTO Protocol

After cell counting and viability check and prior to cell suspension loading on the
Chromium controller, cell hashtag (HTO) staining (Biolegend, San Diego, CA, USA) was
used following the cell-hashing protocol [7].

4.7. Colony Forming Unit Assay

To assess clonogenic progenitor frequencies, 3 × 103 CD34+ HSPC cells were plated in
methylcellulose containing SCF, GM-CSF, IL-3, and EPO (H4434; STEMCELL Technologies,
Vancouver, BC, Canada). Colonies were scored 14 days later.

4.8. Data Processing and Statistical Analysis

For DNA methylation analysis, low-quality CpGs were filtered out based on detection
rate and confidence score. 754,931 out of 1,709,224 CpGs were conserved for further analysis.
Linear regression and statistical modeling using the LIMMA R package [35] were used to
identify differentially methylated CpGs (DMC) including maternal age, sex, ethnicity, batch,
and library complexity in the linear model. We assessed enrichment for biological pathways
performing GSEA using the ClusterProfiler package [36]. We performed transcription factor
(TF) motif enrichment analysis using the HOMER tool [37] considering a 20 bp region
around the DMCs.

For single-cell RNAseq (scRNA-seq) analysis, data were preprocessed using the Cell-
Ranger count pipeline (10× Genomics). Data filtering, normalization, and integration as
well as cluster identifications were performed using Seurat (v4) pipeline [28]. Pseudo-bulk
differential expression analysis between LGA and CTRL cells within each hematopoietic
lineage was performed using DESeq2 R package including batches and sex of samples in
the negative binomial model [29]. Over representation test was performed on differentially
expressed genes (DEGs) using enrichGO and enrichKEGG of the ClusterProfiler Package.
The SCENIC workflow [38] was used to identify co-regulated genes module associated to a
TF (regulons) and to generate cell-specific activity scores for each regulon. Differentiation
trajectory analysis and pseudotime attribution were conducted with Monocle [16].

For single-cell ATAC-seq, data were preprocessed using the CellRanger ATAC pipeline
(10× Genomics). Data filtering, normalization, and integration as well as clustering were
performed using the Signac pipeline. Cell type identification was based on scRNA-seq
annotation using a label transfer approach. Peaks calling at lineage level was performed
using the MACS2 tool. Peaks specific to each lineage or differentially accessible between
LGA and Control were identified using the FindMarkers function with Logistic Regression
(LR) models including cellular sequencing depth as a latent variable. TF motif enrichment
on lineage or group-specific peaks was performed using the FindMotifs function. All peaks
enrichment analysis was performed using hypergeometric tests. For final Gene Regulatory
Network (GRN) construction, TF target interactions inferred with SCENIC were filtered out
based on the presence of a corresponding TF motif in the peak associated with the target.
Supplemental Table S9 contains information on the number of cells per sample.
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4.9. Gene-Methylation Score

To compute the gene-methylation score, 2 steps were needed: (1) to generate a CpG
score that reflects the association between CpG and gene, and (2) to concatenate CpG-scores
at the gene level.

(1) CpG-score

CpGScore = (−log10(pcpg) ×meth.change) × LinkWeight × RegWeight

where pcpg is the nominal p-value of the differential methylation analysis, and meth.change
is the difference between the percentage of methylation in LGA and the percentage of
methylation in CTRL. LinkWeight represents the confidence in CpG-gene association and
RegWeight represents the estimated regulatory influence of the considered CpG based
on CD34+ specific genomic annotation defined using CD34+ specific histone marks as
previously described [3] and EnsRegScore refers to regulatory regions defined based on the
Ensembl Regulatory build hg19 genome annotation [39].

(2) To concatenate CpG-Scores at gene level: gene-methylation score

To summarize the CpG methylation change at the gene level, we aggregated the CpG-
Scores into a methylation gene score by taking care to (i) alleviate the arbitrary number
of CpGs per gene and (ii) interpret differently CpG influences located on the promoter of
them in others genomic region.

The gene-methylation score is defined as:
Gene-methylation score = (∑ CpG Score ×Weight n_cpg)promoter + (∑|CpG Score| ×

Weight n_cpg)other_regions
Where the WeightnCpG was optimized to alleviate the influence of the number of CpGs

linked to a gene and defined as:

WeightnCpG = 3,8

√
1

∑ 1
|CpGScore+1|

The code to perform the analyses in this manuscript is available at https://github.
com/umr1283/LGA_HSPC_PAPER.git (last accession date: 29 May 2022).
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