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Abstract 

The annotation of a large corpus of Electroencephalography (EEG) reports is a crucial step in the development of 

an EEG-specific patient cohort retrieval system. The annotation of multiple types of EEG-specific medical concepts, 

along with their polarity and modality, is challenging, especially when automatically performed on Big Data. To 

address this challenge, we present a novel framework which combines the advantages of active and deep learning 

while producing annotations that capture a variety of attributes of medical concepts. Results obtained through our 

novel framework show great promise. 

Introduction 

Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of 

epilepsies. In addition, it is used to evaluate other types of brain disorders1, including encephalopathies, neurological 

infections, Creutzfeldt-Jacob disease and other prion disorders, and even in the progression of Alzheimer’s disease. 

An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. The 

signals measured along the scalp can be correlated with brain activity, which makes it a primary tool for diagnosis of 

brain-related illnesses2. But, as noted in [3], the EEG signal is complex, and thus its interpretation documented in 

EEG reports is producing inter-observer agreement in EEG interpretation known to be moderate. As more clinical 

EEG becomes available, the interpretation of EEG signals can be improved by providing neurologists with results of 

search for patients that exhibit similar EEG characteristics. Recently, Goodwin & Harabagiu (2016)4 have described 

the MERCuRY (Multi-modal EncephalogRam patient Cohort discoveRY) system that uses deep learning to 

represent the EEG signal and operates on a multi-modal EEG index resulting from the automatic processing of both 

the EEG signal and the EEG reports that document and interpret them. The MERCuRY system allows neurologist to 

search a vast data archive of clinical electroencephalography (EEG) signals and EEG reports, enabling them to 

discover patient populations relevant to queries like Q: Patients taking topiramate (Topomax) with a diagnosis of 

headache and EEGs demonstrating sharp waves, spikes or spike/polyspike and wave activity 

The discovery of relevant patient cohorts satisfying the characteristics expressed in queries such as Q relies on the 

ability of automatically and accurately recognizing both in the queries and throughout the EEG reports various 

medical concepts and their attributes. For example, a patient from this cohort could be identified if the following 

annotations indicating medical problems [PROB], treatments [TR], tests [TEST], EEG activities [ACT], and EEG 

events [EV] would be available in various sections of its EEG report: 

Example 1: CLINICAL HISTORY: Recently [seizure]PROB-free but with [episodes of light flashing in her 

peripheral vision]PROB followed by [blurry vision]PROB and [headaches] PROB 

MEDICATIONS: [Topomax]TR 

DESCRIPTION OF THE RECORD: There are also bursts of irregular, frontally predominant [sharply 

contoured delta activity]ACT, some of which seem to have an underlying [spike complex]ACT from the left 

mid-temporal region. 

The relevance models implemented in the MERCuRY system would consider the annotations produced also on the 

query Q to discover the patients:  

Qannotated: Patients taking [topiramate]MED ([Topomax]MED) with a diagnosis of [headache]PROB and 

[EEGs]TEST demonstrating [sharp waves]ACT, [spikes]ACT or [spike/polyspike and wave activity]ACT 

As big data for EEG becomes available, new deep learning techniques show promise for producing such annotations 

with high efficiency and accuracy. In this paper, we present a novel active learning framework that incorporates 

deep learning methods to annotate EEG-specific concepts and their attributes. An EEG activity is defined as “an 

EEG wave or sequence of waves”, and an EEG event is defined as “a stimulus that activates the EEG” by the 

International Federation of Clinical Neurophysiology5.  
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Background 

Active learning (AL) has been proven to effectively reduce the amount of human annotation and validation when an 

efficient sampling mechanism is designed because it selects, for validation, those instances that impact the most the 

learning quality. In [6], an active-learning-based annotation that operates on MEDLINE abstracts was reported. 

Those annotations did not consider the modality or polarity of concepts, unlike the annotations produced by the 

Informatics for Integrating Biology and the Bedside (i2b2) 20107 and 20127 challenges. Hence, the active learning 

experience reported in [6] targets only the task of annotating medical concepts in biomedical text, ignoring their 

modality or polarity. In our novel framework, not only have we considered a large number of annotation tasks, but 

we perform them on a big corpus of EEG reports by taking advantage of new deep learning architectures which have 

recently produced very promising results8. Our deep learning architectures have allowed us to perform a significant 

number of annotation tasks concurrently without the burden of training a large number of classifiers.  

Unlike previous annotation experiments on EHRs, we also tackled the case when a medical concept, in our case 

EEG activity, is not mentioned in a continuous span of text. For this purpose, we have defined the notion of anchor 

and attributes to be able to capture the characteristics of EEG activities. The anchor represents the morphology of an 

EEG activity, defined as the type or form of an EEG wave. EEG activities are always mentioned by referring to their 

morphology, thus this attribute “anchors” the concept mention. In contrast, the other EEG attributes are not always 

explicit, as EEG reports are written for an audience of neurologists, and are often implied. Hence, we needed to 

devise an annotation schema that captures the semantic richness of attributes of EEG activities. Moreover, many of 

the attributes, when expressed, may be mentioned at some distance from the anchor. E.g. in example 1, the anchor 

“sharply contoured delta activity” is far from the attribute expressed by “bursts” which represents the recurrence 

attribute of this EEG activity concept. 

Data 

In this work, we used a corpus of EEG reports available from the Temple University Hospital (TUH), comprising 

over 25,000 EEG reports from over 15,000 patients collected over 12 years. The EEG reports contain a great deal of 

medical knowledge, as they are designed to convey a written impression of the visual analysis of the EEG, along 

with an interpretation of its clinical significance. Following the American Clinical Neurophysiology Society 

Guidelines for writing EEG reports, the reports from the TUH EEG Corpus start with a clinical history of the 

patient, including information about the patient age, gender, conditions prevalent at the time of the recording (e.g., 

“after cardiac arrest”) followed by a list of the medications (that might modify the EEG). Clearly, both of these 

initial sections depict the clinical picture of the patient, containing a wealth of medical concepts, including the 

medical problems (e.g. “cardiac arrest”), symptoms (e.g. “without a heart rate”), signs (e.g. “twitching”) as well as 

significant medical events (e.g. “coded for 30 minutes in the emergency room”) which are temporally grounded 

(“e.g. “30 minutes”). The following sections of the EEG report target mostly information related to the EEG 

techniques, interpretation and findings. The introduction section is the depiction of the techniques used for the EEG 

(e.g. “digital video EEG”, “using standard 10-20 system of electrode placement with 1 channel of EKG”), as well as 

the patient’s conditions prevalent at the time of the recording (e.g., fasting, sleep deprivation) and level of 

consciousness (e.g. “comatose”). The description section is the mandatory part of the EEG report, and it provides a 

complete and objective description of the EEG, noting all observed activity (e.g. “beta frequency activity”), patterns 

(e.g. “burst suppression pattern”) and events (“very quick jerks of the head”).  Many medical events mentioned in 

the description section of an EEG report are also grounded spatially (“e.g. “attenuated activity in the left 

hemisphere”) as well as temporally (e.g. “beta frequency activity followed by some delta”). In addition, the EEG 

activities are characterized by a variety of attributes (e.g. strength “bursts of paroxysmal high amplitude activity”). 

The impression section states whether the EEG test is normal or abnormal. If it is abnormal, then the abnormalities 

are listed in order of importance and thus summarize the description section. Hence, mentions of the EEG activities 

and their attributes may be repeated, but with different words. The final section of the EEG report, provides the 

clinical correlations and explains what the EEG findings mean in terms of clinical interpretation (e.g. “very 

worrisome prognostic features”). 

Methods 

The automatic annotation of the big data of EEG reports was performed by a Multi-task Active Deep Learning 

(MTADL) paradigm aiming to perform concurrently multiple annotation tasks, corresponding to the identification of 

(1) EEG activities and their attributes, (2) EEG events, (3) medical problems, (4) medical treatments and (5) medical 

tests mentioned in the narratives of the reports, along with their inferred forms of modality and polarity. When we 

considered the recognition of the modality, we took advantage of the definitions used in the 2012 i2b2 challenge7 on 
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evaluating temporal relations in medical text. In that challenge, modality 

was used to capture whether a medical event discerned from a medical 

record actually happens, is merely proposed, mentioned as conditional, or 

described as possible. We extended this definition such that the possible 

modality values of “factual”, “possible”, and “proposed” indicate that 

medical concepts mentioned in the EEGs are actual findings, possible 

findings and findings that may be true at some point in the future, 

respectively. For identifying polarity of medical concepts in EEG reports, 

we relied on the same definition used in the 2012 i2b2 challenge, 

considering that each concept can have either a “positive” or a “negative” 

polarity, depending on any absent or present negation of its finding. 

Through the identification of modality and polarity of the medical 

concepts, we aimed to capture the neurologist’s beliefs about the medical 

concepts mentioned in the EEG report. Some of the medical concepts 

mentioned in the EEG reports that describe the clinical picture of a patient 

are similar to those evaluated in the 2010 i2b2 challenge, as they 

represent medical problems, tests and treatments, thus we could take 

advantage of our participation in that challenge and use many of the 

features we have developed for automatically recognizing such medical 

concepts. However, EEG reports also contain a substantial number of 

mentions of EEG activities and EEG events, as they discuss the EEG test. 

The ability to automatically annotate all medical concepts from the EEGs 

entailed the development of an annotation schema that was created after 

consulting numerous neurology textbooks and inspecting a large number 

of EEG reports from the corpus. In fact, the development of the 

annotation schema represents the first step in our Multi-task Active Deep 

Learning (MTADL) paradigm, which required the following 5 steps: 

STEP 1: The development of an annotation schema; 

STEP 2: Annotation of initial training data; 

STEP 3: Design of deep learning methods that are capable to be trained 

on the data; 

STEP 4: Development of sampling methods for Multi-task Active Deep 

Learning system 

STEP 5: Usage of the Active Learning system which involves: 

Step 5.a.: Accepting/Editing annotations of sampled examples 

Step 5.b.: Re-training the deep learning methods and evaluation the new system. 

STEP 1: Annotation Schema: The annotation schema that we have developed considered 

EEG events, medical problems, treatment and tests to be annotated in similar ways as in the 

2012 i2b2 challenge, namely by specifying (1) the boundary of each mention of concepts; (2) 

the concept type; (3) its modality and (4) its polarity. However, the EEG activities could not be 

annotated in the same way. First, we noticed that EEG activities are not mentioned in a continuous 

expression (see Example 1). To solve this problem, we annotated the anchors of EEG activities and 

their attributes. Since one of the attributes of EEG activities, namely, MORPHOLOGY, best defines these 

concepts, we decided to use it as an anchor. We considered three classes of attributes for EEG 

activities, namely (a) general attributes of the waves, e.g. the MORPHOLOGY, the FREQUENCY BAND; 

(b) temporal attributes and (c) spatial attributes. All attributes have multiple possible values associated with them. 

When annotating the MORPHOLOGY attribute we considered a hierarchy of values, distinguishing first two types: (1) 

Rhythm and (2) Transient. In addition, the Transient type contains three subtypes: Single Wave, Complex and 

Pattern. Each of these sub-types can take multiple possible values. An example of these annotations is provided in 

Example 2B.  

STEP 2: Annotation of Initial Training Data: Initially, a sub-set of 39 EEG reports were manually annotated. The 

annotations were created by first running the medical concept recognition system reported in [7] to detect medical 

problems, tests, and treatments and their polarity and modality. The annotations that were obtained were manually 

inspected and edited, while also generating manual annotations for EEG Activities, their attributes as well as EEG  

Attribute 1: Morphology ∷=  represents the 

type or “form” of EEG waves. 

● Rhythm: continuous, rhythmic activity 

● Transient 
  Single Wave: 

■ V wave 

■ Wicket spikes 
■ Spike 

■ Sharp wave 

■ Slow wave 
 Complex: A sequence of two or more 

waves having a characteristic form or 

recurring with a fairly consistent form, 
distinguished from background activity. 

■ K-complex 

■ Sleep spindles 
■ Spike-and-sharp-wave complex 

■ Spike-and-slow-wave complex 

■ Sharp-and-slow-wave complex 
■ Triphasic wave 

■ Polyspike complex 

■ Polyspike-and-slow-wave complex  
 Pattern: any characteristic EEG Activity 

■ Suppression 

■ Amplitude Gradient 
■ Slowing 

■ Breach Rhythm 
■ Benign Epileptic Transients of Sleep 

(BETS) 

■ Photic driving (response) 
■ Periodic Laterilized Epilepitiform 

Discharges (PLEDs) 

■ Generalized periodic epileptiform 
discharges (GPEDs) 

■ Epileptiform discharge (unspecified) 

■ Disorganization  
■ Positive occipital sharp transients of 

sleep (POSTS) 

■ Unspecified: the default attribute 

value, used if no morphological 

information is given at all 

Attribute 2: 

Frequency Band  

 Alpha (8 – 13 Hz) 

 Beta (13 – 32 Hz) 

 Delta ( < 4 Hz) 

 Theta (4 - 8 Hz) 

 Gamma ( > 32 Hz) 

Attribute 3: 

Background 

 Yes 

 No 
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Attribute 4: Magnitude ∷= describes the amplitude of the EEG 

activity if it is emphasized in the EEG report 

 Low: e.g. subtle (spike), small (polyspike discharge) 

 High: e.g.  high (voltage burst);  high amplitude (spike); excess 
(theta) 

 Normal: the default value 

Attribute 5: Recurrence (TEMPORAL) ∷= describes how often 

the EEG activity occurs. 

 Continuous: the activity repeats in a continuous, uninterrupted 

manner 

 Repeated: the activity repeats intermittently 

 None: the activity occurs once 

Attribute 6: Dispersal (SPATIAL) ∷= describes the spread of the 
activity over regions of the brain 

 Localized (focal): limited to a small area of the brain 

 Generalized (diffuse): occurring over a large area of the brain or 

both sides of the head 

Attribute 7: Hemisphere (SPATIAL) ∷= describes which 
hemisphere of the brain the activity occur in. 

 Right 

 Left 

 Both 

Location Attributes: Brain Location (SPATIAL) ∷= describes the region of the brain in which the EEG activity occurs. The BRAIN 

LOCATION attribute of the EEG Activity indicates the location/area of the activity (corresponding to electrode placement under the standard 
10-20 system). 

 Attribute 8: Frontal (i.e. Anterior): Corresponds to the frontal region of the brain including all F*, Fp* and AF* electrodes 

 Attribute 9: Occipital (i.e. Posterior): Corresponds to the occipital region of the brain including all O* electrodes 

 Attribute 10: Temporal: Corresponds to the temporal region of the brain including all T* electrodes 

 Attribute 11: Central: Corresponds to the central region of the brain including all C* electrodes 

 Attribute 12: Parietal: Corresponds to the parietal region of the brain including all P* electrodes 

 Attribute 13: Frontocentral: Corresponds to the area between the frontal and central regions of the brain including all FC* electrodes 

 Attribute 14: Frontotemporal: Corresponds to the region between the frontal and temporal regions of the brain, including all FT* 
electrodes 

 Attribute 15: Centroparietal: Corresponds to the region between the central and parietal regions of the brain including all CP* electrodes 

 Attribute 16: Parieto-occiptal: Corresponds to the region between the parietal and occipital regions of the brain including all PO* 

electrodes 

 

Events discovered in the sub-set of 39 EEG reports. The initial annotations represented the initial set of training data 

for two deep learning architectures, as illustrated in Figure 1. 

STEP 3: Design of Deep Learning Architectures: The first architecture aims to identify (1) the anchors of all 

EEG activities mentioned in an EEG report; as well as (2) the boundaries of all mentions of EEG events, medical 

problems, medical treatments and medical tests. Examples of the annotation results of the first deep learning 

architecture are indexed with the two types discussed above in the following excerpt from an EEG report: 

Example 2A: CLINICAL HISTORY: 58 year old woman found [unresponsive]2, history of [multiple sclerosis]2, evaluate for 

[anoxic encephalopathy]2. 

MEDICATIONS: [Depakote]2, [Pantoprazole]2, [LOVENOX]1. 

INTRODUCTION: [Digital video EEG]2 was performed at bedside using standard 10.20 system of electrode placement with 

1 channel of [EKG]2. When the patient relaxes and the [eye blinks]2 stop, there are frontally predominant generalized [spike 

and wave discharges]1 as well as [polyspike and wave discharges]1 at 4 to 4.5 Hz. 

Example 2A is an excerpt from of a typical EEG Report with several mentions of medical problems, tests, and 

treatments whose boundaries are denoted with brackets with subscript 1. Example 2A contains one EEG Event 

(subscript 1) and two EEG Activities (subscript 2). Like medical problems, tests, and treatments, EEG Events are 

identified by contiguous spans of text. However, unlike the other medical concept mentions, EEG Activities are 

often documented by multiple discontinuous spans of text. The two activities from example 2A are both observed 

frontally, have a generalized dispersal, and occur at a frequency of 4-4.5 Hz. Therefore we identify each EEG 

Activity by it’s anchor, which is the span of text indicating the morphology of the activity, denoted in brackets with 

subscript 2 in Example 2B. 

Example 2B: CLINICAL HISTORY: 58 year old woman found [unresponsive]<TYPE=MP, MOD=Factual, POL=Positive>, history of 

[multiple sclerosis]<TYPE=MP, MOD=Factual, POL=Positive>, evaluate for [anoxic encephalopathy]<TYPE=MP, MOD=Possible, POL=Positive>. 

MEDICATIONS: [Depakote]<TYPE=TR, MOD=Factual, POL=Positive>, [Pantoprazole]<TYPE=TR, MOD=Factual, POL=Positive>, 

[LOVENOX]<TYPE=TR, MOD=Factual, POL=Positive>. 

INTRODUCTION: [Digital video EEG]<TYPE=Test, MOD=Factual, POL=Positive> was performed at bedside using standard 10.20 

system of electrode placement with 1 channel of [EKG]<TYPE=Test, MOD=Factual, POL=Positive>. When the patient relaxes and the 

[eye blinks]<TYPE=EV, MOD=Factual, POL=Positive> stop, there are frontally predominant generalized [spike and wave 

discharges]<MORPHOLGY=Transient>Complex>Spike and slow wave complex, FREQUENCYBAND=Delta, BACKGROUND=No, MAGNITUDE=Normal, 

RECURRENCE=Repeated, DISPERSAL=Generalized, HEMISPHERE=N/A, LOCATION={Frontal}, MOD=Factual, POL=Positive> as well as [polyspike and wave 

discharges]<MORPHOLGY=Transient>Complex>Polyspike and slow wave complex, FREQUENCYBAND=Delta, BACKGROUND=No, MAGNITUDE=Normal, 

RECURRENCE=Repeated, DISPERSAL=Generalized, HEMISPHERE=N/A, LOCATION={Frontal}, MOD=Factual, POL=Positive> at 4 to 4.5 Hz. 

The annotations from Example 2B are produced by the second deep learning architecture, illustrated in Figure 1, 
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Figure 1: Architecture of the Multi-Task Active Deep Learning for annotating EEG Reports. 

which is designed to recognize (i) the sixteen attributes that we have considered for each EEG activity, as well as (ii) 

the type of the EEG-specific medical concepts, discriminated as either an EEG event (EV), a medical problem (MP), 

a medical test (Test) or a medical treatment (TR). In addition, the second deep learning architecture identifies the 

modality and the polarity of these concepts. 

After training the two deep learning architectures illustrated in Figure 1 on the initial training data obtained with 

manual annotations, we were able to automatically annotate the entire corpus of EEG reports. Because these 

automatically created annotations are not always correct, we developed an active learning framework to validate and 

edit these annotations, and provide new training data for the deep learning architectures.  

STEP 4: Development of Sampling Methods:  The choice of sampling mechanism is crucial for validation as it 

determines what makes one annotation a better candidate for validation over another. Multi-task Active Deep 

Learning (MTADL) is an active learning paradigm for multiple annotation tasks where new EEG reports are 

selected to be as informative as possible for a set of annotation tasks instead of a single annotation task. The 

sampling mechanism that we designed used the rank combination protocol9, which combines several single-task 

active learning selection decisions into one. The usefulness score  𝑠𝑋𝑗(𝛼) of each un-validated annotation 𝛼 from an 

EEG Report is calculated with respect to each annotation task 𝑋𝑗 and then translated into a rank 𝑟𝑋𝑗(𝛼) where higher 

usefulness means lower rank (examples with identical scores get the same rank). Then, for each EEG Report, we 

sum the ranks of each annotation task to get the overall rank 𝑟(𝛼) =  ∑ 𝑟𝑋𝑗(𝛼)𝑗=1 . All examples are sorted by this 

combined rank and annotations with lowest ranks are selected for validation. For each annotation task, we score an 

EEG Report 𝑑: 𝑠𝑋𝑗(𝑑) =  
1

|𝑑|
∑ 𝐻(𝛼)𝑎∈𝑑  where 𝛼 is an annotation from 𝑑 and |𝑑| is the number of annotations in 

document 𝑑, and 𝐻(𝛼) = −∑ 𝑞𝑐
𝛼 log 𝑞𝑐

𝛼
𝑐  is the Shannon Entropy of 𝛼. This protocol favors selecting documents 

containing annotations the model is uncertain about from all annotation tasks. 

STEP 5: Usage of the Multi-Task Active Deep Learning System: We performed several active learning sessions 

with our deep learning architectures. At each iteration, the deep learners are trained to predict annotations using the 

new validations. This process is repeated until (a) the error rate is acceptable; and (b) the number of validated 

examples is acceptable. 

A. Feature Representations for Deep Learning operating on the EEG Big Data 

The two deep learning architectures used in the Multi-task Active Deep Learning (MTADL) system illustrated in 

Figure 1 relied on two feature vector representations, that considered the features illustrated in Table 2. We used the 

GENIA tagger10 for tokenization, lemmatization, Part of Speech (PoS) recognition, and phrase chunking. Stanford 

EEG Reports

Manual Annotation of:
• EEG Activity Attributes
• EEG Events
• Medical Problems
• Medical Treatments
• Medical Tests
+ Modalidy
+Polarity

EEG Reports with Seed Annotations

Initial Training Data

Deep Learning-Based Identification of:
• Anchors of EEG Activity 
• Boundaries of expressions of:

 EEG Events
 Medical Problems
 Medical Treatments
 Medical Tests

Deep Learning-Based Recognition of:
 Attributes of EEG Activities
 EEG Concept TYPE
 EEG Concept Modality
 EEG Concept Polarity

Automatically Annotated EEG Reports
EEG Report Annotation

SAMPLING

Validation/
Editing of
Sampled
Annotations
From 
EEG Reports

Re-Training Data

Active Learning Loop
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Features used for Deep Learning-Based Identification 
of (a) Anchors of EEG Activity Attributes and (b) 
Boundaries of expressions of EEG Events, Medical 
Problems, Medical Treatments and Medical Tests 

Features used for Deep Learning-Based Recognition of Attributes EEG Activities, 
EEG Concept TYPE, EEG Concept Modality and EEG Concept Polarity 

1. The lemma of the token and the previous/next 
tokens 

2. The PoS of the token and the previous/next tokens 
3. The phrase chunk of the token and the 

previous/next tokens 
4. The lemmas of the previous, current, and next 

tokens  
5. The Brown cluster of the token 
6. The UMLS Concept Unique Identifier (cui) of UMLS 

concepts containing the token 
7. The title of the section containing the token 

1. The medical concept mention itself 
2. The lemmas of each token in the medical concept mention  
3. The PoS of each token in the medical concept mention 
4. The lemmas of 3 tokens before/after the medical concept mention 
5. The title of the section containing the token 
Context Features: For each token, t, in the sentence: 
6. The syntactic dependency path to t. 
7. The number of words between the medical concept mention and t 
8. The number of “hops” in the syntactic dependency path from the head of the 

medical concept mention to t 
9. The number of medical concepts between the medical concept mention and t 

 

CoreNLP was used for syntactic dependency parsing11. Brown Cluster12 features generated from the entire TUH 

EEG corpus were used in both feature vector representations listed in Table 2. Brown clustering is an unsupervised 

learning method that discovers hierarchical clusters of words based on their contexts. We also used in the feature 

vector representation medical knowledge available from the Unified Medical Language System (UMLS)13. 

B. Deep Learning for Automatically Recognizing Medical concepts in EEG Reports 

EEG reports mention multiple medical concepts in the narratives used in each report section. To find the spans of 

text that correspond to medical concepts, we trained two stacked Long Short-Term Memory (LSTM) networks14: 

one for detecting EEG Activity anchors and one for detecting the boundaries of all other medical concepts. For 

brevity, we will refer to both tasks as simply medical concept boundary detection in this subsection. The stacked 

LSTM networks process each document at the sentence level. To do this, we represent each sentence as a sequence 

of tokens [w1, w2,..., wN], and train both LSTMs to assign a label bi{ “I”, “O”, “B”} to each token wi such that it 

will receive a label bi=”B” if the token wi is at the beginning of a mention of a medical concept, a label bi=”I” if the 

token wi is inside any mention of a medical concept and a label bi=”O” if the token wi is outside any mention of a 

medical concept.  

For example, the token sequence 

“occasional left anterior temporal [sharp 

and slow wave complexes]ACT” would 

correspond to the label sequence [O,O, 

O,O,B,I,I,I], where tokens {occasional, 

left, anterior, temporal} are all assigned 

labels of O, as they are not part of the 

anchor of an EEG activity, although they 

describe its attributes, token {sharp} is 

assigned a label of B, and the tokens 

{and, slow, wave, complexes} are all 

assigned labels of I. This IOB notation 

allows medical concept mentions to be 

identified by continuous sequences of 

tokens starting with a token labeled B 

optionally followed tokens labeled I.  

To be able to use a deep learning architecture for automatically identifying the anchors of EEG activities and the 

boundaries of all other medical concepts in an EEG report, we first tokenized all reports, and represented each token 

wi  as a feature vector, ti  obtained by considering the features illustrated in Table 2.  As illustrated in Figure 2, the 

features vectors t1, t2, …, tN are provided as input to the stacked LSTMs to predict a sequence of output labels, b1, b2, 

…, bN. To predict each label bi, the deep learning architecture considers (1) the vector representation of each token, 

ti; as well as (2) the vector representation of all previous tokens from  the sentence by  updating a memory state that 

is shared throughout the network. LSTM cells also have the property that they can be “stacked” such that the outputs 

of cells on level 𝑙 are used as the inputs to the cells on level on level 𝑙 + 1. We used a stacked LSTM with 3 levels 

where the input to the first level is a sequence of token vectors and the output from the top level is used to determine 

the 𝐼𝑂𝐵 labels for each token. The output from the top level, 𝑜𝑖
3, is a vector representing token 𝑤𝑖  and every 
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Figure 2: Deep Learning architecture for the identification of (1) the EEG 

activity anchors and (2) the boundaries of expressions of (a) EEG events,  

(b) medical problems; (c) medical tests and (d) medical treatments (e.g. 

medications). 
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previous token in the sentence. To determine the 𝐼𝑂𝐵 label for token 𝑤𝑖 , the output 𝑜𝑖
3 is passed through a softmax 

layer. The softmax layer produces a probability distribution over all 𝐼𝑂𝐵 labels. This is accomplished by computing 

a vector of probabilities, 𝑞𝑖 such that 𝑞𝑖,1 is the probability of label "𝐼", 𝑞𝑖,  is the probability of label "𝑂", and 𝑞𝑖,3 is 

the probability of label "𝐵". The predicted 𝐼𝑂𝐵 label is then chosen as the label with highest probability, 𝑦𝑖 =
 argmax

𝑗
𝑞𝑖𝑗. We use the same architecture to preform boundary detection for EEG Activity Anchors and all other 

medical concepts, but we train separate models for the two tasks. 

C. Deep Learning with a ReLU Network for the Annotation of Attributes of EEG Activities, the Type of other 

Medical concepts and the recognition of Modality and Polarity in EEG Reports 

In our annotation schema, we considered that each medical concept, 𝑎, is associated with a number of important 

attributes (16 attributes for EEG Activities as well as polarity and modality, and type, modality, and polarity for 

EEG events, medical problems, treatments and tests). After mentions of medical concepts have been automatically 

identified, we need to automatically determine each concept’s attributes as well. Traditionally, attribute 

classification is performed by training a classifier, such as an SVM, to determine the value for each attribute. This 

approach would require training 18 separate attribute classifiers for EEG Activities and 3 classifiers for all other 

medical concepts. However, by leveraging the power of deep learning, we can simplify this task by creating one 

multi-purpose, high-dimensional vector representation of a medical concept, or embedding, and use this 

representation to determine each attribute simultaneously with the same deep learning network. Using a shared 

embedding allows important information to be shared between individual tasks. To accomplish this, we use the 

Deep Rectified Linear Network (DRLN) 

for multi-task attribute detection, 

illustrated in Figure 3.  

Given a feature vector xa representing a 

medical concept from an EEG report, 

based on the features from Table 2, the 

DRLN learns a multi-task embedding of 

the concept, denoted as ea. To learn the 

multi-task embedding, the feature vector 

xa is passed through 5 fully connected 

Rectified Linear Unit15 (ReLU) layers. 

For 𝑖 ∈ 1,⋯ , 5: 

: 

where each 𝑊𝑖 for 𝑖 ∈ 1, … , 5 is a weight 

matrix, each 𝑏𝑖 for 𝑖 ∈ 1, … , 5 is a bias 

vector, 𝑟𝑎
1 is the input vector 𝑥𝑎, and 𝑟𝑎

5 is 

used as the multi-task embedding, 𝑒𝑎. The 

ReLU layers provide two major benefits 

that allow the network to function 

properly at depth: (1) ReLUs allow for a 

deep network configuration and (2) they 

learn sparse representations, allowing them to perform de facto internal feature selection16. The vanishing gradient 

problem effects deep networks by causing them to lose information used to update the weights in the network 

rapidly as the network gains depth17, but ReLUs in particular avoid this problem. 

As illustrated in Figure 3, the 16 attributes of the EEG activities are identified and annotated in the EEG reports by 

feeding the shared embedding into a separate softmax layer for each attribute. Formally, each softmax layer learns 

the predicted value 𝑦̃𝑎
𝑗
 for attribute 𝑗 of medical concept 𝑎. Let 𝑞𝑎

𝑗
 be the vector of probabilities produced by the 

softmax layer for attribute 𝑗 of medical concept a. Each element 𝑞𝑎𝑘
𝑗

 of 𝑞𝑎
𝑗
 is defined as: 

 

where the predicted attribute value 𝑦̃𝑎
𝑗
= argmax

𝑘
𝑞𝑎𝑘
𝑗

. Just as with boundary detection, we train two different 

networks, one for annotating the attributes, modality and polarity of EEG Activities and one for annotating the  

(10)       𝜌𝑎
𝑗
=  𝜎(𝑊𝜌 ∙ 𝑒𝑎 + 𝑏𝜌) (11)       𝑞𝑎𝑘

𝑗
= 𝑒

𝜌𝑎𝑘
𝑗

∑ 𝑒𝜌𝑎𝑘′
𝑗

𝑘′

൘  

(9)       𝑟𝑎
𝑖 = max{0,𝑊𝑖 ∙ 𝑟𝑎

𝑖 1 + 𝑏𝑖}                 

Figure 3: Deep Learning Architectures for Automatic Recognition of (1) 

attributes of EEG activities; (2) type for all the other medical concepts expressed 

in EEG reports; and (3) modality and polarity for all concepts. 

235



  

types, polarity and modality of all other medical concepts. 

EEG Activities have 18 attributes (the 16 EEG Activity 

specific attributes plust modality and polarity), therefore, the 

DRLN for learning EEG Activity attributes contains 18 

softmax layers producing 18 predictions. In contrast, the 

DRLLN for learning the attributes of the other medical 

concepts has three attribute softmax layers, corresponding to 

(1) the type of the concept (EEG Event, medical problem, 

test, or treatment), (2) the modality, and (3) the polarity. 

Results 

In this section, we present and discuss the impact of applying 

Multi-task Active Deep Learning (MTADL) to the problem 

of detecting medical concepts and their attributes in EEG 

Reports. Specifically, we evaluated the performance of 

MTADL in terms of (1) the ability of the stacked LSTMs to 

detect the anchors of EEG Activities and the boundaries of 

all other medical concepts and; (2) the ability of the Deep 

ReLU Networks (DRLNs) to determine attributes of each 

medical concept (i.e. the attributes for EEG Activities, the 

type of all other medical concepts, and the modality and 

polarity of every medical concept). To measure the 

performance of our model when automatically detecting 

anchors and boundaries of medical concepts, we followed 

the evaluation procedure reported in the 2012 Informatics for 

Integrating Biology at the Bedside (i2b2) shared task7. We 

measured the precision (P), recall (R), and F1 measure of the 

anchors and boundaries automatically detected by our system 

using 5-fold cross validation. As in [7], we report the 

performance of our model in terms of exact and partial 

matches. A predicted boundary is considered an exact match 

if it exactly matches any manually annotated boundary and it 

is considered a partial match it overlaps with any manually 

annotated boundary. Table 1 illustrates these results. 

Clearly, our model is able to reliably identify both EEG 

Activity Anchors and other medical concept boundaries. It 

should be noted that the performance of detecting EEG 

Activity anchors was 5% lower than the performance of 

detecting the other medical concept boundaries. The 

difference in performance is not surprising given the fragmented nature of EEG Activity descriptions in EEG 

reports. While Table 1 shows the ability of our model to accurately determine anchors and boundaries of medical 

concepts, we were also interested in evaluating the automatically extracted attributes for each EEG Activity as well 

as the other medical concepts. For each attribute, we report the Accuracy (A), Precision (P), Recall (R), and F1 

measure for (1) each value as well as (2) the macro-average of all values for that attribute. Table 2 presents the 

performance of our first DRLN for determining the attributes of EEG Activities, while Table 3 presents the 

performance of our second DRLN for determining the attributes of other medical concepts. In both tables, we have 

also indicated the number of annotated mentions of each attribute as well as each of its values, indicated with the 

symbol ‘#’. Tables 1-3 show the promise of our model for detecting the anchors, boundaries, and attributes of 

EEG Activity Anchors Other Medical concept 

Boundaries 

Measure Exact Partial Measure Exact Partial 

P .8949 .9591 P .9161 .9469 

R .8125 .8228 R .8797 .8831 

F1 .8517 .8857 F1 .8975 .9139 

Table 1. Performance of our model when automatically detecting 
anchors and boundaries of medical concepts 

 

Attributes & Attribute Values A P R F1 # 

Morphology 0.990 0.757 0.704 0.724 1184 

DISORGANIZATION 0.979 0.887 0.788 0.834 80 

GPEDS 0.999 0.000 0.000 0.000 1 

POLYSPIKE_AND_WAVE 0.992 0.222 0.400 0.286 5 

AMPLITUDE_GRADIENT 0.999 0.833 1.000 0.909 5 

SPIKE_AND_SLOW_WAVE 0.995 0.941 0.970 0.955 66 

SPIKE 0.992 0.850 0.708 0.773 24 

PLEDS 0.993 0.750 0.500 0.600 12 

LAMBDA_WAVE 1.000 1.000 1.000 1.000 18 

K_COMPLEX 0.998 1.000 0.750 0.857 8 

POLYSPIKE 0.991 0.750 0.529 0.621 17 

SLOW_WAVE 0.994 0.941 0.923 0.932 52 

RHYTHM 0.924 0.813 0.919 0.862 307 

BETS 0.999 0.000 0.000 0.000 1 

SLEEP_SPINDLE 0.998 1.000 0.913 0.955 23 

SHARP_AND_SLOW_WAVE 0.996 0.600 0.500 0.545 6 

SUPPRESSION 0.995 0.917 0.846 0.880 26 

PHOTIC_DRIVING 0.998 1.000 0.947 0.973 38 

TRIPHASIC_WAVE 0.999 1.000 0.909 0.952 11 

SHARP_WAVE 0.989 0.886 0.963 0.923 81 

WICKET 1.000 1.000 1.000 1.000 10 

UNSPECIFIED 0.952 0.517 0.508 0.513 59 

SPIKE_AND_SHARP_WAVE 1.000 0.000 0.000 0.000 0 

EPILEPTIFORM_DISCHARGE 0.981 0.891 0.882 0.887 102 

SLOWING 0.990 0.966 0.953 0.959 149 

BREACH_RHYTHM 0.996 1.000 0.583 0.737 12 

VERTEX_WAVE 1.000 1.000 1.000 1.000 30 

Hemisphere 0.924 0.775 0.754 0.762 1184 

*N/A 0.888 0.898 0.938 0.918 791 

LEFT 0.942 0.717 0.711 0.714 121 

RIGHT 0.965 0.756 0.782 0.768 87 

BOTH 0.901 0.730 0.584 0.649 185 

Magnitude 0.909 0.806 0.710 0.750 1184 

HIGH 0.921 0.714 0.563 0.630 142 

LOW 0.937 0.817 0.618 0.704 144 

*NORMAL 0.869 0.886 0.950 0.917 898 

Recurrence 0.831 0.739 0.724 0.731 1184 

REPEATED 0.805 0.752 0.760 0.756 470 

*NONE 0.787 0.750 0.773 0.761 520 

CONTINUOUS 0.899 0.717 0.639 0.676 194 

Dispersal 0.871 0.775 0.733 0.751 1184 

LOCALIZED 0.882 0.759 0.684 0.720 263 

*N/A 0.822 0.835 0.894 0.863 745 

GENERALIZED 0.910 0.732 0.619 0.671 176 

Frequency Band 0.982 0.664 0.620 0.640 1184 

GAMMA 1.000 0.000 0.000 0.000 0 

*N/A 0.945 0.940 0.983 0.961 811 

DELTA 0.979 0.945 0.811 0.873 106 

MU 1.000 0.000 0.000 0.000 0 

ALPHA 0.981 0.897 0.870 0.883 100 

BETA 0.992 0.957 0.918 0.937 73 

THETA 0.975 0.910 0.755 0.826 94 

BACKGROUND 0.960 0.890 0.820 0.854 167 

LOCATION 0.970 0.653 0.560 0.602 533 

PARIETO_OCCIPITAL - - - - 0 

FRONTAL 0.929 0.724 0.640 0.679 139 

OCCIPITAL 0.959 0.916 0.841 0.877 208 

TEMPORAL 0.944 0.702 0.590 0.641 100 

FRONTOTEMPORAL 0.993 0.727 0.615 0.667 13 

FRONTOCENTRAL 0.990 0.882 0.789 0.833 38 

CENTRAL 0.980 0.619 0.448 0.520 29 

PARIETAL 0.995 0.000 0.000 0.000 6 

CENTROPARIETAL - - - - 0 

Polarity 0.970 0.909 0.741 0.816 108 

Modality 0.977 0.527 0.397 0.426 1178 

POSSIBLE 0.968 0.615 0.195 0.296 41 

*FACTUAL 0.963 0.967 0.996 0.981 1136 

PROPOSED 0.999 0.000 0.000 0.000 1 

Table 2. Performance of our model when automatically 

detecting attributes of EEG activities. Default attribute values 

are denoted by an asterisk where applicable. 
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medical concepts from EEG reports. We also 

evaluated the impact of Multi-task Active Deep 

Learning (MTADL) on the performance of our 

model. Specifically, we measured the change in 

performance after each additional round of 

annotations. Figure 4 presents these results. Clearly 

the impact of MTADL on the performance of our model across all tasks was significant allowing it to achieve high 

performance after as few as 100 additional EEG Reports have been annotated. 

Discussion 

In general, it is clear that the DRLN was able to accurately determine the attributes of EEG, obtaining an overall 

accuracy of 93.8%. However, it is also clear that the model struggles to predict certain attribute values, for example 

MODALITY=Possible, MORPHOLOGY=Polyspike_and_wave, and BRAIN_LOCATION=Central. The degraded 

performance for these values is unsurprising as they are some of the least frequently annotated attributes in our data 

set (with 41, 5, 29 instances respectively). The difficulty of learning from a small number of annotations in the 

machine learning and natural language processing communities18. However, we believe that the performance of our 

model when detecting rare attributes could be improved in future work by incorporating knowledge from 

neurological ontologies19 as well as other sources of general medical knowledge. We found that the performance of 

our DRLN for determining attribute of other medical concepts was highly promising, with an overall accuracy of 

97.4%. However, we observed the same correlation between the number of annotations for an attribute’s value and 

the DRLN’s ability to predict that value. In the TUH EEG corpus, we found that nearly all mentions of EEG Events 

and medical problems, test, or treatments had a factual modality (96%). This follows the distribution of modality 

values reported in the 2012 i2b2 shared task  (95% factual). The lowest performance of the DRLN was observed 

when determining the polarity attribute. The main source of errors for determining polarity was due to frequent 

ungrammatical sentences in the EEG Reports, e.g. “There are rare sharp transients noted in the record but without 

after going slow waves as would be expected in epileptiform sharp waves”. We believe these errors could be 

overcome in future work by relying on parsers trained on medical data. As the MTDAL is being used, it enables us 

to generate EEG-specific qualified medical knowledge. We believe this knowledge can be enhanced by 

incorporating information from the EEG signals, creating a multi-modal medical knowledge representation. Such a 

knowledge representation is needed for reasoning mechanisms operating on big medical data.  

Conclusion 

In this paper we described a novel active learning annotation framework that operates on a big corpus of EEG 

Reports by making use of two deep learning architectures. The annotations follow a schema of semantic attributes 

characterizing EEG activities. Attributes define the morphology and magnitude as well as temporal (recurrence) and 

spatial (dispersal, brain location) characteristics of an EEG activity. The complex annotation schema enabled a 

Multi-task Active Deep Learning (MTADL) paradigm described in the paper. This paradigm uses one deep learning 

architecture based on two stacked LSTM networks to discover the textual boundaries of (a) EEG activity anchors 

and (b) expressions of EEG events, medical problems, tests, and treatments. After the anchors or boundaries are 

discovered, a second Deep Rectified Linear Network (DRLN) performs a multi-task attribute detection which 

identifies (a) any of the 16 attributes of EEG activities; and (b) the medical concept type which distinguishes 

between EEG event, medical problems, treatments, and test as well as (i) their modality and (ii) their modality. A 

crucial step in the MTADL paradigm is provided by the sampling mechanism for active learning. In this paper, we 

showed how instance sampling provided a significant increase in accuracy of annotation after each round of active 

learning. As the MTADL is being used, it enables us to generate an EEG specific medical knowledge that can be 

used to (1) improve patient cohort retrieval and (2) perform causal probabilistic inference. 

Attributes & Values A P R F1 # 

Concept Type 0.970 0.943 0.936 0.939 2335 

TEST 0.983 0.982 0.958 0.970 669 

PROBLEM 0.953 0.901 0.960 0.929 747 

TREATMENT 0.971 0.964 0.898 0.930 500 

EEG_EVENT 0.974 0.926 0.928 0.927 419 

Modality 0.973 0.742 0.605 0.659 2318 

POSSIBLE 0.977 0.634 0.406 0.495 64 

FACTUAL 0.963 0.971 0.990 0.980 2199 

PROPOSED 0.980 0.622 0.418 0.500 55 

Polarity 0.978 0.829 0.719 0.770 121 

Table 3. Performance of our model when automatically detecting 

attributes of EEG events and medical problems, treatments, and 
tests. 

Figure 4. Learning curves for all annotations, shown over the 

first 100 EEG Reports annotated and evaluated with F1 measure. 
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