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Abstract: Molecular chaperones are key components of the protein homeostasis system against
protein misfolding and aggregation. It has been recently shown that these molecules can be rationally
modified to have an enhanced activity against specific amyloidogenic substrates. The resulting
molecular chaperone variants can be effective inhibitors of protein aggregation in vitro, thus
suggesting that they may provide novel opportunities in biomedical and biotechnological applications.
Before such opportunities can be exploited, however, their effects on cell viability should be better
characterised. Here, we employ a rational design method to specifically enhance the activity of the
70-kDa heat shock protein (Hsp70) against the aggregation of the human islet amyloid polypeptide
(hIAPP, also known as amylin). We then show that the Hsp70 variant that we designed (grafted heat
shock protein 70 kDa-human islet amyloid polypeptide, GHsp70-hIAPP) is significantly more effective
than the wild type in recovering the viability of cultured pancreatic islet β-cells RIN-m5F upon hIAPP
aggregation. These results indicate that a full recovery of the toxic effects of hIAPP aggregates
on cultured pancreatic cells can be achieved by increasing the specificity and activity of Hsp70
towards hIAPP, thus providing evidence that the strategy presented here provides a possible route for
rationally tailoring molecular chaperones for enhancing their effects in a target-dependent manner.
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1. Introduction

Molecular chaperones help maintain protein homeostasis by transiently binding their protein
substrates to assist them in folding and trafficking [1,2], and to prevent them from aggregating and
exerting cytotoxic effects [2–8]. It has thus been suggested that these molecules could be used as
potential agents against protein misfolding diseases [9–13]. Such diseases arise from the misfolding,
and aberrant deposition of otherwise normally soluble proteins, leading to a loss of function and a gain
of toxicity [3,4,14–23]. A significant advantage of molecular chaperones over other protein aggregation
inhibitors, such as small molecules and antibodies, arises from their potent activity at substoichiometic
concentrations [24–27]. In order to fully exploit these opportunities, however, strategies to increase the
specificity of the interactions of molecular chaperones with their target substrates should be developed.
This aspect is important as, typically, molecular chaperones have multiple substrates, and, therefore,
altering them in a non-specific manner may lead to a variety of potentially harmful off-target effects.
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Among molecular chaperones, heat shock protein 70 kDa (Hsp70) has been the focus of much
interest for protein misfolding diseases since it plays essential roles in protein homeostasis in
physiological and stress conditions [5,28,29], it is associated with protein deposits [5,10], and it
has been shown to reduce aggregate cytotoxicity in mammalian systems [30–33]. In biomedical
research, the strategy of using Hsp70 to mediate toxic protein aggregation has primarily been based
so far on increasing its stoichiometric ratio to proteins [34–38] or on stimulating its activity [6,36].
Attempts to alter the activity of Hsp70 by targeting its nucleotide-binding domain (NBD) have also
been made [39,40]. These approaches may, however, lead to non-specific substrate targeting and,
therefore, as noted above, can result in the unwanted alteration of the functions of proteins not related
to disease, with potentially toxic consequences [41–43].

Our strategy here is to modify rationally Hsp70 to increase its activity and specificity for a selected
target substrate by grafting onto it a binding peptide designed to interact with a given epitope in the
target substrate. By increasing the binding efficiency towards the target substrate, this strategy avoids
the need for overexpression or modification of the ATPase domain by increasing the efficiency towards
the target substrate. We have previously shown that this approach can be used in vitro to alter Hsp70
to target specifically the amyloidogenic regions of α-synuclein, a disordered protein associated with
Parkinson’s disease, resulting in a reduction of aggregation even at low molar ratios [44].

In this study, we targeted human islet amyloid polypeptide (hIAPP) since this peptide is the major
component of the amyloid deposits found in patients with non-insulin dependent (type II) diabetes
mellitus [45,46]. hIAPP is thought to play a significant role in the progressive loss of RIN-m5F β-cells,
as hIAPP oligomers may interact with the outer membrane surface of these cells [45,46], and it is also
known that hIAPP disrupts synthetic lipid vesicles [47]. Because of its association with this disease,
substantial efforts have been devoted to finding ways of modulating the aggregation-dependent
toxicity of hIAPP using small molecules [48–50]. The toxicity of hIAPP aggregates has been reduced by
using antibodies that bind hIAPP oligomers, leading to a recovery of the toxic effects in neuroblastoma
cells [51].

Our choice of targeting Hsp70 among other possible molecular chaperones was prompted by
its known association with hIAPP-mediated pathology [52,53]. We provide a proof-of-principle of
our approach by evaluating the activity of our designed Hsp70 variant in recovering the viability of
a mammalian cell culture system. Specifically, we use the insulinoma cell line (RIN-m5F), as it is an
established cellular model for studying the molecular mechanism of hIAPP-related toxicity [54]. In this
system, aggregated hIAPP hinders cell viability by reducing proliferation rate and causing cell death
by interacting with outer membranes [55,56].

2. Results

2.1. Rational Design of an Hsp70 Variant against hIAPP

In this work we rationally designed an Hsp70 variant with improved activity against hIAPP
aggregation. The rational design procedure consists of two steps. First, we used a recently developed
method [57] to construct the sequence of a complementary 8-residue peptide (RLGVYQR), targeting
an 8-residue epitope (FGAILSS, Figure 1) on the hIAPP sequence in the vicinity of the region of
residues 20–29, which is consistently recognised as amyloidogenic as it adopts a β-sheet structure
upon amyloid fibril formation [46,58,59]. Second, we grafted this peptide on to Hsp70 by appending it
to the C-terminus, thus generating a grafted variant, the grafted heat shock protein 70 kDa-human islet
amyloid polypeptide (GHsp70-hIAPP) (Figure 1). The grafted peptide on GHsp70-hIAPP is expected to
specifically bind its target epitope on hIAPP via complementary hydrogen bonding [44,57]. As controls,
we used Hsp70 wild type (WT), and GHsp70-Aβ, which was designed with the same strategy of
GHsp70-hIAPP, but carries a grafted complementary peptide designed to bind the 42-residue form of
the Alzheimer’s amyloid β peptide (Aβ42) [44,57].
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Figure 1. Schematic representation of the rational design strategy for generating a heat shock protein
70 kDa (Hsp70) variant specifically targeting the most amyloidogenic region of human islet amyloid
polypeptide (hIAPP). The amino-acid sequence (RLGVYQR) was grafted at the C-terminal end of Hsp70,
resulting in the grafted heat shock protein 70 kDa-human islet amyloid polypeptide (GHsp70-hIAPP)
variant. The complementary peptide sequence targets the residues 23–29 in the amyloidogenic region
of hIAPP [46,58,59].

2.2. The Designed GHsp70-hIAPP Variant Increases Pancreatic Islet β-Cell Viability in Cell Culture Experiments

The viability of RIN-m5F cells was used to compare the effects of Hsp70 WT and the
designed variant GHsp70-hIAPP on the cytotoxicity of hIAPP. A tetrazolium salt reduction assay
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was chosen since this assay is
widely used in the literature to assess hIAPP toxicity in RIN-m5F cells [55,56].

We first checked that cell viability was significantly compromised in the presence of 10 µM hIAPP.
We observed a reduction to a level (66 ± 1%), consistent with previous reports [55,56] (Figure 2a,
red bar). In the presence of hIAPP, the addition of the GHsp70-hIAPP variant to the media for
24 h completely recovered the ability of RIN-m5F cells to reduce MTT to a level comparable to
that of untreated cells (i.e., in the absence of hIAPP, black bar) for each molar concentration tested
(Figure 2a). By contrast, the addition of Hsp70 WT resulted in only a partial recovery of the ability
of treated RIN-m5F cells to reduce MTT. This effect was significantly lower compared to that of the
GHsp70-hIAPP variant (at 0.8 µM, 89 ± 1% and 102 ± 1%, respectively, p < 0.01; at 0.4 µM 81 ± 1% and
103 ± 1%, respectively, p < 0.001; at 0.2 µM 79 ± 1% and 100 ± 1%, respectively, p < 0.001; Figure 2a).

These findings are significant since they indicate that the action of the GHsp70-hIAPP variant
takes place via a combination of a generic activity of Hsp70 and a specific activity of this molecular
chaperone through the additional engineered interaction with hIAPP that we designed [44,57]. We then
performed further control experiments using the Hsp70 variants alone in the presence of cells, and for
both the wild type and the engineered variants, no significant changes in the ability of RIN-mF5
cells to reduce MTT compared to untreated cells were observed (Figure S1). Conversely, as expected,
the presence of 10 µM hIAPP significantly hinders the ability of the cells to reduce MTT (Figure S2).
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compared to data for untreated control cells using a Student’s t-test. ** p <0.01 and *** p <0.001; (b) 

Light microscopy images of RIN-m5F cells left untreated, or incubated with hIAPP in the presence of 

GHsp70-hIAPP or Hsp70 wild type (WT) (both at 0.8 μM), or incubated with hIAPP alone. Images 
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Figure 2. Treatment with the designed GHsp70-hIAPP variant increases the viability of cultured
pancreatic islet β-cell. (a) 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
reduction of cells incubated with 10 µM hIAPP at increasing molar concentrations of molecular
chaperones (0.2, 0.4, 0.8 µM): GHsp70-hIAPP and 10 µM hIAPP (dark grey bars), Hsp70 WT and 10 µM
hIAPP (light grey bars), and 10 µM hIAPP alone (red bar). Untreated cells were a positive control to
assess the maximum MTT reduction, and cells lysed with Triton X-100 were used as a negative control
to assess the minimum MTT reduction (~3 ± 0.5% untreated cells). Mean values were compared to
data for untreated control cells using a Student’s t-test. ** p <0.01 and *** p <0.001; (b) Light microscopy
images of RIN-m5F cells left untreated, or incubated with hIAPP in the presence of GHsp70-hIAPP or
Hsp70 wild type (WT) (both at 0.8 µM), or incubated with hIAPP alone. Images are representative of
cells from five replicate wells in a single experiment; the magnification is 15×.

2.3. The Designed GHsp70-Aβ Variant Does Not Increase Pancreatic Islet β-Cell Viability

White-light images of RIN-mF5 cells exposed to hIAPP for 24 h displayed a marked difference
in cell morphology (Figure 2b). hIAPP-treated cells displayed a less spreaded morphology and
appeared less confluent compared to the untreated cells, indicating a reduction in the proliferation of
these cells. These observations are consistent with previous studies that have reported a reduction
in the proliferation of RIN-m5F cells via cell death processes induced by hIAPP exposure [54,60].
By contrast, cells treated with hIAPP in the presence of GHsp70-hIAPP exhibited a flattened and
spreaded morphology highly similar to that of untreated cells (Figure 2b). Cells treated with hIAPP
in the presence of Hsp70 WT displayed an intermediate growth morphology, somewhere between
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untreated and hIAPP-treated cells (Figure 2b). Taken together, the growth morphologies observed for
each treatment appear commensurate with MTT reduction assays (Figure 2a).

We next used the GHsp70-Aβ variant as a control since this variant contains a C-terminal grafted
extension of equal length and similar hydrophobicity and charge to the variant we grafted onto
GHsp70-hIAPP. This is, therefore, a rather stringent test, as GHsp70-Aβ could be expected to enhance
non-specific binding towards hIAPP aggregates compared to the Hsp70 WT, since its grafted peptide
endows it with an enhanced inhibitory activity on the in vitro aggregation of Aβ42 [44]. In support of
the specificity of the design procedure that we used in this work, we found that the MTT reduction
activity of cells treated with hIAPP and GHsp70-Aβ is indistinguishable from that of cells treated with
hIAPP and Hsp70 WT, which are both significantly lower than the activity of cells treated with hIAPP
and Hsp70 GHsp70-hIAPP (Figure 3).
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Figure 3. The designed GHsp70-hIAPP variant is specific in increasing the viability of cultured
pancreatic islet β-cell. MTT reduction of cells incubated with hIAPP (10 µM) either alone (red bar) or
with GHsp70-hIAPP (0.2 µM), Hsp70 WT (0.2 µM), and grafted heat shock protein 70 kDa- Alzheimer’s
amyloid β peptide (Aβ42) (GHsp70-Aβ) (0.2 µM). The data shown are the mean ± SEM (n = 5) and are
representative of two different experiments conducted on separate days. Mean values were compared
to data for untreated control cells using a Student’s t-test. *** p < 0.001 are indicated by single, double,
and triple asterisks, respectively.

2.4. The Designed GHsp70-hIAPP Variant Binds hIAPP with Higher Affinity than Wild-Type Hsp70

In order to understand whether the results from the cellular experiments could be explained by a
stronger direct binding of GHsp70-hIAPP with hIAPP, we determined the affinity of this interaction
and compared it to the corresponding affinities of Hsp70 WT and GHsp70-Aβ. To do so, we performed
a fluorescence titration assay using a variant of hIAPP, which was N-terminally labelled with the
fluorophore carboxyfluorescein, also known as FAM (Figure 4). In particular, we monitored the
formation of the complex Hsp70:FAM-hIAPP by titrating increasing quantities of the molecular
chaperone variants into solutions containing FAM-hIAPP and following the increase of fluorescence
intensity of the FAM moiety. Binding data were all fitted with a single-binding-site model, as this
simple model was in reasonable agreement with the data points in the concentration range explored
and for the grafted variant. We found that Hsp70 WT was able to bind to hIAPP with a Kd of
2.2 ± 0.3 µM. As expected, the designed variant GHsp70-hIAPP’s binding affinity was ten-fold higher
(Kd = 0.2 ± 0.06 µM), while the affinity of the control variant GHsp70-Aβ (Kd = 2.8 ± 0.5 µM) was
effectively unchanged with respect to that of Hsp70 WT.
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As a further validation, we performed an ELISA-based binding assay (Figure S3). This analysis
confirms, at least in a qualitative manner, that the designed variant GHsp70-hIAPP binds hIAPP better
than Hsp70 WT and the control variant GHsp70-Aβ. Overall, consistently with the cellular assay,
these in vitro results show that GHsp70-hIAPP has the highest binding affinity for hIAPP among all
the Hsp70 variants under investigation.Int. J. Mol. Sci. 2018, 19, x 6 of 12 
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Figure 4. The designed variant GHsp70-hIAPP binds hIAPP better than the Hsp70 WT and GHsp70-Aβ

variants. Fluorescence titration experiments for monitoring the binding of GHsp70-hIAPP (black),
Hsp70 WT (grey), and GHsp70-Aβ (yellow) to 0.15 µM FAM-hIAPP. Data are reported as a fraction of
bound hIAPP. Each point is the average of three independent measurements and the error bars are the
standard deviations (SD). The continuous lines represent the best fits of the data to a single binding
site model.

2.5. The Designed GHsp70-hIAPP Variant Inhibits hIAPP Aggregation Better Than Wild-Type Hsp70 In Vitro

Given the enhanced binding affinity of GHsp70-hIAPP for hIAPP, we then assessed whether
this Hsp70 variant was also more effective in directly inhibiting its aggregation in vitro. To do so, we
monitored the formation of amyloid fibrils in 10 µM solutions of hIAPP alone or in the presence of the
three Hsp70 variants by means of thioflavin-T (ThT) aggregation assays in vitro (Figure 5a). In order
to have a direct comparison with the cell toxicity assays, we performed the aggregations in the same
medium used to test cell toxicity. We found that hIAPP alone forms fibrils within approximately 5 h
under our experimental conditions, in agreement with previous studies [61,62]. We also observed that
all the three Hsp70 variants have a very strong anti-aggregation activity, significantly reducing the
amount of ThT-positive species formed during the aggregation of hIAPP (Figure 5a). In particular,
GHsp70-hIAPP was the most active variant in doing so, in agreement with our other results.

These aggregation experiments suggest that the reduction in hIAPP cell toxicity observed in
the presence of the Hsp70 variants can be achieved via their anti-aggregation activity. As previous
studies demonstrated that soluble oligomers formed during the aggregation of hIAPP are the most
toxic species for RIN-m5F cells [63], we can speculate that Hsp70 is able to inhibit to some extent the
formation of these toxic species. Interestingly, we noticed that the aggregation kinetics in the presence
of Hsp70 are significantly different from that of hIAPP alone. In particular, this molecular chaperone
seems to first accelerate the aggregation of hIAPP before suppressing it. This behaviour may indicate
that Hsp70 can change the pathway of aggregation of hIAPP towards the formation of aggregates with
different morphologies and toxicity.

To obtain more insights into the specific mechanism of the Hsp70-mediated inhibition of hIAPP
aggregation, we performed transmission electron microscopy for the same mixtures (i.e., 10 µM hIAPP
alone or in the presence of the different Hsp70 variants) at the plateau of aggregation (15 h). We found
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that the morphology of the aggregates was significantly changed in the presence of all Hsp70 variants
(Figure 5b), indicating that they are able to change the aggregation pathway of hIAPP.

As a control, we performed the same analysis at the beginning of the aggregation reaction of
hIAPP alone, and after 15 h of a reaction containing the Hsp70 variants alone (Figure S4), finding no or
very small aggregated structures.Int. J. Mol. Sci. 2018, 19, x 7 of 12 
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Figure 5. The designed variant GHsp70-hIAPP inhibits the aggregation of hIAPP more than the Hsp70
WT and GHsp70-Aβ variants. (a) Thioflavin-T (ThT) fluorescence assay of 10 µM hIAPP alone (red) or
in the presence of 0.8 µM GHsp70-hIAPP (black), Hsp70 WT (grey) or GHsp70-Aβ (yellow); the data
shown are mean values of three replicates and the error bars are the standard deviations (SD); (b) TEM
images at the plateau of the aggregation reaction (15 h); the scale bar is equal to 500 nm.

3. Discussion

We have described a rational design strategy to generate a molecular chaperone variant targeting
an epitope within the amyloidogenic region of hIAPP. We have applied this strategy to Hsp70 and
showed that it resulted in a variant with an enhanced ability to inhibit the hIAPP-induced toxicity in
cultured RIN-m5F pancreatic islet β-cells. We have also shown that this beneficial effect results from
an increased anti-aggregation activity of the Hsp70 variant, which diverts the aggregation pathway of
hIAPP towards the formation of non-toxic aggregates.

The therapeutic potential of molecular chaperones is a field in its infancy. As a consequence,
there are still concerns regarding the use of these molecules as therapeutic agents for protein
misfolding diseases. These concerns include whether therapeutic molecular chaperones would
effectively engage their targets and whether their administration would result in pro-inflammatory
responses [9–13]. In the case of hIAPP-associated toxicity that we studied here, to facilitate the
translation in vivo of the approach presented here, it will be interesting to repeat the present study
with an extracellular molecular chaperone such as, for example, clusterin, for which target engagement
should be more straightforward.

Although further methodological improvements are needed, our results provide support for
the concept that engineered molecular chaperones could provide effective tools in biomedical and
biotechnological applications related to protein misfolding and aggregation.
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4. Materials and Methods

4.1. Hsp70 Variant Constructs

The different complementary peptides were grafted at the C-terminal end of human Hsp70
(human Hsp70 1A, GenBank entry NP005336) by means of mutagenic polymerase chain reaction (PCR)
with phosphorylated oligonucleotides. Recombinant wild type and designed N-hexa-His-tagged
Hsp70 variants were overexpressed from the pET-28b vector (Merck KGaA, Darmstadt, Germany) in
E. coli BL21(DE3) Gold Strain (Agilent Technologies, Santa Clara, CA, USA) and purified as previously
described [44].

4.2. Preparation of hIAPP for Cell Viability Tests

hIAPP (AnaSpec, Fremont, CA, USA) was dissolved at 1 mg/mL in hexafluoroisopropanol
(HFIP) and incubated over night at room temperature in order to dissolve preformed aggregates.
The following day, the peptide was lyophilised and resuspended in the cell medium just prior the
toxicity experiments.

4.3. Cell Culture

All cell culture reagents were purchased from Sigma-Aldrich (Dorset, England) unless
otherwise specified. Pancreatic insulinoma RINm5F β-cells (ATCC, CRL11605, Rockville, MD,
USA) from Rattus norvegicus were cultured in Roswell Park Memorial Institute (RPMI) 1640
medium (32404, Gibco, Loughborough, England) supplemented with 10% (v/v) fetal bovine serum
(F9665), 1 mM sodium pyruvate (11360070, Gibco, Loughborough, England), 4500 mg/L glucose
(G8644), 2 mM Glutamax supplement (35050061, Gibco, Loughborough, England), 20 mM HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and maintained at 37 ◦C, 5% CO2, and 95%
relative humidity in tissue culture flasks (Greiner Bio-One, Kremsmünster, Austria). Cultures were
routinely split (1:2) at ~80% confluency by rinsing the cells with Dulbecco’s phosphate buffered
saline (DPBS, 10 mm) without calcium or magnesium and released for sub-cultivation using 0.25%
(v/v) trypsin-EDTA.

4.4. Cell Viability Tests

Cells at ~80% confluency were detached from culture using 0.25% trypsin-EDTA, rinsed, then
plated at a density of 50,000 cells per well in 150 µL of medium in a 96-well plate (clear or white, Greiner
Bio-One, Kremsmünster, Austria) for 24 h prior to the experiments with hIAPP or Hsp70 variants.
Cell viability assays were conducted during passage number 15–26 [54]. hIAPP was suspended
in the cellular media, without fetal bovine serum (FBS) or sodium pyruvate, at a concentration of
10 µM, [55,60,63,64] and pre-incubated for 1 h in the cell media at 37 ◦C in the absence of cells since in
this condition, hIAPP was observed previously to exert the highest toxicity (Figure S2).

4.5. MTT Reduction Assay

RIN-m5F cell viability was assessed using the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT; M5655, Sigma Aldrich) tetrazolium salt reduction assay, in 96-well plates.
The intensity of the formazan produced from enzyme cleavage of the tetrazolium salt by metabolically
active cells is proportional to the number of viable cells. After the exposure to treatments for 24 h at
37 ◦C, cells were incubated in a 0.5 mg/mL MTT solution per well for 2 h at 37 ◦C and then in a cell
lysis buffer (20% SDS, 50% N,N-dimethylformamide, pH 4.7). The plate was gently mixed for 60 min
at 400 rpm before the absorbance was measured at 570 ± 10 nm using a plate-reader (BMG Labtech,
Offenburg, Germany). Untreated cells and cells lysed with 9% (v/v) Triton X-100 were used as controls
for the expected maximum and minimum MTT reduction, respectively. Data are expressed as the
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percentage of MTT reduction compared to an untreated cell control corrected for the absorbance of cell
media containing MTT without cells.

4.6. ELISA Binding Assay

The wells of the ELISA plates (ThermoFIsher Scientific, Haverhill, MA, USA) were coated with
2.5, 5, and 10 µM of hIAPP and blocked with 5% (w/v) BSA in PBS (BSA/PBS). Samples of 60-µL
of the different Hsp70 variants at 7 µM of protein concentration were then incubated in the coated
wells. Primary mouse monoclonal antibody against human Hsp70 (C92F3A-5, Abcam, Cambridge,
UK) and secondary antibody conjugated with the fluorophore Alexa-488 (ThermoFIsher Scientific,
Haverhill, MA, USA) were diluted 1:1000 in BSA/PBS and added to the wells. All incubations were
performed at room temperature for 1 h under shaking and were followed by six consecutive washes
with PBS/Tween 0.02%. Fluorescence measurements were performed using a CLARIOstar plate reader
(BMG Labtech, Allmendgruen, Germany).

4.7. Fluorescence Titration Assay

Solutions containing 0.15 µM FAM-hIAPP (Phoenix Pharmaceuticals, Inc., Burlingame, CA, USA)
and different concentrations (from 0 to 36 µM) of either Hsp70 WT, GHsp70-Aβ, or GHsp70-hIAPP in
50 mM Tris pH 7.4, 150 mM KCl, and 5 mM MgCl2 were incubated in darkness for 1 h at room temperature
(RT). At the end of the incubation, samples were transferred into a low-binding, clear-bottomed half-area
96-well plate (Corning Inc., New York, NY, USA). Fluorescence intensities were then recorded at 520 nm by
exciting the samples at 490 nm with a CLARIOstar plate reader (BMG Labtech, Allmendgruen, Germany).
They were subtracted for the value at 0 µM of chaperone and fitted using a one-site binding model with
the software Prims (GraphPad Software, La Jolla, CA, USA). Data are represented as fraction of bound
hIAPP, by setting the fitted value of the fluorescence plateau to 1.

4.8. Protein Aggregation Assay

Aggregation solutions containing 10 µM monomeric hIAPP alone or in the presence of 0.8 µM
Hsp70 WT, GHsp70-Aβ, or GHsp70-hIAPP in cell medium and 20 µM ThT were incubated in quiescent
conditions at 37 ◦C. ThT fluorescence of the samples was monitored at 480 nm in low-binding,
clear-bottomed half-area 96-well plates (Corning Inc., New York, NY, USA) upon excitation at 440 nm
by means of a CLARIOstar plate reader (BMG Labtech, Ortenberg, Germany). Fluorescence data were
then converted into relative fibril mass, assuming the fluorescence value of hIAPP at the plateau alone
was equal to 1.

4.9. Transmission Electron Microscopy (TEM)

TEM images of hIAPP aggregates obtained in absence or presence of the chaperone variants
were acquired using a Tecnai G2 80–200 kv transmission electron microscope (ThermoFIsher Scientific,
Haverhill, MA, USA). Samples of 10 µL were applied to 400 mesh copper grids, washed twice with
ddH2O, and negatively stained with 2% (w/v) uranyl acetate.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/5/
1443/s1.
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Abbreviations

Hsp70 Heat shock protein 70 kDa
GHsp70 Grafted Heat shock protein 70 kDa
hIAPP Human islet amyloid polypeptide
MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
ThT Thioflavin-T
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