
Vol. 29 ISMB/ECCB 2013, pages i326–i334
BIOINFORMATICS doi:10.1093/bioinformatics/btt219

IDBA-tran: a more robust de novo de Bruijn graph assembler for

transcriptomes with uneven expression levels
Yu Peng1, Henry C. M. Leung1, Siu-Ming Yiu1, Ming-Ju Lv2, Xin-Guang Zhu2 and
Francis Y. L. Chin1,*
1Department of Computer Science, The University of Hong Kong, Hong Kong and 2CAS-MPG Partner Institute for
Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai 200031,
China

ABSTRACT

Motivation: RNA sequencing based on next-generation sequencing

technology is effective for analyzing transcriptomes. Like de novo

genome assembly, de novo transcriptome assembly does not rely

on any reference genome or additional annotation information, but is

more difficult. In particular, isoforms can have very uneven expression

levels (e.g. 1:100), which make it very difficult to identify low-ex-

pressed isoforms. One challenge is to remove erroneous vertices/

edges with high multiplicity (produced by high-expressed isoforms)

in the de Bruijn graph without removing correct ones with not-so-

high multiplicity from low-expressed isoforms. Failing to do so will

result in the loss of low-expressed isoforms or having complicated

subgraphs with transcripts of different genes mixed together due to

erroneous vertices/edges.

Contributions: Unlike existing tools, which remove erroneous ver-

tices/edges with multiplicities lower than a global threshold, we use

a probabilistic progressive approach to iteratively remove them with

local thresholds. This enables us to decompose the graph into discon-

nected components, each containing a few genes, if not a single gene,

while retaining many correct vertices/edges of low-expressed iso-

forms. Combined with existing techniques, IDBA-Tran is able to as-

semble both high-expressed and low-expressed transcripts and

outperform existing assemblers in terms of sensitivity and specificity

for both simulated and real data.

Availability: http://www.cs.hku.hk/�alse/idba_tran.

Contact: chin@cs.hku.hk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recent development of massively parallel cDNA sequencing

(RNA-Seq) provides a more powerful and cost-effective way to

analyze transcriptome data. RNA-Seq has been used successfully
to identify novel genes, refine 50 and 30 ends of genes, study gene

functions (Graveley, 2008), locate exon/intron boundaries

(Nagalakshmi et al., 2008; Trapnell et al., 2009) and estimate

expression levels of isoforms (Jiang and Wong, 2009).

However, transcriptome reconstruction (the reconstruction of

all expressed transcripts) from RNA-seq data remains a challen-

ging unresolved problem when there is splicing, i.e. when differ-

ent combinations of regions (exons) of a single gene are decoded
to multiple transcripts (isoforms) (Trapnell et al., 2010).

Currently, there are two computational approaches to solve

this problem. Alignment-based methods, such as Cufflinks

(Trapnell et al., 2010) and Scripture (Guttman et al., 2010),

first align reads to reference genomes using splice junction map-

pers, such as TopHat (Trapnell et al., 2009), to identify exon-

intron boundary and then build a graph in which exons are the

nodes and two exons are connected if reads connect them.

Cufflinks (Trapnell et al., 2010) attaches weights to edges and

models the isoform reconstruction problem as a minimum path

cover problem, while Scripture (Guttman et al., 2010) creates a

statistical model to identify significant segments as isoforms. In

contrast, de novo assembly methods, such as Trinity (Grabherr

et al., 2011), Oases (Schulz et al., 2012), Trans-Abyss (Robertson

et al., 2010) and T-IDBA (Peng et al., 2011), assemble transcripts

directly from reads.
Alignment-based transcriptome assembly methods, which rely

on reference genomes and additional annotation information,

may suffer from missing/erroneous information. Also, the qual-

ity of these methods depends heavily on the accuracy of the

alignment tools (Trapnell et al., 2009), which is also complicated

by splicing and sequencing errors. As RNA-Seq technology be-

comes more mature, there will be an increasing need to recon-

struct unknown transcriptomes without reference genome

information, and de novo transcriptome assembly will become

increasingly more important.

Difficulties: At first glance, the de novo transcriptome assem-

bly problem looks similar to the de novo genome assembly prob-

lem. In fact, many existing methods for de novo transcriptome

assembly, like genome assembly, apply the de Bruijn graph ap-

proach with fragments of transcripts being simple paths in graph,

in which a vertex is a k-mer and an edge exists between two

vertices u and v if u and v appear consecutively in a read.

However, two main aspects make the two assembly problems

different.
(1) Exons shared by multiple isoforms. In this paper, we focus

on transcriptome assembly for eukaryotes with splicing since,

without splicing, the problem is much easier. Consider the ex-

ample (LOC_Os10g02220 from rice) in Figure 1. A to I represent

different exons forming 5 isoforms (in red). Shared exons (e.g. D

and H) look like repeats, and most genome assemblers try to

resolve repeats at the branch level, i.e., each branch needs to

be supported by paired-end reads. In our case, since all five iso-

forms are real, branches BD and CD as well as DE and DF will

be supported. Some assemblers may stop at the junctions, report-

ing B, C, D, E and F as separate (short) contigs or falsely regard

CDE as a transcript (provided both CD and DE have enough

support). For example, running Velvet on the rice data*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://www.cs.hku.hk/~alse/idba_tran
http://www.cs.hku.hk/~alse/idba_tran
mailto:chin@cs.hku.hk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1


(see Section 3.2 for details) results in contigs of mean length

245 bp only, while the mean length of transcripts is about

1700 bp. Some metagenomic (Bankevich et al., 2012) and

single-cell assemblers (Vyahhi et al., 2012) try to find a path

with maximum paired-end reads support; however, as the

insert distance of transcriptome data usually cannot cover

more than one branch (splicing junction) and there are multiple

correct paths (isoforms) with paired-end reads support, these

assembliers also fail to reconstruct the isoforms.

(2) Different expression levels of isoforms of the same gene.

Isoforms of the same gene may have very different expression

levels. There are two problems. First, low-expressed isoforms

may have little support from reads and thus are missed by the

assembler. For example, in Figure 1, if there are only a few

paired-end reads supporting branch BD and FH, isoform

ABDFH is unlikely to be obtained. Second, support from

reads of erroneous k-mers from high-expressed transcripts may

be higher than that of correct k-mers from low-expressed tran-

scripts. These erroneous k-mers introduce branches in the de

Bruijn graph and make the graph very complicated. Figure 2

shows an example from a real rice transcriptome dataset

(LOC-Os12g12850). This subgraph (k¼ 50) is supposed to con-

tain only two isoforms (Fig. 2a shows the conceptual view of the

isoforms). There are 92 353 and 90126 erroneous k-mers and

branches respectively in the de Bruijn graph (Fig. 2b) when we

simulated reads with 1% sequencing error (details shown in

Section 3). Existing approaches usually employ a global thresh-

old to remove erroneous k-mers and branches if the multiplicities

of these components are smaller than the threshold. This simple

approach will not work for transcriptome data. Since the error

positions of each read are known, we can count the number of

correct and erroneous k-mers for simulated data on rice (Section

3.1) for different multiplicities (Fig. 2c). No matter how we set

the threshold of multiplicity for removing erroneous k-mers

(draw a vertical line and consider all k-mers on the left with

lower multiplicities as erroneous k-mers), some erroneous k-

mers will remain and correct k-mers will be removed. These

complicated components will make isoform finding extremely

difficult as there are many paths to be considered. In the ideal

case, the de Bruijn graph should have many isolated compo-

nents, each representing isoforms from one gene unless there

are repeats in different genes. In most cases, the structure of

the component should be simple as most genes do not con-

tain many isoforms. To tackle this issue, we need a method to

separate components that are falsely connected by erroneous

k-mers and we need to remove erroneous k-mers from each

component.

Existing solutions: Oases (Schulz et al., 2012) and Trinity
(Grabherr et al., 2011) are two popular de novo transcriptome
assemblers for RNA-Seq data. In order to solve the splicing

problem [Issue (1)], both apply a dynamic programming ap-
proach to identify potential paths in the graph, which are sup-
ported by many reads or paired-end reads. In other words, they

try to identify isoforms more globally through a path-level ana-
lysis instead of a local branch-level analysis. The results are much
better than those of genome assemblers. However, since the

problem is NP-complete (proved in the Supplementary
Appendix), the running time of the dynamic programming ap-
proach increases exponentially with the number of branches in

the de Bruijn graph. Due to Issue (2), erroneous reads sampled
from high-expressed transcripts introduce many branches (with
more support than reads sampled from low-expressed tran-

scripts) and thus dynamic programming takes a long time. In
practice, these tools fall back on heuristic search instead of dy-
namic programming for large components.

To tackle Issue (2), T-IDBA (Peng et al., 2011) uses another
approach to isolate components. Based on the observation that
transcripts from different genes share less common vertices when

k value is large, T-IDBA builds a de Bruijn graph from small k
and iteratively updates the graph with larger k values. It then
finds transcripts in the de Bruijn graph with large k value where

transcripts from the same gene usually form a single component.
However, it does not perform very well for low-expressed tran-
scripts because there are more missing k-mers when k is large.

There is no dedicated solution in T-IDBA that solves the issue of
erroneous k-mers within a component and methods for isolating
components are not sensitive to low-expressed isoforms.

To recover low-expressed transcripts, several post-processing
methods (Robertson et al., 2010; Surget-Groba and Montoya-
Burgos, 2010) were developed for Velvet (Zerbino and Birney,

2008) and Abyss (Simpson et al., 2009). They are all based on the
observation that lower k values make the assembler more sensi-
tive to low-expressed transcripts, while larger k values make it

more specific to high-expressed transcripts. In order to combine
the advantages of different values of k, the resultant contigs,
generated by different k-mer lengths independently, are merged

together.
However, merging assembly results from different runs is not a

straightforward task. Although output transcripts are clustered

and duplicated transcripts are removed, many duplicates are dif-
ficult to detect and errors can accumulate in the cluster-remove
step. As a result, multiple contigs with errors are generated for

the same transcripts and the number of resulting contigs is much
more than the number of expressed transcripts. Oases-M, an
extension of Oases, makes use of multiple k to improve its as-

sembly result and is now the best tool using this approach.
However, since the fundamental problem of removing erroneous
vertices from high-expressed isoforms while keeping correct ver-

tices from low-expressed isoforms is not solved, there are still
many false positives as well as duplicated transcripts (Section 3).
Some single-cell genome assemblers (Chitsaz et al., 2011; Peng

et al., 2012) also have a problem with uneven multiplicities of
correct k-mers. They resolve the problem based on the assump-
tion that, although the multiplicities of these erroneous k-mers

are high, their multiplicities should be lower than the nearby
correct k-mers. Thus, they calculate a local threshold, based on

..
A 

…
G… 

E 

… 
F 

…
I 

.. 
H… 

B 

… 
C 

… 
D 

Fig. 1. Example of de Bruijn graph for five isoforms from the same gene

i327

IDBA-tran

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1


the multiplicities of nearby k-mers or contigs, for removing er-
roneous k-mers. However, as a k-mer representing the common
exon of several expressed isoforms can have relatively higher
multiplicity than nearby correct k-mers (Li and Jiang, 2012),

calculating the local threshold from only one or two nearby k-
mers or contigs may be misleading and the algorithms may
remove many correct k-mers near these high multiplicity k-mers.

Our contributions: If Issue (2) can be resolved, Issue (1) can be
tackled by existing path-level analysis as the components will be
simple enough. Thus, our core contribution is handling Issue (2).

As mentioned before, the traditional filtering method of using
one single global threshold for multiplicity cannot separate
correct k-mers sampled from low-expressed transcripts from er-

roneous k-mers sampled from high-expressed transcripts, and
single-cell genome assemblers calculating local thresholds from
nearby k-mers may remove many correct k-mers. Thus, we pro-
pose a probabilistic progressive approach to solve this problem.

Our proposed assembler IDBA-Tran calculates the probability
that a k-mer or short simple path (contigs) contains error using
not only the multiplicity of the k-mer or contig (or their neigh-

boring k-mers or contigs) but also uses a multi-normal distribu-
tion to model the multiplicities of all k-mers in the whole
connected component. Based on the multi-normal distribution

and the contig length (as a short simple path is more likely to
have error than a long one), IDBA-Tran calculates a local
threshold for determining whether a k-mer or contig has error.

By progressively removing erroneous k-mers, connected compo-
nents representing isoforms from a single gene are identified.
Since we successfully remove many erroneous k-mers, the size

of each component is small. We can employ a path-level analysis
(similar to Oases and Trinity) to identify transcripts from each
component [Issue (1)]. Thus IDBA-Tran can perform better than
Oases and Trinity, producing more contigs, particularly for low-

expressed transcripts. Results show that IDBA-Tran outper-
forms other de novo transcriptome assembly approaches in
terms of both sensitivity and specificity for both simulated and

real data. IDBA-Tran also makes use of other techniques used in
genome assemblers, such as tips pruning, path merging and error
correction.

2 METHODS

Similar to Oases-M, IDBA-Tran also adopts the idea of multiple k to

handle transcripts with different expression levels. However, instead of

generating a de Bruijn graph and finding transcripts for each k value, an

accumulated de Bruijn graph is built to capture all information from both

high-expressed and low-expressed transcripts. During each iteration, an

accumulated de Bruijn graph Hk for a fixed k is constructed from the

input reads and the contigs constructed in previous iterations, i.e. those

contigs constructed in Hk-s are treated as input reads for the construction

of Hk. The depth information is used to separate de Bruijn graph into

components. Ideally, transcripts from different genes are decomposed

into different components. In each component, alternative splicing can

be detected and transcripts can be reconstructed. To accumulate infor-

mation, all reconstructed transcripts are used as input reads for the next

iteration.

Figure 3 shows the workflow of IDBA-Tran for assembling a set of

paired-end reads. In the first iteration when k¼ kmin,Hk is equivalent to a

de Bruijn graph for vertices whose corresponding k-mers have multipli-

city of at least m (2 by default) times in all reads. During all subsequent

iterations, sequencing errors are first removed according to the topo-

logical structure of Hk in a slightly different way to other assemblers

(Section 2.1). The tips (dangling paths in Hk of length shorter than 2k)

are likely to be false positives (Li et al., 2010; Simpson et al., 2009;

Zerbino and Birney, 2008). Similar paths (bubbles) representing very

similar contigs with the same starting vertex and ending vertex are

likely to be caused by errors or SNPs and they should be merged (Li

et al., 2010; Simpson et al., 2009; Zerbino and Birney, 2008). Then, the

depth information for contigs and components is used to decompose the

graph into components (Section 2.2). Paths with high support for the

paired-end reads are reconstructed as transcripts in each component

(Section 2.3). Errors in the assembled contigs are corrected by aligning

reads to the contigs (Section 2.4). When constructingHkþs fromHk, each

length sþ 1 path inHk is converted into a vertex ((kþ s)-mer) and there is

an edge between two vertices if the corresponding (kþ sþ 1)-mer appears

f (1 by default) times in reads or once in contigs in Ck[LCk[Tk, where Ck

represents the set of contigs, LCk is the set of contigs constructed by local

assembly using paired-end information (Section 2.5), and Tk is the set of

transcripts when considering Hk. In the following subsections, we de-

scribe each step of IDBA-Tran in detail.

2.1 Pruning short tips and merge similar path

Many de novo assemblers remove tips (short simple paths leading to dead

ends) in the de Bruijn graph as erroneous contigs. It would not be advis-

able to remove such tips in transcriptome assembly, because transcripts

are very short (could be several hundred bases) when compared to gen-

omes. Removing one hundred bases from the end of a genome may not

be a problem, but removing one hundred bases from the end of a tran-

script may lose much important information. When constructing the

accumulated de Bruijn graph in IDBA-Tran, the tip removal process

will take place at each iteration. Instead of removing all tips and produ-

cing shorter transcripts, IDBA-Tran keeps the longest tip (with highest

probability of being a correct path) and removes all other short tips. For

(a) (b) (c) 

A.. 

..

..

B 

C 

D 

..

Fig. 2. Example of de Bruijn graph for two isoforms from the same gene. (a) de Bruijn graph of two isoforms without error. (b) de Bruijn graph of two

isoforms when there is 1% sequencing error in reads. (c) Multiplicity of correct and erroneous k-mers for simulated data

i328

Y.Peng et al.



each branch in the graph, IDBA-Tran checks each outgoing (and incom-

ing) edge, keeps the branch which leads to the longest path, and removes

all other branches (tips) which lead to paths shorter than 2k. Usually, the

correct branch leads to longer paths than tips, and this method preserves

correct branches.

As transcriptome sequencing data contains more errors and insertions/

deletions than genome sequencing data, IDBA-Tran identifies and

merges paths with same starting point and end point and higher than

98% similarity (including insertions and deletions).

2.2 Decomposing the graph by iterating depth

Recall that T-IDBA (Peng et al., 2011) also tries to decompose the de

Bruijn graph into components. It is based on the observation that there

are not many repeat patterns between two transcripts from different genes

while isoforms from the same gene share common exons. Thus, it decom-

poses the graph into different components such that there are relatively

more branches inside each component and relatively fewer branches be-

tween two components. However, erroneous k-mers (from high-expressed

isoforms) still cannot be removed effectively since components represent-

ing isoforms from different genes may be connected by these erroneous k-

mers to form a very large component preventing the assembler from

determining isoforms in the component. Instead of considering the

number of branches for decomposing the de Bruijn graph into compo-

nents, IDBA-Tran detects and removes erroneous paths connecting two

components by considering the lengths and sequencing depths (depths in

short) of the paths using a probabilistic approach. The depth of a path

(contig) is the average multiplicity of the k-mer on the path.

Long contigs (simple paths in the de Bruijn graph) are usually correct,

because long simple paths are unlikely to be formed by erroneous reads,

and similarly for high-depth contigs which have supports from many

reads. For a contig, whether its length is long or short and whether its

depth is high or low cannot be judged by absolute values as the length of

a contig depends on the value of k and the depth of a contig depends on

the depths of neighboring contigs (contigs in the same component). Since

erroneous contigs in high-depth regions may have higher depths than

correct contigs in low-depth regions, short (5l) and relatively low-depth

contigs are likely to be erroneous and can be removed. The removal takes

place in an iterative manner (Chitsaz et al., 2011; Peng et al., 2012),

because after some low-depth errors are removed, some short low-

depth contigs may be connected together to form long contigs.

Increasing depth cutoff progressively may help to preserve more low-

depth correct contigs.

IDBA-Tran removes contigs (simple paths) shorter than l with average

sequencing depth lower than � where � is a threshold calculated based on

value of l and the depth distribution of the connected component which

contains the contig. When � is large, many correct contigs are removed

and many true positive transcripts cannot be assembled. When � is small,

many erroneous contigs are not removed and transcripts from different

genes may form a large component such that correct transcripts are dif-

ficult to reconstruct in later steps (Section 2.3). Thus, we should select the

largest threshold � such that not too many correct contigs are removed,

say51%.

Consider a correct exon with length at least l. It should be represented

by a simple path P in the de Bruijn graph. However, as there are sequen-

cing errors in reads, there may be branches in P and simple path Pmay be

broken into several shorter paths with length less than l. Consider a

particular edge u!v in P with the corresponding k-mer v sampled x

times (some may contain errors). There is another edge u!v’ in the de

Bruijn graph if at least m (the multiplicity threshold used for removing

erroneous k-mers) out of the x k-mers sampled from v having the same

error at the last nucleotide, i.e. v and v’ differ by the last nucleotide, thus

introduces branching at u. This probability can be calculated as follows.

Assume the probability of a sequencing error per base is e and the

probabilities that the erroneous base is changed to each other nucleotide

are the same, i.e. 1/3. Although this simple assumption is not correct for

real biological data, the calculation can be readily refined for different

probabilities. The probability that v is sampled as v’ with the last nucleo-

tide changed to a particular nucleotide, say ‘A’, is

perr ¼
e

3
ð1� eÞk�1

As v can be sampled with error as v’, i.e. at least m of the x samples

have the same error at the last nucleotide. Since there are three possible v’,

the existence probability of v’ (probability of branching at u) is

P m,x, perrð Þ ¼ 3P � 1 v0 existð Þ � 3P � 2 v0 existð Þ þ P 3 v0 existð Þ

¼ 3
Xx�m

i¼0

Pð� 1 v0 existji k-mer v existÞPði k-mer v existÞ

� 3
Xx�2m

i¼0

Pð� 2 v0 existji k-mer v existÞPði k-mer v existÞ

þ
Xx�3m

i¼0

Pð3 v0 existji k-mer v existÞPði k-mer v existÞ

¼ 3
Xx�m

i¼0

Cx�m�iþ2
2 px�ierr 1� perrð Þ

i
�3

Xx�2m

i¼0

Cx�2m�iþ2
2 px�ierr 1� perrð Þ

i

þ
Xx�3m

i¼0

Cx�3m�iþ2
2 px�ierr 1� perrð Þ

i

Prune short tips 

Merge similar path 

Paired-end reads

Construct de Bruijn Hk for k = kmin 

Progressive- 

Component-Depth 

Error Correction 

Local Assembling 

Find-transcripts 

Build Hk+s until kmax 
Contigs 

Fig. 3. Workflow of IDBA-Tran

i329

IDBA-tran



In order to estimate the value of depth x, we use a multi-normal dis-

tribution to model the depth distribution of a component as there can be

multiple isoforms, say t, in a component. Given a set of k-mers with

different multiplicities in the same component, we assume the multipli-

cities of the k-mers are sampled from t normal distributions. Although

the mean and standard deviation of each normal distribution can be

estimated by expectation-maximization algorithm (Tanaseichuk et al.,

2012), the time is too long because there are many k-mers and compo-

nents. Thus IDBA-Tran applies an approximation by clustering the

k-mers based on their multiplicities (the distance between two k-mers

equals their difference in multiplicities) using K-means clustering

method. The mean and standard deviation can then be calculated for

each cluster. We set t¼ 3 in the experiments based on the assumption

that there are at most 3 transcripts in each components (at the final step).

Let N(�, �) be a normal distribution of depth with minimum mean

depth value �. The probability that we wrongly remove a correct contig

with average depth�� is at most

P false positiveð Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2��2
p �

�1
e
�ðx��Þ2

2�2 � 2lPðm,x, perrÞdx

Note that for an exon of length at least l of sequencing depth x, the

probability of branching is 2lPðm, x, perrÞ.

The value of l should be selected based on the length of exons. If a very

large l is selected, true positive k-mers and paths are removed. If a very

small l is selected, most true negative k-mers and paths cannot be

removed. We should select different values for l depending on the proper-

ties of the data (we use l¼ 2k in the experiments). Once l is selected, we

can calculate the largest � such that P(false positive) is lower than some

value, say 1%, so as to remove most erroneous contigs without too many

false positives.

Algorithm 1 shows the pseudocode for the decomposing step.

According to (Peng et al., 2011), when the size of the component is

small (with� �¼ 30 contigs), the component is likely to represent iso-

forms from a single gene and we can use a very low depth threshold

�¼ 0.1�T(comp), where T(comp) is the average depth of connected com-

ponent comp, to prevent removing correct contigs. The filtering depth

cutoff threshold t is increased by a factor of � progressively (10% by

default). In each iteration, short contig c is removed if its depth T(c) is

lower than the minimum of cutoff threshold t and the depth threshold �.

2.3 Finding transcripts

Algorithm 1. Progressive-Component-Depth(G, k)

t 1

repeat until t4maxc2GT(c)

for each component comp in G

if size(comp)4�, then calculate �, else � 0.1�T(comp)

for each contig c in comp

if len(c)52k and T(c)5min(t, �)

remove c from G

t t� (1þ �)

For each connected component in the de Bruijn graph, IDBA-Tran

discovers those paths starting from a vertex with zero in-degree to a

vertex with zero out-degree with the highest support from paired-end

reads. A path is supported by paired-end reads if the paired-end reads

can be aligned to the path with the distance between the aligned positions

matching the insert distance of the paired-end reads. The problem defin-

ition can be simplified as follows [Transcripts Discovering (TD) Problem]:

given a de Bruijn graph G(V,E) with a set of vertices V and edges E, a set

of paired-end reads P¼ {(vi, vj)}, vi, vj 2 V, an insert distance d and error

s, find t paths in G with the maximum number of supporting paired-end

reads P’ � P. A path p has a supporting paired-end read (vi, vj) iff p

contains vertices vi and vj and the distance between vi and vj in p is

between d – s and dþ s.

Since the TD problem is a NP-hard problem (see Supplementary

Appendix), IDBA-Tran performs a heuristic depth-first search to find

paths from a zero in-degree vertex to a zero out-degree vertex with max-

imum supporting paired-end reads. At each branch, the path with many

supporting paired-end reads will be considered before other paths. In

practice, IDBA-Tran reports at most tmax (default 3) potential transcripts

for each zero in-degree vertex in each connected component. IDBA-Tran

applies a seed and extend method for aligning reads to contigs (paths in

de Bruijn graph). k-mers in a read appearing in the de Bruijn graph is

considering as potential aligned position and IDBA-Tran will try to

extend both ends of alignment considering substitution error only.

Note that insertion and deletion error can be implemented in IDBA-

Tran easily. However, as the number of substitution errors appears

much more than the insertion/deletion errors, IDBA-Tran considers sub-

stitution error only for speeding up the alignment process.

2.4 Error correction

The error correction step is performed on reads and assembled contigs

during the assembling process. At first, reads are aligned to each contig.

The consensus of the aligned reads will replace the original contig, i.e.

positions of the contig inconsistent with the majority of aligned reads will

be corrected. Then aligned reads are corrected according to the aligned

position in contigs, i.e. positions in the reads with nucleotides inconsistent

with the consensus will be corrected. This error correction step can reduce

the number of erroneous reads and branches in the de Bruijn graph.

2.5 Local assembly

Let C be the set of contigs. We extract the beginning and end of each

contig c in C to form a set of contigs C’. Assume the insert distances of

paired-end reads satisfy the normal distribution N(d, �). IDBA-Tran per-

forms local assembly (Peng et al., 2012) on the last dþ 3� bases of each

end of the contig and the paired-end read with one end aligned to it. Since

those reads which are far away from contig c will not mix with reads with

one end aligned to c, some missing k-mers can be reconstructed and the

contigs can be extended longer.

2.6 Estimating expression levels

Since IDBA-Tran is designed for assembling reads to reconstruct ex-

pressed transcripts, sophisticated algorithms can be then applied to esti-

mate the expression levels of each transcript. IDBA-Tran also provides an

estimated expression level for each transcript by aligning reads to the

transcript. RPKM (Reads Per Kilobase per Million mapped reads) is

estimated by dividing the total length of reads uniquely aligned to a tran-

script by the total length of regions of transcript uniquely aligned by reads.

3 RESULTS

To evaluate the performance of IDBA-Tran, experiments were

carried out on both simulated and real data. We compared

IDBA-Tran with the latest transcriptome assemblers Trinity
(Grabherr et al., 2011) and Oases (Schulz et al., 2012). We also

compared IDBA-Tran with the single-cell genome assembler

IDBA-UD (Peng et al., 2012) and Velvet-SC (Chitsaz et al.,
2011), which apply multiple depths when assembling genomes.

IDBA-Tran and IDBA-UD were run with k ranging from 20 to

50 with step size 5. For Oases and Velvet-SC, k values ranging
from 20 to 50 with step size 5 were used, and the best result was

selected as output. As the k value of Trinity was fixed to 25, the

default parameters were used to run it.

i330

Y.Peng et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1


For transcriptome assembly, the most important indicator of

assembly quality is the number of correct transcripts an assem-

bler can reconstruct. In the experiments, known transcript refer-

ences were used for benchmarking. A known transcript is
reconstructed successfully if a certain portion, say 80% (referred

as completeness), of its sequence is covered by a contig with 95%

similarity. Similarly, the contig is considered correct if it can be

aligned to at least 80% of a transcript with 95% similarity. The

alignment of contigs to transcripts was performed by BLAT

(Kent, 2002) without considering long gaps representing introns
(as we aligned contigs to transcripts instead of genome). The

sensitivity and specificity were calculated to measure perform-

ance. Sensitivity is the percentage of reconstructed transcripts

over all expressed transcripts. Specificity is the percentage of

correct contigs over all reported contigs.
We also compared the performance of IDBA-Tran and CEM

(Li and Jiang, 2012) on estimating expression levels of recon-

structed transcripts. CEM requires the genome sequence as add-
itional information. By aligning reads to the reference genome,

CEM can predict the expressed transcript sequences and estimate

the expression level of each transcript based on a statistical

model (quasi-multinomial model). Since some transcripts may

align to multiple contigs and some contigs may align to multiple

transcripts, we considered only those transcripts and contigs with
one-to-one correspondence. The Pearson’s correlation between

the predicted expression levels and the exact expression levels

was calculated. As suggested in Li and Jiang, 2012, we also

calculated the Pearson’s correlation between the logarithm of

predicted expression levels and the logarithm of exact expression
levels.

3.1 Simulated data

In order to simulate more realistic data, we aligned all reads in a

real RNA-Seq data of Oryza sativa Transcriptome to known

transcripts of Oryza sativa in the database. Based on the align-
ment results, we identified the set of expressed transcripts and

estimated their expression levels. Note that, since the transcript

sequences were known, no long gap (representing an intron)

alignments were allowed. Reads aligned to multiple transcripts

were not considered for estimating the depth of the transcript.
We used all transcripts with at least 80% of the region aligned by

reads and with depth at least 0.5� to generate the simulated

data, i.e. there were 0.5 reads covering each nucleotide on aver-

age. We sampled paired-end reads from the transcripts according

to their expression levels. The read length was 100 bp, error rate

was 1% and the insert distance followed a normal distribution

with mean 250bp and standard deviation 25bp.
Figure 4 shows the quality of the assembly results of the as-

semblers for different levels of completeness. Velvet-SC recon-

structed the least number of transcripts in all completeness

settings because it is designed for assembling genomic data and

cannot handle multiple isoforms of the same gene well. IDBA-

UD, which is designed for assembling genomic and metagenomic

data, handled some simple cases of multiple isoforms of the same

gene and had better performance than Velvet-SC. Trinity and

Oases found more transcripts than Velvet-SC and IDBA-UD

because they are designed for assembling transcriptome data.

Oases had its best performance when k was set to 25, the same

k value for Trinity. IDBA-Tran reconstructed the most tran-

scripts and consistently reported more correct contigs. Table 1

shows the detailed figures when completeness was 0.8. The

number of correct contigs and reconstructed transcripts for

IDBA-Tran were the highest among the tools. IDBA-Tran also

had the highest sensitivity and specificity.
Table 2 shows the expression level distribution of recon-

structed transcripts of the assemblers when completeness was

0.8. For low-expressed transcripts with sequencing depth 55,

IDBA-Tran reconstructed 664 more transcripts (33% more)

than the second best tool (Trinity). This is probably due to the

fact that IDBA-Tran can separate transcripts from different

genes into components efficiently while preserving the low-ex-

pressed transcripts. We also checked the quality of decompos-

ition and found that over 80% of the transcripts were still inside

the same component after the decomposition step (referred to

‘‘unbroken transcripts after decomposition). Except transcripts

with very low sequencing depth (55), most transcripts were not

broken after the decomposition and could be constructed suc-

cessfully. Similar results were found for transcripts with sequen-

cing depth between 5 and 10. For transcripts with higher

sequencing depth, in general, IDBA-Tran also performed

better (even though all assemblers had better performance for

high-expressed transcripts).

For IDBA-Tran, we verified the effectiveness of its component

separation algorithm and show the distribution of transcripts in

Table 3. If a component contained a certain portion (80%) of a

transcript, the component was deemed to have contained this

transcript. There were 2865 components containing no tran-

scripts and 10 611 components, each of which contained at

most 5 transcripts, together containing most of the transcripts

(16 663). Since very low-expressed transcripts cannot be

0k

5k

10k

15k

20k

0.5 0.6 0.7 0.8 0.9

Completeness

Reconstructed Transcripts

IDBA-Tran
IDBA-UD
Oases
Trinity
Velvetsc

0k

5k

10k

15k

20k

0.5 0.6 0.7 0.8 0.9

Completeness

Correct Contigs

IDBA-Tran
IDBA-UD
Oases
Trinity
Velvet-SC

0m

10m

20m

30m

40m

0.5 0.6 0.7 0.8 0.9

Completeness

Total Length of Reconstructed 
Transcripts

IDBA-Tran
IDBA-UD
Oases
Trinity
Velvet-SC

Fig. 4. Experiment result of each assembler on different completeness level for simulated data

i331

IDBA-tran



assembled by any assemblers, the total number of transcripts

(18 180) in all components was less than the total number of

expressed transcripts (22 402). A component containing a tran-

script does not guarantee that the transcript can be recon-

structed. Thus, the number of reconstructed transcripts (17 243)

is less than the total number of transcripts in all components

(18 180). However, experiments showed that most transcripts

decomposed correctly can be reconstructed successfully.
Table 4 shows the performance of IDBA-Tran and CEM on

estimating expression levels of transcripts. Although CEM had

the additional information of the rice genome, the number of

expression transcripts reconstructed by IDBA-Tran and CEM

were similar. Moreover, IDBA-Tran had similar performance

to CEM in estimating the expression levels because it could re-

construct most of the expressed transcripts making the estima-

tion process easier.

3.2 Real data

We verified IDBA-Tran and other assemblers on the real RNA-

Seq data of Oryza sativa transcriptome. There were 24855 142

paired-end length-90 reads in the data set. The insert distance

was about 200. Previous simulated data used the expression level

profile of this data set, so they had the same set of expressed

transcripts and expression levels. The distribution of expressed

transcripts is also included in Table 6 for comparison (with the

distribution of expressed transcripts estimated as mentioned in

Section 3.1). Note that since the expressed transcripts and ex-

pression levels were estimated from alignments, there may be

some error due to the existence of unknown transcripts and tran-

scripts with over 80% similarity. The sensitivities and specificities

shown are approximation of the real sensitivities and specificities

only.

Figure 5 shows the number of reconstructed transcripts and

aligned (correct) contigs reported by each assembler under dif-

ferent completeness. The results were consistent with those for

the simulated data. IDBA-Tran still performed the best for all

levels of completeness. All assemblers had poorer performance

for real data than for simulated data. Oases still had its best

performance when k was set to 25, and had very similar perform-

ance in terms of reconstructed transcripts compared with Trinity

in all completeness settings.

Table 2. Expression level distribution of reconstructed transcripts of each assembler for simulated data set (completeness¼ 0.8)

Depth 0, 5 5, 10 10, 15 15, 20 =20

Total number of transcripts 5943 5011 2943 1857 6646

Trinity 1955 3251 2393 1527 5782

Oases 1648 3224 2461 1606 5481

IDBA-UD 1629 2563 1753 1107 3831

Velvet-SC 58 139 106 55 31

IDBA-Tran (unbroken transcripts after decomposition) 2619 (2700) 4177 (4337) 2746 (2824) 1723 (1811) 5977 (6505)

Table 1. Statistics of assembly result of each assembler for simulated data set (completeness¼ 0.8)

Contigs number Average

length (nt)

Total length (nt) Reconstructed

transcripts number

Correct

contigs number

Sensitivity Specificity

Trinity 26 189 1941 41M 14910 14 389 66.56% 54.94%

Oases 22 804 1963 39M 14420 14 712 64.37% 64.51%

IDBA-UD 18020 1322 24M 10941 8406 48.58% 46.65%

Velvet-SC 22 868 613 14M 389 357 1.74% 1.56%

IDBA-Tran 22 708 1933 39M 17242 16 707 76.98% 73.57%

Table 3. Distribution of transcripts in IDBA-Tran components for simulated data set (completeness¼ 0.8)

Transcripts in component 0 1 2 3 4 5 6 7 8 9 �10 Total

Number of components 2865 6722 2407 954 370 158 71 28 24 4 22 13 625

Number of unbroken transcripts (after decomposition) 0 6720 4814 2859 1480 790 426 196 192 37 666 18 180

Number of reconstructed transcripts 0 6676 4682 2672 1324 667 349 164 141 33 535 17 243

i332

Y.Peng et al.



Detailed statistics of assembly results are shown in Table 5

when completeness is set to 0.8. IDBA-Tran, Oases and Trinity

had about the same number of contigs and total contig bases.

IDBA-UD assembled relatively fewer contigs than others.

IDBA-Tran had the highest sensitivity (42.08%) and specificity

(22.94%) while other assemblers had much lower sensitivity and

specificity.

Table 6 shows the expression level distribution of recon-

structed transcripts for different assemblers when completeness

is set to 0.8. When comparing Tables 2 and 6, it is clear that the

real data was more difficult to assemble than simulated data,

especially for low-expressed transcripts. Only 732 transcripts

(�25%) with depth55 were reconstructed by IDBA-Tran and

worse for other assemblers. Similar to simulated data, IDBA-

Table 5. Statistics of assembly result of each assembler for real data set (completeness¼ 0.8)

Contigs

number

Average

length (nt)

Total length (nt) Reconstructed

transcripts number

Correct

contigs number

Sensitivity Specificity

Trinity 39 974 966 39M 7052 6121 31.48% 15.31%

Oases 36 684 1041 38M 5666 5162 25.29% 14.07%

IDBA-UD 28753 890 25M 6164 4567 27.51% 15.88%

Velvet-SC 28 626 518 15M 233 208 1.04% 0.73%

IDBA-Tran 40 010 1055 42M 9428 9177 42.08% 22.94%

Table 6. Expression level distribution of reconstructed transcripts of each assembler for real data set (completeness¼ 0.8)

Depth 0, 5 5, 10 10, 15 15, 20 =20

Total number of transcripts 5943 5011 2943 1857 6646

Trinity 410 910 983 743 4004

Oases 431 907 1005 776 3946

IDBA-UD 287 978 985 723 3124

Velvet-SC 28 55 55 28 67

IDBA-Tran (unbroken transcripts after decomposition) 732 (921) 1480 (1525) 1417 (1472) 1041 (1083) 4758 (5325)

0k

2k

4k

6k

8k

10k

12k

14k

16k

0.5 0.6 0.7 0.8 0.9

Completeness

Reconstructed Transcripts 
IDBA-Tran
IDBA-UD
Oases
Trinity
Velvetsc

0k

2k

4k

6k

8k

10k

12k

14k

16k

0.5 0.6 0.7 0.8 0.9

Completeness

Correct Contigs

IDBA-Tran
IDBA-UD
Oases
Trinity
Velvetsc

0m

5m

10m

15m

20m

25m

30m

0.5 0.6 0.7 0.8 0.9

Completeness

Total Length of Reconstructed 
Transcripts

IDBA-Tran
IDBA-UD
Oases
Trinity
Velvetsc

Fig. 5. Experiment result of each assembler on different completeness level for real data

Table 4. Statistic on estimating expression levels of reconstructed transcripts of each assembler for simulated data set (completeness¼ 0.8)

Transcripts reconstructed by both algorithms Transcripts reconstructed by only one algorithm

Number of transcripts Pearson’s correlation

(based on log value)

Number of transcripts Pearson’s correlation

(based on log value)

CEM 5611 0.95 (0.91) 100 0.89 (0.79)

IDBA-Tran 0.95 (0.94) 37 0.93 (0.85)

i333

IDBA-tran



Tran had better performance than other assemblers for all ex-
pression levels.

Table 7 shows the distribution of transcripts in components.
Since the sampling depths of a single transcript may be uneven,
many transcripts were broken into fragments. Moreover, there

were some unknown transcripts in the data set. So, quite a
number of components did not contain 80% of a transcript.
However, for the other components, IDBA-Tran did a

good job: 6353 components, each of which contained at most 5
transcripts, contained 9082 transcripts all together. Similar to
simulated data, once a transcript was correctly assigned to a

component, the transcript was reconstructed with high
probability.

4 DISCUSSION

We have identified one key issue in transcriptome assembly,
namely how to remove erroneous vertices/edges of high multipli-
city (due to high-expressed isoforms) from the de Bruijn graph
while keeping correct ones with relatively lower multiplicity (due

to low-expressed isoforms). We developed a probabilistic pro-
gressive approach with local thresholds to solve the problem.
We proposed IDBA-Tran, combined with other techniques, to

assemble transcriptome sequencing data. Experiments on both
simulated and real data confirm that IDBA-Tran can outper-
form existing de novo transcriptome assemblers in terms of

both sensitivity and specificity. In particular, for low-expressed
transcripts, the improvement of IDBA-Tran is substantial.
Recall that there is another approach to recover both low-ex-

pressed and high-expressed transcripts, namely: run the assem-

bler for different k values and merge all contigs as output. Oases-
M, which runs Oases several times with multiple k values, is a
post-processing tool based on this approach. Oases-M can re-

construct many transcripts for both simulated and real data.
However, since erroneous contigs cannot be merged, Oases-M
produces many incorrect contigs and has a low specificity (see

Supplementary Table SA8). Moreover, contigs representing
some transcripts may appear multiple times (with small differ-
ence) in the output such that the number of correct contigs is

double the number of reconstructed transcripts. The large
number of erroneous contigs and redundant contigs may make
analysis difficult, and it is very hard to distinguish the erroneous
contigs from the correct ones. On the other hand, we found that

Oases-M had slightly better performance than IDBA-Tran for
high-expressed transcripts for real data (see Supplementary
Table SA9). Thus, it may be a good idea to investigate how to

integrate both approaches to reconstruct more transcripts.

Funding: This research is partially supported by RGC HKU

7111/12E and HKU 719709E, the Shanghai Pujiang Plan

(Y057C11501) and Bill & Melinda Gates Foundation Project

(‘‘C4 Rice’’).

Conflict of Interest: none declared.

REFERENCES

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its ap-

plications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Chitsaz,H. et al. (2011) Efficient de novo assembly of single-cell bacterial genomes

from short-read data sets. Nat. Biotechnol., 29, 915–921.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-Seq

data without a reference genome. Nat. Biotechnol., 29, 644–652.

Graveley,B.R. (2008) Molecular biology: power sequencing. Nature, 453,

1197–1198.

Guttman,M. et al. (2010) Ab initio reconstruction of cell type-specific transcrip-

tomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat.

Biotechnol., 28, 503–510.

Li,W. and Jiang,T. (2012) Transcriptome assembly and isoform expression level

estimation from biased RNA-Seq reads. Bioinformatics, 28, 2914–2921.

Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in

RNA-Seq. Bioinformatics, 25, 1026–1032.

Kent,W.J. (2002) BLAT–the BLAST-like alignment tool. Genome Res., 12,

656–664.

Li,R. et al. (2010) The sequence and de novo assembly of the giant panda genome.

Nature, 463, 311–317.

Nagalakshmi,U. et al. (2008) The transcriptional landscape of the yeast genome

defined by RNA sequencing. Science, 320, 1344–1349.

Peng,Y. et al. (2011) T-IDBA: a de novo Iterative de Bruijn Graph Assembler for

Transcriptome. In: RECOMB. Vancouver, BC, Canada.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and metage-

nomic sequencing data with high uneven depth. Bioinformatics, 28, 1420–1428.

Robertson,G. et al. (2010) De novo assembly and analysis of RNA-seq data. Nat/

Methods, 7, 909–912.

Schulz,M.H. et al. (2012) Oases: robust de novo RNA-seq assembly across the

dynamic range of expression levels. Bioinformatics, 28, 1086–1092.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Surget-Groba,Y. and Montoya-Burgos,J.I. (2010) Optimization of de novo tran-

scriptome assembly from next-generation sequencing data. Genome Res., 20,

1432–1440.

Tanaseichuk,O. et al. (2012) A probabilistic approach to accurate abundance-based

binning of metagenomic reads. Algorithms Bioinform., 7534, 404–416.

Trapnell,C. et al. (2009) TopHat: discovering splice junctions with RNA-Seq.

Bioinformatics, 25, 1105–1111.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq re-

veals unannotated transcripts and isoform switching during cell differentiation.

Nat. Biotechnol., 28, 511–515.

Vyahhi,N. et al. (2012) From de Bruijn Graphs to Rectangle Graphs for Genome

Assembly. LNCS, 7534, 249–261.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Res., 18, 821–829.

Table 7. Distribution of transcripts in IDBA-Tran components for real data set (completeness¼ 0.8)

Transcripts in component 0 1 2 3 4 5 6 7 8 9 4¼10 total

Number of components 20 288 4482 1265 408 145 53 21 17 6 6 15 26 706

Number of unbroken transcripts (after decomposition) 0 4482 2531 1224 580 265 126 119 48 54 593 10 022

Number of reconstructed transcripts 0 4371 2450 1152 553 265 126 119 48 28 316 9428

i334

Y.Peng et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt219/-/DC1

