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Abstract

Protein noise measurements are increasingly used to elucidate biophysical parameters.
Unfortunately noise analyses are often at odds with directly measured parameters. Here we
show that these inconsistencies arise from two problematic analytical choices: (i) the
assumption that protein translation rate is invariant for different proteins of different abun-
dances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic
noise sets the low noise limit in gene expression. While growing evidence suggests that
transcriptional bursting may set the low noise limit, variability in translational bursting has
been largely ignored. We show that genome-wide systematic variation in translational effi-
ciency can—and in the case of E. coli does—control the low noise limit in gene expression.
Therefore constitutive extrinsic noise is small and only plays a role in the absence of a sys-
tematic variation in translational efficiency. These results show the existence of two distinct
expression noise patterns: (1) a global noise floor uniformly imposed on all genes by
expression bursting; and (2) high noise distributed to only a select group of genes.

Introduction

In principle the structure of noise in protein populations can be used to infer the architecture
and dynamics of the underlying gene circuits and networks [1, 2]. However, inference is indi-
rect, requires trust in analytical models, and may require reliance on assumptions. Despite the
indirect approach, these analytical models have demonstrated some qualitative successes, but
undoubtedly suffer from quantitative problems. A particularly relevant example from contem-
porary research is transcriptional bursting (Fig 1A); a model of transcription where multiple
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Fig 1. Assumptions of extrinsic noise coupling reveal a disparity in inferred versus actual
transcriptional burst size measurements. (A) Transcriptional bursting (red dashed box) occurs when a
promoter stochastically switches between an ‘OFF’, G, state, and ‘ON’, G, state, at rates korr and kop. In the
G state mRNA, M, is transcribed at rate a, and translated into protein, P, at rate k,. mMRNA and protein decay
at rates y,, and y,, respectively. Constitutive expression (blue dashed box) is made of the processes of
transcription from the G state, translation, and decay of M and P. Extrinsic noise, i.e. global fluctuations in
shared resources, can potentially affect transcriptional bursting, constitutive expression, or both. (B)
Schematic representation of promoter transitioning as a square wave where the average timing between
bursts, Torr, is 1/ kon. The average duration of a burst, Top, i.e. time in the ON, G, state, is 1/ kogr. The
average number of bursts over a length of time is termed the transcriptional burst frequency. (C) Measured
transcriptional burst size by protein versus mRNA measurements. The inferred trend (dashed line) shows the
discrepancy from the true values (y = x, cyan line). Calculated values based on the corrected and reported
model agrees well with the true values (solid line).

doi:10.1371/journal.pone.0140969.g001

mRNAs are produced in episodic bursts separated by prolonged periods of inactivity (Fig 1B).
Burst dynamics have been inferred using analytical models from reporter protein noise mea-
sured in bacteria [3, 4], yeast [3, 5], and mammalian cells [3, 6-8]. Although the main purpose
of their analysis was burst frequency saturation, Sanchez and Golding demonstrated the large
discrepancies between mRNA burst sizes inferred from protein noise measurements and from
those measured more directly [3]. As a result of such inconsistencies, many researchers choose
to disregard expression patterns extracted from protein noise measurements.

These more direct measures of transcriptional bursting are performed by characterizing
mRNA production dynamics. In an elegant example, individual mRNAs were directly imaged
with single-molecule resolution in living bacteria [9]. The live-cell nRNA method has been
successfully adapted in yeast [10], social amoebae [11] and mammalian cells [12], allowing
direct quantification of the number of mRNA produced during burst events. As implementa-
tion of a live-cell method can be difficult, noise in mRNA populations have also been measured
using single-molecule fluorescence in situ hybridization [4, 13, 14]. Extensions of the single-
molecule FISH approach are able to also calculate the ON and OFF time distributions of pro-
moters through hybridization techniques [13]. Unfortunately, again there are inconsistencies
between inferences of bursting dynamics from protein noise measurements and these mRNA
measurements: e.g. there is an approximate factor of 4 transcriptional burst size difference
between inferred and more directly measured transcriptional burst dynamics in E. coli [3, 4,
15] (Fig 1C).

One clear message is that the quantitative inference of transcriptional burst dynamics
from protein noise measurements should be viewed with considerable skepticism. But perhaps
the more important message is that the inability to infer transcriptional burst dynamics from
protein noise data is a stark illustration of an incomplete analytical understanding of the con-
nection between transcriptional bursting and the fluctuations in the associated protein popula-
tions. That is, if transcriptional burst dynamics cannot be accurately predicted from the noise
in the protein population, it is difficult to then argue that the protein noise can be accurately
predicted from the measured transcriptional burst dynamics. This can be an issue of great sig-
nificance as transcriptional bursting may be the dominant (or at least an important) noise
source, but the consequences of this noise may be realized in the protein population. For exam-
ple in the HIV LTR promoter, although the noise of transcriptional bursting may set the noise
behavior of this gene circuit, it is the noise in the HIV regulator Tat protein that interacts with
the positive feedback within this circuit and may play a pivotal role in the establishment of pro-
viral latency [16-18]. The understanding of this important gene circuit can only be complete
when there is internal consistency in the analytical framework that connects transcriptional
bursting and the protein noise behavior.
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In addition to the caution needed when inferring transcriptional burst dynamics from pro-
tein noise measurements, theoretical analyses suggest that biophysical parameters cannot be
inferred by static steady-state noise measurements (e.g. Flow cytometry, smFISH imaging, etc.)
[19]. Yet, many experimental studies have used static protein or mRNA measurements to esti-
mate transcriptional burst parameters [3, 4, 7, 15, 20]. Recently we have shown that noise mag-
nitude quantified for clonal T-cell populations expressing a destabilized GFP using flow
cytometry and time-lapse fluorescence microscopy are directly correlated (Supplementary
Information of [6]). This observation suggests that at least in some experimental settings static
and dynamic noise measurements, at least for cases of transcriptional bursting and constitutive
gene expression, display some degree of ergodicity and enables inference of biophysical param-
eters from both static and dynamic measurements.

The analytical framework most often used in experimental studies to connect transcrip-
tional bursting and protein population noise is the two-state (or random telegraph) model [21,
22]. This model has three transcriptional parameters described by rates of transition into (koy)
and out of (kogg) activity, transcribed at rate o (Fig 1A). Assuming that kogg >> ko [6, 20]
(S1 File)

Vi b,+1

i —@(B,‘)-FE (1)

where B is the transcriptional burst size (average number of mRNA produced per transcrip-
tional activity pulse), b; is the translational burst size (average number of proteins produced
per mRNA molecule), and i is used as an index associating each term with its respective gene.
The first term on the right hand side of Eq 1 accounts for the noise associated with intrinsic
constitutive expression and transcriptional and translational bursting (collectively referred to
as burst noise). The E term represents noise that couples into the expression of all genes, even
those that exhibit little (i.e. B; ~ 1) transcriptional bursting. This E term should not be confused
with the extrinsic noise measured using the two-reporter approach [23] as some portion of
burst noise may be extrinsic as well (Fig 1A). To clearly differentiate the E term from the total
extrinsic noise we will refer to it as the constitutive extrinsic noise (i.e. extrinsic noise not asso-
ciated with the timing of expression bursting). This would include sources such as partitioning
at cell division [24], variations in growth rate [25], mitochondria [26], and RNA polymerase
concentration [27].

Eq 1 may be rearranged to solve for (i.e. infer) transcriptional burst sizes such that

_<P>

B, == (CV ). 2)

i
In this approach, the noise magnitude (CV?) and the protein population (< P; >) are mea-
sured quantities. As noted above, theoretical analyses suggest that Eq 2 is more of a qualitative
than a quantitative relationship [19, 28], and accordingly here we will not attempt to apply the
relationship of Eq 2 to the detailed noise analysis of individual genes, but instead use it only to
infer genome-wide patterns. Total extrinsic noise may be measured using the two-color
method, but it is entirely unclear how much of this noise is constitutive extrinsic noise and
how much of it is entangled in expression bursting. As a result, the selection of the E term has
relied on one of two mutually exclusive assumptions. One group of investigators have appar-
ently assumed E = 0. These investigators have focused mostly on measuring the noise from a
limited number of promoters or in a reporter protein population [8, 14, 29-31]. Other investi-
gators have focused on genome-wide noise measurements and have interpreted the data to
indicate [4, 32] or have assumed [3] that E has a constant value large enough to dominate noise
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behavior for moderately and highly expressed proteins. Unfortunately these two assumptions
lead to very different values for the inferred transcriptional burst sizes.

A second difficulty lies in the relationship between translational burst sizes and protein
abundances. While much has been reported about the tendency for transcriptional burst sizes
to increase as protein populations increase [6, 12, 15], similar studies linking translational
burst sizes and protein abundances seem to be lacking. Certainly for many studies this lack of
focus on translational bursting is simply a matter of experimental design. Studies that focus on
mRNA populations or those that look at reporter protein populations are obviously not set-up
to observe the relationship between translational burst sizes and protein abundances. Instead,
only genome-wide measurements of mRNA and protein abundances and lifetimes can shed
light on this important relationship which connects transcriptional bursting to fluctuations at
the protein level. Where the relationship between translational bursting and protein abundance
has been considered at all, it appears that investigators have assumed that there was no connec-
tion between these two parameters [3, 4, 33]. Indeed, this assumption is central both to the
finding of a constitutive extrinsic noise floor in genome-wide noise measurements in E. coli [4]
and in the inference of transcriptional burst sizes from measured protein noise [3].

Here we examine the relationship between translational burst sizes and protein abundances.
We show that a genome-wide systematic variation in translational efficiency can-and in the
case of E. coli does—play a significantly larger role than transcriptional burst size variation in
controlling noise. Indeed, some of the inconsistencies in analytical models have been caused by
misidentifying increased translational burst sizes as transcriptional burst size changes. Further-
more, the finding of a substantial constitutive extrinsic noise floor in E. coli-which was clearly
feasible when this translational efficiency variation was not considered—can now clearly be
ruled out. Instead we find that the noise floor in E. coli is indicative of transcriptional burst fre-
quency saturation. In contrast, the noise in most yeast proteins continues to decline with
increasing abundance down to a small extrinsic noise floor. High noise at high abundance in
yeast is not a global feature, but instead is seen in a select group of proteins and is heavily
dependent on promoter architecture [30, 34]. We show that this contrast with E. coli emerges
first from the lack of a large systematic translational efficiency variation in yeast, and as sug-
gested before [3] demonstrates that yeast shows no sign of burst frequency saturation. How-
ever, promoter-controlled noise does not preclude burst frequency saturation as we show data
from human T lymphocytes that demonstrate roles for both frequency saturation and pro-
moter architecture in controlling the noise lower limit. The picture that emerges from across
these cell types is one where constitutive extrinsic effects (fluctuations in global resources that
couple into constitutive gene expression processes) are uniformly small. Conversely, systematic
translational efficiency variations or burst frequency saturation may have much larger effects.
These findings remove the need for flawed assumptions that have impeded genome-wide appli-
cation of the two-state model and provide an analytical framework that may be trusted to accu-
rately infer genome-wide expression patterns from protein noise measurements.

Results
Global expression burst structure

Transcriptional and translational bursting are serial processes with a translational burst ampli-
fying the size of a transcriptional burst. To determine the protein specific (indexed by subscript
i) translational burst sizes (b;) in E. Coli, reported protein abundances, <P;> [35], mRNA
abundances, <M;> [36], and decay/dilution rates (y.,; and y,; [36]) were used to estimate
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values of b; using the relationship (S1 File)

p — In <P>
' ymi <]\4i>7

(3)

and we found translational burst sizes that varied over three orders (from ~ 0.1 —~100) of mag-
nitude (Fig 2A). The translational burst size is the product of two parameters—a rate parameter

k, =7, <<AI:1"_>>, the rate of translation) and a duration parameter (%) such that
k,
b, =1
-

In E. coli the translational burst size is controlled primarily by translation efficiency rather
than burst lifetime (Fig 2B and 2C). This finding is in agreement with previous studies showing
that translational burst size heavily depends on mRNA structure and sequence [37-39], and
variability of translational burst sizes have even been implemented to control protein expres-
sion and noise in a precise fashion [40-42]. Thus translational bursting would act to modulate
the intensity, and not the duration, of an expression burst.

Similar to translational bursting, transcriptional burst sizes are determined by a rate param-
eter and a duration parameter:

B, = o, Ty,

where 0; is the rate of transcription during a burst and T, , inversely proportional to kogg, is
the average duration of a burst in the transcribing state (Fig 1B). As previous measurements
have shown o, to remain nearly constant over the entire expression range [15], transcriptional
burst size is modulated primarily through T, (Fig 2D). Therefore, B; is modulated through
changes in duration and not intensity. In further support of duration modulation is the finding
that the constant value of o; is near the maximum physiological rate of transcription [15], sug-
gesting that during a burst the transcription rate is near the saturation rate. These data establish
the orthogonal roles of translation and transcription in bursty expression, whereby translation
controls the intensity and transcription controls the duration of expression bursts (Fig 2E).

Translational burst rate increases with increasing protein abundance
and initiates a noise floor

Protein abundance is driven by protein decay/dilution rate (yp;), the burst size (i.e. b;, B;, or
both) or the frequency (fg) of bursts, or

= % (4)

<P >
Vp,
Substituting Eq (4) into Eq (1) yields
75, (b, + 1) Vp,
CV}="“"——"(B)+E~—+E,
bi‘BifB fB

where the approximate relationship holds for b; >> 1. For E. coli we may assume that protein
decay/dilution is dominated by the cell cycle time and is constant for all proteins, in which case
protein abundance is controlled primarily by either burst size or frequency. If increasing abun-
dance is driven by larger burst frequencies (i.e. b; and B; remain constant for all genes), the
intrinsic noise would follow the familiar 1/<P> relationship and the appearance of a noise
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Fig 2. Expression pulse duration is set by transcriptional bursting and pulse intensity is set by translational bursting. (A) Histogram of the number of
genes with a given translational burst size. (B) Plot of the relationship between translational burst size, b, and the mRNA half-life, y,,,, for 2077 mRNA in E.
coli. (C) Plot of the relationship between translational burst size, b, and the translational burst rate, k, for 2077 mRNA in E. coli. (D) Plot of the relationship
between transcription rate, a (red), and the rate of promoters transitioning into the OFF, GO state, kogr (blue), versus the range of calculated B in Fig 3. Here
transcription rate was assumed near the maximal physiological limit [15] and korr was calculated accordingly. (E) Total expression burst is determined by the
duration and amplitude of transcription and translation. Transcription predominately sets duration while translation sets amplitude.

doi:10.1371/journal.pone.0140969.9002

floor would be indicative of a constitutive extrinsic noise (Fig 3A). Conversely, if increasing
protein abundances are driven by increases in burst size (i.e. if the burst frequency saturates at
a constant value), CV? approaches a constant value (i.e. a floor) with increasing protein abun-
dance. In light of recent experimental studies finding frequency saturation [3, 6], it seems likely
that at least a portion of the noise floor is generated by burst noise (Fig 3B). While it has often
been assumed that the dominant contribution to the noise floor has come from constitutive
extrinsic noise, a careful accounting of the burst noise contribution is required to test this
assumption.

While it is clear that there is a large range of translational burst sizes (Fig 2A), the critical
question is the relationship between protein abundance and translational burst size. The con-
stitutive extrinsic noise hypothesis rests upon the assumption of translational burst sizes that
are invariant with protein abundance. The analyses that have concluded [4] or assumed [3]
that noise floors are generated by constitutive extrinsic fluctuations have used this assumption.
In contrast, we find a strong correlation (R* > 0.6) between translational burst size and protein
abundance in E. coli (Fig 3C) such that

b, = 0.126(P)""" (P,) < 10

b, = 0.202(P)"™ (P,) > 10. 2

Here a two domain fit was used at <P> = 10. However, this translational burst relationship
relies on global measurements of RNA abundance determined using transcriptional shutoff.
These measurements vary significantly from laboratory to laboratory, especially those experi-
ments carried out using DNA microarrays in the early days of that technology. To verify this
systematic variation in translational efficiency we looked at independent genome-wide mea-
surements by Taniguchi et al. [4] for 558 genes for which both the number of proteins pro-
duced per mRNA were quantified using RNAseq and protein copy number were measured
using calibrated single-cell fluorescence distributions for single molecule copy numbers. A
power function fits the results well (R* = 0.53) showing very similar systematic variation in
translational efficiency to the database measurements (black versus red solid lines, Fig 3C).

Since translational burst size increases with increasing abundance, we then calculated the
translational burst noise (first term on right hand side of Eq 1 with B; set to 1) using b; as given
by Eq 5. The translational burst noise was found to account for almost all of the measured
noise up to <P;> ~ 100, and importantly the initial deviation of CV?* from the Poissonian
trend is entirely explained by an increasing translational burst rate (Fig 3D). Any contribution
to the CV? from either transcriptional bursting or constitutive extrinsic sources must be small
for these low and moderate protein populations. It is important here to note that departure
from the Poissonian scaling of noise and the initial flattening of the noise versus abundance
curve in E. coil is caused by the measured relationship between the translational burst rate and
protein abundance and not by constitutive extrinsic noise. However, at higher protein popula-
tions, the measured CV* does diverge from the translational burst noise fit (Fig 3D). The test-
able theory put forth here is that transcriptional bursting in concert with translational bursting
accounts for the continuation of the observed noise floor at the highest expression levels.
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Fig 3. Bursty expression increases with abundance and determines the noise structure observed throughout the E. coli genome. (A) Traditionally,
in a plot of CV2 versus abundance, <P>, noise in gene-expression is thought to scale as C/<P> (dashed line) and extrinsic noise creates a floor (purple line)
with height E. (B) Alternatively, the noise floor can be set by increasing burstiness in gene expression for increasing abundance. Extrinsic noise (purple
arrow) coupling into bursty expression would increase the level, but not set the noise floor. (C) Translational burst sizes versus abundance of the E. coli
proteome (black circles and red squares) fit to power functions. Circles represent the calculated values from Eq 3. Squares represent previously reported
RNAseq measurements [4]. (D) Plot of CV2 and <P> for proteomic E. coli data (black diamonds, [4]). The calculated translational burst noise (red line) is
generated by holding B constant (= 1) and only modulating b. Poisson model (blue line) and noise floor (purple line) are also shown. (E) Plot of transcriptional
burst size (B;) from Eq 6 for 780 genes (open circles) compared to model of measured results from So et al. (filled red circles, [15]). (F) Plot of measured noise
from Taniguchi et al. [4], versus the calculated noise (Eq 8) based on fits from (C) and (E).

doi:10.1371/journal.pone.0140969.g003

Transcriptional bursting works in concert with translational bursting to
maintain the noise floor at highest expression levels

The divergence of the measured CV? from the translational burst noise at higher protein popu-
lation levels could be due to transcriptional bursting, constitutive extrinsic noise, or a combina-
tion of the two. However, recent experiments have demonstrated that transcription of highly
expressed genes occurs in stochastic bursts in bacteria [4, 9, 15, 43] and eukaryotic cells [6, 8],
and a general mechanism for mediating this transcriptional bursting in E coli was recently
reported [44]. To explore the source of the noise at the highest expression levels, we calculated
the transcriptional burst sizes that would be needed to assign all of the remaining noise to tran-
scriptional bursting. In this case (Fig 3E)
cv:
B, =< P, > b1 (6)

These hypothetical transcriptional burst sizes were compared to those predicted by an equa-
tion derived from a fit to experimental measurements in E. coli for 20 different promoters
(endogenous and phage) covering a wide range of expression levels [15] (Fig 3E). For moderate
values of <P>, the B values predicted by Eq 6 are ~1 and slightly lower than those predicted
from the experimental measurements by So et al. [15], suggesting that Poissonian expression of
mRNA persists for <P> approaching 100. Over the entire <P> range, Eq 6 and the So et al.
predictions are highly correlated (Figure A in S1 File). At higher levels of <P>, Eq 6 predicts a
slightly higher B (Eq 6 predicts a median B of 7 over the highest decade of <P>, while the So
et al. model predicts a median B of 6, S1 File). This slight difference aside, Eq 6 would seem to
be a reasonable estimate of transcriptional bursting in E. coli, and is well described by (Fig 3E).

B,=1 ,(P)< 100

7
B, = 0.504< P, >%%% (P} > 100 )

A careful look at expression bursting shows that the observed CV? floor at high protein pop-
ulations is at least partially the product of increased expression burstiness, and that by using
transcriptional burst sizes consistent with measurements, the entire noise floor can be attributed
to bursty expression.

To investigate further, we derived an analytical expression for CV* from Eq 1 (using Eqs 5
and 7 for translational and transcriptional bursting) and neglected constitutive extrinsic noise.
The noise structure across the genome in E. coli may then be described by a three-region ana-
lytical expression for CV*:

Region 1: Poissonian regime (P;) < 10
, 0.126(P)""" +1 1

cv, ~
' <P> <P>
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Region 2: Translational burst regime 10 < (P;) < 100

0.202(P,)"™ +1
CVi 2V -
: <P;>

Region 3: Combined burst regime (P;) > 100

CV? ~ (0.504< P, >7%2)(0.202(P,)*™ +1) (8)

Eq 8 provides a good fit (R% = 0.73) to the measured [4] CV? data (Fig 3F) and indicates at
most a minor role for constitutive extrinsic noise in setting the noise floor. Furthermore, our
analysis based on the scaling of translational burst size to protein abundance is able to reconcile
independently measured noise distributions at the mRNA and protein levels and provides for the
first time an unambiguous methodology for inferring transcriptional burst dynamics from pro-
tein abundance distribution data.

Burst noise models explain measured results better than constitutive
extrinsic noise models

Next, we attempted to create various gene expression models with realistic levels of bursting
and non-negligible levels of constitutive extrinsic noise (Fig 4A). Various models were com-
pared according to their ability to represent CV> data with minimal loss of information as eval-
uated by the Akaike information criteria (S1 File and [45]). Models were fit to the data via
power law expressions, similar to Eq 7, relating transcriptional burst size B; to the mean protein
level <P;>. To make the models as flexible as possible in their ability to accommodate signifi-
cant levels of extrinsic noise, we allowed complete flexibility in the parameters of the power law
function. We found that information loss of the model represented in Eq 1 increases (i.e., the
likelihood of the model being accurate decreases) with increasing magnitude of the extrinsic
noise floor E (Fig 4B). The presence of a low constitutive extrinsic noise floor of E < 0.05 -a
level consistent with partitioning [24] and cell-cycle variation [25] noise-could not be
completely ruled out based on the relative likelihood of this model (0.3) compared to a noise
floor of zero; however, models with levels of extrinsic noise close to the observed noise floor

(E =0.07 and 0.10) could be conclusively excluded based on excessive information loss. The
effect of assuming an increased constitutive extrinsic noise was to decrease calculated tran-
scriptional burst sizes (Fig 3E) to levels that were inconsistent with those observed in So et al.
[15] and Taniguchi et al. [4]. Most strikingly, similar results were obtained from evaluation of
various values of E using the full two-state model (i.e. without the simplifying assumptions in
Eq 1; S1 File), demonstrating that these conclusions are not dependent on either model of gene
expression. This analysis indicates that a burst-driven noise floor (region 3 in Eq 8) theoryis a
much more likely explanation for the observed noise behavior than the accepted constitutive
noise floor model.

Noise in other organisms is more targeted than in E. coli

The idea of a burst-driven floor is intriguing in E. coli, and since bursty expression has been
observed across many domains of life, we hypothesized that the noise structure in other organ-
isms may also be dominated by bursty expression. To check for this, we reanalyzed the noise
behavior of Saccharomyces cerevisiae since noise has been measured for more than 1,000 differ-
ent proteins in the high abundance regime where a constitutive extrinsic noise floor would be
found [32, 33]. Despite differences in reported noise level for a given protein abundance, both
studies demonstrate that the noise in S. cerevisiae continues to decline with increasing protein
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Fig 4. The noise floor is not determined by extrinsic noise acting alone; rather noise from bursty gene
expression dominates. (A) lllustration of noise floors resulting from various levels of extrinsic noise. (B)
Relative likelihood of gene expression noise models with various levels of extrinsic noise as evaluated by the
Akaike information criteria [45]. The model with extrinsic noise E = 0 has the highest likelihood; models with

E =0.07 and E = 0.1 have extremely low likelihood. (C) Transcriptional burst size (B) corresponding to
different levels of assumed extrinsic noise. Burst size corresponding to larger noise floors are incompatible
with values calculated from the experimentally based model of So et al. (2011).

doi:10.1371/journal.pone.0140969.9004

abundance to levels significantly lower than found in E. coli (Fig 5A) [32, 33]. The contrast in
noise structure likely arises from the non-systematic variation in translational burst size in S.
cerevisiae over most of the protein abundance range (Fig 5B), unlike what is found in E. coli
(Fig 3C). The constitutive extrinsic noise floor for S. cerevisiae was found to be approximately
0.01 using a two-reporter technique [32, 46], a level that is consistent with our finding of con-
stitutive extrinsic noise < 0.05 in E. coli and likelihood analysis (Fig 4). It appears that E. coli
and S. cerevisiae achieve high levels of expression through different mechanisms. In E. coli high
expression levels are achieved by increases in translational burst size at a saturated transcrip-
tional burst frequency, while in S. cerevisiae translational burst size remains fairly constant
while transcriptional burst frequency continues to increase. However, high noise-at a level
around the more uniform noise floor in E. coli-is found for a select group of proteins in S. cere-
visiae (Fig 5A). So for S. cerevisiae high noise at high abundance is promoter-specific [30, 34]
and is most often found associated with stress response [33].

To explore the promoter-specific role in distributing noise, we used recently reported data
utilizing a method for measuring the noise behavior of individual promoters across thousands
of integration sites in human T cells [6]. This method allows measurement of expression noise
of the same promoter at many different expression levels (i.e. in different chromosomal inte-
gration sites) while keeping most genetic circuit parameters (e.g. mRNA and protein lifetimes;
translational burst rate) constant. Data from Dar et al., 2012 included the noise behavior of the
HIV long terminal repeat (LTR) promoter—which is known to exhibit significant transcrip-
tional bursting [6, 20]-and two housekeeping promoters (Ef1A and UbC) (Fig 6). Both the
bursty LTR promoter and the more constitutive (less noisy) promoters appear to approach
noise floors at high expression levels, but much like the contrast between E. coli and S. cerevi-
siae, these floors are separated by about an order of magnitude. Showing similarity to E. coli,
burst size of the LTR across diverse integration sites is dominated by changes in promoter
activity duration (kogg) and not level (ar) (Fig 2D and Figure B in S1 File). Importantly, the
LTR, Ef1A, and UbC noise behaviors reported here (Fig 6) are not likely related to constitutive
extrinsic fluctuations. Time-lapse fluorescent microscopy was used to measure both the magni-
tude and the dynamics (i.e. frequency content) of the expression noise. Extrinsic noise is
known to reside in a lower frequency regime than the intrinsic noise in E. coli [51-53] which is
believed to be due to the additional low-pass filtering extrinsic noise experiences as it is pro-
cessed first through its own molecular network and then subsequently through the intrinsic
gene circuit. By analyzing only the higher frequency noise components [6], it is likely that the
noise floors shown here can be ascribed to intrinsic fluctuations since the same double filtering
of extrinsic noise takes place in mammalian cells.

Discussion

The analysis in Figs 3 and 4 demonstrates that in E. coli the expression noise is dominated by
translational and transcriptional burst noise, and the noise floor-CV? approaching a constant
value at high expression levels—is primarily set by bursting (Fig 3B). Furthermore, although
transcriptional bursting appears to be the focus of much contemporary research, it actually
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Fig 5. Yeast shows less burstiness and no noise floor compared to E. coli. (A) Reported noise
magnitude measurements for 1467 genes of S. cerevisiae plotted along with genome-wide E. coli noise
measurements from Fig 3D. (B) Using calculated values for translational burst size [1] based off of four
separate databases [47-50], in contrast to E. coli, the translational burst size are invariant to protein
abundance. A moving average of 20 genes was applied to the trend.
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Fig 6. Evidence of the noise floor at high abundance in mammalian cells. Polyclonal populations of T
cells infected with a viral HIV-LTR and housekeeping promoters, UbC and Ef1A, show an increase of noise at
higher abundances. Time-lapse microscopy and signal processing of limited duration experiments filters
extrinsic noise (High-frequency or HF-CV?, [6]) suggesting that burstiness drives the noise increase from a
simple model line that is inversely proportional to mean GFP. Data adapted from Dar et al., 2012, [6].

doi:10.1371/journal.pone.0140969.9g006

plays a fairly minor role in the genome-wide noise behavior. Instead, translational efficiency
(i.e. translational burst size) is the more potent force and the measured relationship between the
translational burst size and protein abundance described here is enough-even in the absence of
transcriptional bursting—to negate the hypothesis of a substantial constitutive extrinsic noise
floor. Instead of global fluctuations, the noise floor is indicative of burst frequency saturation
and the direct coupling between protein abundance and burst size (Figs 3 and 4). This abun-
dance-burst size coupling appears to be a uniform constraint that sets a global noise limitation
on E. coli.

In contrast, the noise structure in S. cerevisiae is much less uniform. Instead noise for many
proteins continues to decline, ultimately approaching a very low constitutive extrinsic noise
floor. On the surface these results would seem to say that E. coli is burstier (i.e. has bigger
expression bursts) than S. cerevisiae. However that idea may be quickly dismissed by noting
that translational burst sizes in S. cerevisiae (Fig 5B), even for low abundance proteins, is larger
than the combined (translational and transcriptional) burst sizes in E. coli. Instead, it seems
that transcriptional burst frequency has not saturated in S. cerevisiae. Longer mRNA and pro-
tein lifetimes and perhaps longer duration of expression bursts in S. cerevisiae may also con-
tribute to a smaller burst noise effect.

The T cell results show an interesting mix of behaviors that mimic some aspects of both E.
coli and S. cerevisiae. Like E. coli all three promoters studied in T cells exhibited expression
noise that approached noise floors that were not related to constitutive extrinsic noise (Fig 6).
These floors are indicative of burst frequency saturation and of a switch from an increasing
burst frequency to an increasing burst size (Figure B in S1 File and [6]). Yet like S. cerevisiae
the magnitudes of these noise floors are promoter-specific with a bursty promoter (LTR)
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having a significantly higher noise floor than more constitutive promoters (UbC, Ef1A). This
implies that different promoters saturate at different transcriptional burst frequencies, and that
promoters with larger burst sizes may saturate at lower burst frequencies than promoters with
smaller burst sizes.

The significant fallout from these results is the elimination of many inconsistencies that
have muddied the analytical framework that connects transcriptional processes and the noise
observed in the protein populations. Inferential methods did not fail because of any inherent
shortcomings in the two-state model, but instead suffered from inaccurate assumptions about
constitutive extrinsic noise and translational bursting. Correcting these assumptions leads to
consistent results, for example showing agreement between burst sizes measured at the mRNA
level and those inferred from protein noise measurements (Fig 1C).

The results presented here demonstrate that noise floors are indicative of burst frequency
saturation, and not fluctuations in global resources, raising an intriguing question: is frequency
saturation and the resultant noise floor a constraint (i.e. the unavoidable consequence of global
gene expression in a shared resource environment) or can they be independently manipulated?
This question cannot be explored by the manipulation of the fluctuations of individual genes
[54, 55], but would instead require ways to manipulate the global structure of noise, and more
specifically would require manipulation of the maximum burst frequency for groups of genes.
To explore this question we propose to utilize advances in the bottom-up construction of syn-
thetic systems that mimic cellular attributes of confinement (i.e. size), macromolecular crowd-
ing, and expression resource limitations [56].

Recent investigations have reported cell-free expression systems confined in lipid vesicles
[57], porous media [58], and microfluidic structures [59]. Although transcriptional bursting
has not been the focus of any of these studies, one recent investigation [60] reported the mea-
surement of noise in cell-free expression confined within 20 fL polydimethylsiloxane (PDMS)
containers, and demonstrated key technological steps (reproducible fabrication of containment
vessels, robust sealing of vessels, and time-lapse fluorescent microscopy over extended periods)
that might enable the study of transcriptional bursting using noise analysis methods recently
applied to cellular systems [3, 6, 15]. In an additional study, a two-reporter method for quanti-
tying correlated noise [23] was used to characterize stochasticity in gene expression in cell-
sized vesicles, and found that measured fluctuations were comparable to levels in E. coli and
mostly an intrinsic property that can be produced in a minimal cell-free system [61]. Impor-
tantly, the author’s findings are consistent with the main conclusion of this study, and suggest
a strategy for investigating if a noise floor is a constraint or a feature. In such cell-free construc-
tions it would be possible to study noise behavior in systems where known sources of transcrip-
tional bursting such as DNA supercoiling mechanisms and moribund RNAP-promoter
complexes [44, 62] can be precisely controlled, eliminated or greatly reduced. If it is true that
constitutive (i.e. non-bursty) expression can be achieved in cell-like confined and crowded
environments, it should be possible in these synthetic constructs. Conversely, if transcriptional
bursting and noise floors prevail even under such favorable conditions, it seems likely that
these behaviors arise from fundamental constraints of relatively complex molecular interac-
tions in confined, crowded, and resource limited environments.

There are studies that have decoupled mean abundance changes from noise modulation in
individual genes to elucidate the advantageous role of noise in organism fitness [63-65]. How-
ever, a remaining question is if similar advantages accrue at the global scale, i.e. might it be
advantageous for an organism to distribute high noise across a variety of genes? E. coli and S.
cerevisiae illustrate contrasting noise distributions that might be thought of as non-specific
(high noise indiscriminately distributed to all high abundance proteins, i.e. E. coli) and specific
(high noise distributed to a select group of high abundance proteins, i.e. S. cerevisiae). This
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select group of noisy proteins in S. cerevisiae has been strongly associated with gene-specific
promoter and regulatory arrangements that couple together responsiveness and noise [66, 67]
and stress responses [33]. The distribution of noise to stress response genes may suggest a bet-
hedging strategy where populations mitigate environmental fluctuations through a noise-medi-
ated assignment of some cells into alternate phenotypes. At the single gene scale it has been
shown experimentally that frequency matching between environmental and gene expression
fluctuations provides a fitness advantage to populations [65]. This frequency matching behav-
ior is especially intriguing in light of the finding here that noise floors are indicative of burst
frequency saturation. We hypothesize that the burst frequency saturation level and the resul-
tant noise floor may adapt to fluctuating environments, and we propose that adaptation experi-
ments would be well suited for elucidating if global noise structure may be a conserved feature.
By placing organisms in environments that stress multiple pathways (or ideally affect the cell
on a global scale), adaptation of the noise floor to different stress levels and fluctuation frequen-
cies would imply that global noise structure is a feature capable of improving fitness. Such
global noise modulating experiments will define the role of the conserved burst noise structure
across organisms and address whether modulating noise above and below the floor has func-
tional consequences.

Materials and Methods

Calculations

Eq 1 was derived assuming that kogr >> ko, thereby allowing each expression burst (tran-
scription and translation taken together) to be approximated as the product of 3 uncorrelated
random processes: Process A composed of a Poissonian pulse train of impulse functions of
weight = 1 having an average value A (transcriptional initiation, i.e. burst frequency); Process B
(transcriptional bursting) with a mean value of B, and a variance of ¢%; and Process b (transla-
tional bursting) with a mean value of b, and a variance of o;. The Fano factor (FF) of this com-
posite process—and therefore the FF expected in the protein population (FF_p-.)-is (S1 File):

FF_, = (E+FFh)(B+FFB)’

where FF,, is the Fano factor of the translational burst size and FFg is the Fano factor of the
transcriptional burst size. In the absence of constitutive extrinsic noise, FF;, = 1, the value of
FFpis model dependent and may vary between ~0 (for small B) and 1 (S1 File). Eq (1) uses the
model that allows for a smooth transition from Poissonian expression (i.e. constitutive tran-
scription with no bursting) to bursty expression (S1 File). In this model, Poissonian expression
is simply B = 1 and FFp = 0. Accordingly, Eq 1 uses the relationship (neglecting constitutive
extrinsic noise)

FF_,. = B(b+1).

The expression for translational burst rate was derived using the steady state equation for
mean protein abundance <P> = (a"k,)/(ym"¥p), where o and k, are the transcription and
translation rates respectively, and vy, and y,, are the mRNA and protein degradation rates
respectively. Upon rearrangement and substitution of b = k,/y,, and <M> = /vy, Eq 3 is
reached. Here the protein decay in E. coli was assumed to be dominated by dilution caused by
cell growth. A constant cell doubling time of 55 minutes was used.

For comparing calculated burst size values of Eq 6, an equation fit to experimental measure-
ments on 20 E. coli promoters measured by So et al., [15] was used: B=1 + 1.5*<M>%%* The
same literature values for <M;> used to calculate b; were used in this calculation [36]. Burst
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size values were then plotted against their database <P;> values for the comparison shown in
Fig 3D.

Supporting Information
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