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The disorders known as bone marrow failure syndromes (BMFS) are life-

threatening disorders characterized by absence of one or more

hematopoietic lineages in the peripheral blood. Myelodysplastic syndromes

(MDS) are now considered BMF disorders with associated cellular dysplasia.

BMFs and MDS are caused by decreased fitness of hematopoietic stem cells

(HSC) and poor hematopoiesis. BMF and MDS can occur de novo or secondary

to hematopoietic stress, including following bone marrow transplantation or

myeloablative therapy. De novo BMF and MDS are usually associated with

specific genetic mutations. Genes that are commonly mutated in BMF/MDS are

in DNA repair pathways, epigenetic regulators, heme synthesis. Despite known

and common gene mutations, BMF and MDS are very heterogenous in nature

and non-genetic factors contribute to disease phenotype. Inflammation is

commonly found in BMF and MDS, and contribute to ineffective

hematopoiesis. Another common feature of BMF and MDS, albeit less

known, is abnormal mitochondrial functions. Mitochondria are the power

house of the cells. Beyond energy producing machinery, mitochondrial

communicate with the rest of the cells via triggering stress signaling

pathways and by releasing numerous metabolite intermediates. As a result,

mitochondria play significant roles in chromatin regulation and innate immune

signaling pathways. The main goal of this review is to investigate BMF

processes, with a focus mitochondria-mediated signaling in acquired and

inherited BMF.

KEYWORDS
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Introduction

Ineffective hematopoiesis leading to the absence of one or

more hematopoietic lineages in the peripheral blood represents

broad and heterogeneous blood disorders comprised of bone

marrow failure (BMF) and myelodysplastic (MDS) syndromes.

Patients with BMF orMDS suffer from a severe reduction of one or

more hematopoietic lineages in the peripheral blood, which is life-

threatening (1–4) BMF can be inherited or acquired. The most

common inherited BMFs include Fanconi anemia, Shwachman-

Diamond syndrome , congen i t a l amegakaryocy t i c

thrombocytopenia, and reticular dysgenesis. Other inherited BMF

are X-linked recessive dyskeratosis congenita and Blackfan-

Diamond Anemia (5–7). MDS, which are now classified as

acquired disorders that resemble BMF with a variety of cell

dysplastic features, may occur de novo or secondary to BMF.

MDS are classified in several groups based on established clinical

and histopathological features, as defined by the World Health

Organization: MDS with single lineage dysplasia, MDS with ring

sideroblasts (MDS-RS), MDS with multilineage dysplasia, MDS

with excess blasts (MDS-EB), MDS with isolated del(5q). BMF/

MDS can also appear after allogenic or autologous hematopoietic

stem cell transplantation (HSCT) (8, 9), as well as after

myeloablative chemotherapy (10), and are called therapy-related

BMF/MDS. Some patients develop secondary MDS/AML within 6

years of autologous HSCT (11). Although BMF/MDS are very

heterogeneous, the same genomic mutations are frequently found

inMDS patients such asmutations in genes related toRNA splicing

(SF3B1, SRSF2, U2F1, ZRSR2), DNA methylation (TET2,

DNMT3A, IDH1/IDH2), chromatin modification (ASXL1,

EZH2), transcription regulation (RUNX1, BCOR), and DNA

repair control (p53). These observations suggest that additional

environmental factors largely contribute to disease development.

Substantial clinical data have shown that hyperactivity of

inflammatory cytokines, including TNFa, IL-6, and transforming

growth factor–b (TGFb), directly contribute to hematopoietic

failure in BMF/MDS.1 (12–14), Chronic inflammation and

enhanced innate immune signaling are also recognized as

contributing factors of inefficient hematopoiesis (15–17).

Interestingly, several evidence suggest that disruption of

mitochondria is another preponderant factor in BMF/MDS

development. Abnormal mitochondria have been linked to both

acquired and hereditary BMF (18–24). Patients with MDS have

transcriptional, morphological and functional dysregulation of

their mitochondria, according to several studies (25–28). Some of

these defects are the direct consequences of abnormal expression of

nuclear-encoded mitochondrial genes. Others could arise in

response to stress or the inflammatory milieu. The functions of

mitochondria, which supply energy and metabolic activity in

response to cellular demand (29), go well beyond energy

production. Mitochondria communicate with the rest of the cell

through activation of signaling pathways and control a broad range
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of cellular functions such as apoptosis, iron metabolism and heme

production. In addition,mitochondria participate in the generation

of metabolite intermediates, acetyl-CoA and S-Adenosyl-

Methionine (SAM), used for epigenetic remodeling, as well as

those for de novo biosynthetic processes, including nucleotides

and fatty acids. Finally, mitochondria control the cellular response

to stress, including inflammation stress. This reviewwill discuss the

emerging role of mitochondria as driver of de novo or secondary

BMF/MDS. It will discuss the potential mechanism, direct or

indirect, of how abnormal mitochondrial functions contribute to

ineffective hematopoiesis.
MDS with sideroblasts are
mitochondrial diseases

Mitochondria are home of
heme synthesis

The first step in heme biosynthesis takes place into

mitochondria and involves the condensation of succinyl-CoA

and glycine to form d-aminolevulinic acid (ALA) in the

mitochondrial matrix. This reaction is catalyzed by ALA

synthase (ALAS). There are two isoforms of ALAS, ALAS1 and

ALAS2, which is found exclusively in erythroid cells. ALA is

exported to the cytosol via SLC25A38 and ABCB10 where it is

converted to coproporphyrinogen III (CPgenIII). CPgenIII is

imported back into mitochondria, where it is converted to

protoporphyrinogen IX by coproporphyrinogen oxidase

(CPOX). Then, protoporphyrinogen IX is oxidized to

protoporphyrin IX (PPIX) by protoporphyrinogen oxidase

(PPOX). Finally, ferrous iron is incorporated into PPIX to form

heme in the mitochondrial matrix, a reaction catalyzed by

ferrochelatase (FECH) (30). T the expression of both Alas2 and

FECH is controlled by iron, thus linking the regulation of heme

biosynthesis in erythroid cells to the availability of iron. Iron is

acquired by differentiating erythroid progenitors via transferrin

receptor 1 (TfR1)-mediated endocytosis and transferred to

mitochondria for heme synthesis via mitoferrin1 (MFRN1) and

mitoferrin2 (MFRN2), expressed in erythroid and non-erythroid

tissues, respectively. The generation of globin and heme levels in

erythroid precursors is balanced by a cell membrane heme

exporter known as feline leukemia virus subgroup C receptor 1

(FLVCR1). Flvcr1b, an isoform of Flvcr1 that is present in

mitochondria, facilitates heme efflux into the cytoplasm (31).
MDS with RS: A mitochondrial disorder
affecting the erythroid lineage

Sideroblastic anemia, congenital or acquired, are associated

with MDS and are characterized by the presence of ring
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sideroblasts, which result from decreased heme production and

excess iron deposit within mitochondria of erythroid cells (32).

Mutations in genes related to heme synthesis are drivers of

MDS-RS. Mutation in ALAS2 reduces protoporphyrin causing

an accumulation of iron in mitochondria and subsequently cell

death. Mutations in Ala carriers, ABCB7 and in Slc25a38, also

reduces heme synthesis and causes MDS-RS. Germline mutation

in the Glutaredoxin 5 [GLRX5] gene causes iron overload and is

associated with sideroblastic-like microcytic anaemia. GLRX5 is

a mitochondrial protein, which is involved in the biogenesis of

iron-sulfur clusters.

The splicing factor SF3B1 is the most commonly mutated

genes in MDS with the disease phenotype with ring sideroblasts

(33, 34). SF3B1 Splicing factor 3b, together with splicing factor

3a and a 12S RNA unit, forms the U2 small nuclear

ribonucleoproteins complex (U2 snRNP) and binds pre-

mRNA upstream of the intron’s branch site in a sequence

independent manner. SF3B1 mutations cause abnormal

mitochondrial iron absorption and ineffective erythropoiesis

(35). Initial studies found that SF3B1-mutant erythroblasts

displayed larger quantities of mitochondria. When co-

mutation with EZH2 occurs, mitochondrial membrane

potential is abnormal and ROS are increased; likely driving

cell death (1). The exact molecular mechanism behind the

abnormal mitochondrial functions and iron deposition is

being uncovered. Mutated-SF3B1 notably targets expression of

genes involved in mitochondrial heme synthesis such

as PPOX, TMEM14C and Abcb7 , causing a block in

protoporphyrin synthesis (36–39). Interestingly, SFB1

mutation confers proliferation advantage to the clone. In a

remarkable study by Hsu (40), the clonal evolution of MDS

was studied using iPSCs reprogrammed from patient samples

and shows that the initial mutation is t (4, 12), followed by

mutations in SF3B1, EZH2, and del(5q), in that sequence.

Another study described the importance of the

Retinoblastoma protein (pRb) gene, a crucial cell cycle

regulator that controls the transition from the G1 to the S

phase, in mitochondrial functions in erythroid cells. Deletion

of Rb in erythroid cells caused poor erythropoiesis with

dysplastic features due to abnormal mitochondrial biogenesis

and cell cycle exit. Erythroid-specific deletion of pRb led to

decreased expression of mitochondria-related genes, a reduction

in mitochondrial membrane potential and a change in the ROS

produced by the mitochondria. Expression of critical oxidative

phosphorylation genes such Ndufa1 (complex 1, OXPHOS),

Atp5s (ATP synthesis), and Cox7b (electron transfer),

expression of the mitochondrial biogenesis gene PGC1b, of the

mitochondrial antioxidant Prdx3, which is crucial for

maintaining the balance of (ROS), as well as ALAS2, and

ABCB were all decreased. In this Rb-deficiency mouse model,

overexpressing PGC1b was sufficient to normalize the RBC

counts, underscoring the critical role of mitochondria in the

pathogenesis of the disease (27).
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Finally, decreased FLVCR1 levels or increased expression of

aberrant alternative splicing of FLVCR1 transcript are seen in

DBA patients and a cellular model of DBA (41, 42).

Downregulation of FLVCR1a and FLVCR1b results in an

increase in oxidative stress, cell cycle arrest at G0/G1, and

apoptosis due to heme accumulation. This is yet another

illustration of how a flaw in mitochondrial homeostasis can

result in ineffective erythropoiesis and BMF. Germline

mutations in other genes, such as PUS1, YARS2, SLC19A2 and

TRNT1, as well as mitochondrial DNA deletions, have been

identified in distinct forms of inherited sideroblastic anemias

(32) (Figure 1).
Mutations in genes that alter the
generation of mitochondrially –
produced metabolites cause MDS

Mitochondrial functions and epigenetic regulation are tightly

linked in several ways. One way is through the tricarboxylic acid

(TCA) cycle – a major mitochondrial metabolic pathway. The

TCA cycle produces several intermediate metabolites, citrate,

alpha-ketoglutarate (a-KG), itaconate, succinate, fumarate,

malate and oxaloacetate, through a series of enzymatic

reactions. When the TCA metabolites are coupled with the

mitochondrial electron transport chain, TCA intermediates are

used for subsequent metabolic reactions through oxidative

phosphorylation (OXPHOS) to generate ATP. TCA metabolites

also serve in non-metabolic signaling roles. For example,

itaconate, succinate, fumarate have all been shown to alter the

innate immune response. In addition, the TCA metabolites are

directly involved in epigenetic regulation. Succinate and fumarate

can directly inhibit the activity of histone or DNA demethylase.

Alpha-KG is needed for the activity of DNA demethylase. Acetyl-

CoA serve as donor group of histone acetylation; S-Adenosyl-

Methionine (SAM) which serve as donor group for DNA or

histone methylation is generated through a complex interaction

between the mitochondrial one-carbon folate pathway and the

methionine cycle (43). The tight connection between

mitochondrial metabolism and chromatin regulation is one

component of the preponderant, yet ill-understood, role of

mitochondria in MDS pathogenesis. Mutations in the TCA

enzyme IDHs (IDH1-IDH2) occur in about 7% of MDS cases,

with IDH2 mutations being more frequent (about 4.5%)

than IDH1 mutations (about 2.5%). (44) IDH2 mutations are

particularly enriched in the RAEB subtype of MDS. IDH1/2

catalyzes the oxidation of isocitrate to oxalosuccinate within the

TCA cycle, which is followed by decarboxylation of the carboxyl

group beta to the ketone to form a-KG. This reaction also

generates NADPH. 44 Mutations in IDH1/2 thus by impacting

a-KG production alter the activity of metabolic enzymes that

depend on a-KG availability, such as the DNA demethylase Tet2.
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Tet2 primarily catalyzes the oxidation of 5-methylcytosine (5mC)

to 5-hydroxymethylcytosine (5hmC). Mutations in Tet2 are also

associated with clonal hematopoiesis, increased risk of MDS

prog r e s s i on , and poo r p rogno s i s i n AML (45 ) .

Interestingly, IDH2 mutations are mutually exclusive

with TET2 and SF3B1 mutations, but are frequently associated

with SRSF2 mutations. Other known mutations in epigenetic

regulators that are associated with clonal hematopoiesis andMDS

are found in the DNA methylase DNMT3a (46). DNMT3A,

catalyzes the methylation of CpG dinucleotides in genomic

DNA, which is dependent on SAM availability. Hence, stressors

that alter mitochondrial functions could easily contribute to

disease development and participate in disease heterogeneity in

a given genetic background. Any abnormality in mitochondrial

functions that would cause abnormal production of SAM or aKG

would also alter Tet2 or DNMT3a functions and could driveMDS

pathogenesis without the need for somatic mutation in specific

genes (see below).

Because of the link between mitochondria and epigenetics,

altered mitochondrial metabolism is a common characteristics

of MDS/BMF that drives disease phenotype. Interestingly, in

addition to exhibiting specific metabolic alterations that result

from the genetic context, MDS have a common abnormal

metabolic signature. Elegant studies from the Huang’s lab

showed that hypoxia-inducible factor 1a (HIF1A)

transcriptional signature is generally activated in MDS patient

bone marrow stem/progenitors, in major MDS-associated

mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1). 48

Remarkably, using inducible activation of HIF1A signaling
Frontiers in Oncology 04
mouse model, they show that HIF1A is sufficient to induce

dysplastic and cytopenic MDS phenotypes. On the other hand,

both genetic and chemical inhibition of HIF1A signaling rescues

MDS phenotypes in a mouse model of MDS, indicating that

elevated HIF1A is necessary for MDS phenotype. Therefore,

metabolic changes associated with HIF1A are central

pathobiologic mediators of MDS. Two other important

observations were that HIF1A signature is also associated with

enrichment in several inflammatory/immune response–related

pathways. Plus, it renders a state of pseudohypoxia and

mitochondrial dysfunction in which expressions of nuclear-

encoded mitochondrial genes, notably the electron transport

chain complex II that is normally important for OXPHOS, are

downregulated. In this context, metabolites of the TCA cycle,

aKG, succinate, fumarate and malate, accumulate – thus further

altering cellular functions (47).
Abnormal mitochondrial dynamics
contributes to MDS

Mitochondria are very dynamic organelles, whose numbers

and organization can vary greatly. (48–50) The mitochondrial

network can be organized into interconnected and fused

filaments, or into fragmented and smaller unit (48).

Mitochondrial fusion is controlled by mitofusins 1 and 2

(Mfn1 and Mfn2) and optic atrophy 1 and 3 (Opa1, Opa3).

Mitochondrial fission is regulated by dynamin-related protein 1

(Drp1) and fission protein 1 (Fis1) (48–50). Mitochondrial
FIGURE 1

Example for abnormal mitochondrial proteins associated with BMF. RPS19, Ribosomal protein S19; DBA, Diamond-Blackfan anemia; FLVCR1,
Feline leukemia virus subgroup C receptor 1; Drp1, dynamin-related protein 1; CBL, Casitas B-lineage Lymphoma; RUNX1, Runt-related
transcription factor 1; MDS-RARS, Myelodysplastic syndrome-Refractory Anemia with Ring Sideroblasts, TAZ, Tafazzin; HAX1, HCLS1-associated
protein X-1; pRb, retinoblastoma protein; pgc1b, The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) coactivator-1 beta.
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dynamism is important to adapt cells to energy demand. When

energy demand is high, mitochondria are fused and

mitochondrial oxidative phosphorylation [OXPHOS] is

favored. Mitochondrial fusion also enables ‘mixing ’

mitochondrial membrane proteins for repair mechanisms. A

recent study describes the role of aberrant mitochondrial fission

as driver of MDS. They found a MDS patient harboring a

mutation in both the E3 ubiquitin-protein ligase CBL gene

and the transcription factor RUNX1 gene. In a mouse model

of CBL exon deletion with RUNX1 mutants, that recapitulated

clinically relevant MDS phenotypes, HSC and progenitor cells

exhibited excessive mitochondrial fragmentation that was

caused by enhanced activity of the mitochondrial fission

regulator DRP1. The subsequent elevation in ROS production

and inflammatory signals promoted the development of

dysplasia and impaired granulopoiesis (18). Other studies have

reported abnormal mitochondrial structure, or abnormal

mitochondrial biogenesis and mitophagy in BMF, notably in

FA. In this case, they found that FA genes are required for

selective autophagy, which removes unwanted cytoplasmic

contents including mitochondria such that FA gene deficiency

results in impaired virophagy and antiviral host defense,

decreased Parkin-mediated mitophagy, and increased

mitochondrial ROS-dependent inflammasome activation (51).

Loss of FA-gene-mediated selective autophagy may contribute to

the pathophysiology of FA-gene associated diseases.
Role of reactive oxygen species in
developing BMF/MDS

One common characteristic of BMF/MDS is the higher

susceptibility of myeloid progenitors to apoptosis. Excessive

myeloid cell apoptosis contributes to peripheral cytopenias even

when the bone marrow is hypercellular. Numerous variables,

including internal or external reactive oxygen species (ROS), can

cause apoptosis. ROS comprise radical and non-radical molecules

(52), and are often released as a byproduct of oxidative

phosphorylation or during mitochondrial stress conditions. To

counteract ROS, HSC express enzymatic and nonenzymatic

defensive mechanisms, such as superoxide dismutase,

glutathione peroxidase, myeloperoxidase, Vitamins C, E, and

reduced glutathione (GSH) (53). When compared to controls,

MDS patients have significantly higher levels of intracellular

peroxides in lymphocytes, erythroid precursors, monocytes

and granulocytes, as well as a considerably lower superoxide/

peroxides ratio and GSH levels, resulting in oxidative stress and

subsequent macromolecule and organelle damages (52, 54).

Chronic oxidative stress is also found in FA cells due to

increased DNA damage. This is associated with mitochondrial

damage and OXPHOS dysfunction. In fact, spontaneous

mitochondrial fragmentation occurs in FA cells that leads to
Frontiers in Oncology 05
change in mitochondrial distribution, shape, and integrity (55,

56). HSPCs deficient in the FA protein Fancd2 rely on increased

mitochondrial translation for survival and proliferation (57).

The changes in mitochondrial structure are also accompanied by

changes in metabolism. FA cells exhibit lower OXPHOS,

increased glycolytic flux and decreased glutaminolysis (23).

We know that a balance between glycolysis and OXPHOS is

necessary for HSPC differentiation. Quiescent HSC rely mostly

on anaerobic glycolysis and lysosomal functions for their energy

needs. HSC activation and commitment to differentiation are

associated with increased aerobic glycolysis, mitochondrial

activation and increased OXPHOS. Hence, abnormal

mitochondrial function in FA cells could substantially impact

the ability of HSPC to differentiate, further contributing the FA

pathogenesis (23). Similarly, a study focused on SBDS gene that

affects ribosome biogenesis, mitotic spindle assembly,

chemotaxis, and ROS generation, shows that lower expression

of SBDS causes defective mitochondria and elevated ROS

(58) (Figure 1).
Other mitochondrial abnormalities
linked to inherited BMF

Mitochondrial abnormalities are found in a variety of

hematologic phenotypes. The Pearson syndrome (24, 59), is a

multisystemmitochondrial respiratory chain disorder caused by a

single large scale mitochondrial DNA deletion. Patients present

with pancytopenia sideroblastic anemia and exocrine pancreatic

insufficiency. The Barth syndrome, which presents with

neutropenia in addition to musculoskeletal defects and

cardiomyopathy, is another mitochondrial disorder (22, 60).The

Barth syndrome is caused by a mutation in the gene TAZ. TAZ

encodes for themitochondrial phospholipid transacylase tafazzin.

TAZ controls the production of tetralinoleoyl cardiolipin, a

mitochondrial membrane-specific lipid. When tafazzin is

knocked down by shRNA in mice, tetralinoleoyl cardiolipin

levels are drastically reduced, and monolysocardiolipins

accumulate in mitochondria (61).The aberrant buildup of

monolysocardiolipins causes mitochondrial dysfunction (62)

leading to enhanced mitochondrial membrane potential

breakdown, abnormal cytochrome c release, caspase-3

activation (63) and cellular death, including in myeloid

precursors and neutrophils (64). Similarly, in the Kostmann

disease also known as infantile agranulocytosis (severe

congenital neutropenia) nonsense mutations in mitochondrial-

associated antiapoptotic protein (HCLS1) lead to premature stop

codons, loss of function, and frequently, total loss of protein

expression, causing acute neutropenia that is often accompanied

by neurologic and cognition impairments (65, 66). Finally, BMF

and MDS have been linked to mutations in mitochondrial DNA

(67) (Figure 1).
frontiersin.org

https://doi.org/10.3389/fonc.2022.1048746
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nasr and Filippi 10.3389/fonc.2022.1048746
It has long been known that mitochondria can be taken up

by cells and can transfer from cell to cell, in vivo or in vitro.

Because of this, mitochondrial replacement or supplementation

in cells is being proposed as novel therapeutic approach of

mitochondrial diseases. A recent study shows that

mitochondrial augmentation in human CD34+ cells from

healthy donors or patients with mitochondrial DNA disorder

can prove beneficial (68). The group described a method of ex

vivo transfer of HSPC with normal exogenous mitochondria,

that they termed mitochondrial augmentation therapy (MAT).

They show that MAT can improve mitochondrial content and

oxygen consumption of healthy and diseased HSPCs.

Importantly, they used xenotransplant in immunodeficient

NSGS mice to show that MAT confers HSPCs from a patient

with an mtDNA disorder superior human engraftment (68).
Secondary BMF/MDS following
hematopoietic stress from bone
marrow transplantation: Importance
of abnormal mitochondrial functions

SecondaryMDS andAML are becomingmore widely known as

late complications of stem cell transplantation (69). The incidence of

treatment-related MDS and AML is between 5 percent and 20

percent 5-10 years after an autologous stem cell transplantation

(ASCT) (10). Among all cancers, MDS development occurred in

35% of non-Hodgkin’s lymphoma patients who receive ASCT (70).

In a Japanese study, 1.38% lymphoma patients receiving ASCT

developed secondary myeloid dysplasia 3 years after transplant;

0.37% lymphoma patients receiving allogeneic SCT developed

secondary MDS 3 years later (71). The causes and mechanisms

behind the development of secondary BMF/MDS are multiple and

could be cell intrinsic or arising from damage in the bone

marrow microenvironment.

One clear cell intrinsicmechanism is linked to the therapy of the

original disorder. There is strong evidence that alkylating anti-

leukemic drugs, or whole body irradiation (TBI) used pre-

transplantation cause chromosomal damage that can result in

MDS/AML (72).

Increased inflammation following treatment could also be a

contributing factor. Inflammatory factors are altered after BMT.

Among those factors is the transforming growth factor beta

(TGFb). TGFb is known to suppress cellular growth and to

contribute to ineffective hematopoiesis (73–77). The allogeneic

and autologous stem cell transplantation conditioning protocols

decrease TGFb production (78, 79). After roughly 7 weeks of

bone marrow repopulation, the plasma level of TGFb returns to

normal (80, 81). Interestingly, this is seen in mouse model as

well. Research from our lab has demonstrated that while TGFb
levels are lower in the bone marrow microenvironment, TGFb
protein and signaling are enhanced in HSPC after bone marrow
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transplantation. In this context, TGFb acts through p38MAPK

to impair HSC self-renewal and cause ineffective hematopoiesis

after bone marrow transplantation (13). Increased inflammatory

cytokines and associated inflammatory signals are a common

characteristic of BMD/BMF. TGFb plasma levels are elevated in

hematopoietic cells of patients with myelodysplastic syndromes

MDS (82–84). TGFb signaling is also elevated in FA patients (85,

86). In a Fanca-deficient mouse model, challenge with

polyinosinic:polycytidylic acid (pIC) leads to changing DNA

repairing system via enhanced TGFb signaling and causes BMF

due to increased DNA mutations (75). TGFb signaling

inhibition restored hematopoiesis in this mouse model. TGFb
is also elevated in Shwachman-Bodian-Diamond Condition

(SBDS) and Diamond Blackfan anemia (DBA) 2. Blocking the

TGFb pathway using a small molecule inhibitor or a TGF-family

ligand trap can ameliorate the inefficient erythropoiesis also

found in SDS or Diamond Blackfan anemia patients (87–89).

Overall, the role of inflammation in BMF or MDS

development is now established. Toll-like receptors (TLRs) or

their signaling effectors are often overexpressed in MDS samples

compared to healthy controls, enhancing a type I interferon

response through NFkB, MAPK, and IRF3 (12, 90, 91). The

inflammasome is elevated in BMF/MDS patients and contributes

to ineffective hematopoiesis (92–94). The inflammasome is a

multiprotein complex composed of the sensor of damage

associated molecular patterns (DAMPs), ie NLRP3 Nod-like

receptor, an adaptor protein apoptosis-associated speck-like

protein containing a caspase recruitment domain (ASC), and

caspase-1 causing the release of interleukin-1b (IL-1b) and IL-18

and cell death by pyroptosis (95). Inflammatory milieu and cell

death it creates contribute to pancytopenia and ineffective

hematopoiesis. In addition, inflammation could provide a

selective advantage to mutated HSC clones, as seen in a model

of Dnmt3a-loss of functions in which chronic infection drives

clonal expansion of the Dnmt3a-mutant clones via INFy (96).

Therefore, increased inflammation and/or inflammatory

cytokines following transplantation or hematopoietic stress

could be a factor contributing to secondary BMF/MDS.

Viral infections activate DNA and RNA sensing pathways to

trigger innate immune signaling pathways that converge on an

interferon response. The DNA-sensing pathway, cGAS/STING,

activates NFkB, IRF3 to clear the viral infection. In response to

viral RNA, the innate immune response starts with cytosolic

viral RNA sensor retinoic acid inducible gene-I (RIG-I). Then,

RIG-I engages the adaptor protein MAVS (Mitochondrial

AntiViral Signaling). In turn, MAVS, which is anchored onto

mitochondria, triggers a sequence of signaling that converge

onto NFkB, IRF3 or the inflammasome (97–99). These pathways

have been involved in MDS, directly or indirectly. DDX41 can

activate cGAS/STING; mutation in DDX41 are associated with

MDS (100). It is important to note that numerous viruses have

been connected to the formation of MDS, including CMV (101),

HTLV-1 (102), parvovirus B19 (103), and HHV-6 (104). In a
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very interesting retrospective study on lymphoma patients who

developed secondary AML following HSCT indicates that at the

time of stem cell transplantation, 1% of patients who received

auto-SCT and 5% of patients who received allo-SCT had

infections (71). The hypothesis that MDS could start as a viral

infection was suggested more than 20 years ago (105). The

infection could trigger dysregulated cytokine production in the

BM microenvironment, providing optimal growth support to

stem cells harboring a mutation (8, 9, 106, 107)., as recent studies

are now demonstrating (96).

Stress-induced abnormalmitochondria. Interestingly, abnormal

expression of nuclear-encoded mitochondrial genes is a predicting

factor of therapy-related MDS (108). Consistent with this, we have

shown that HSC keep abnormal mitochondria after BMT,

indicating that the stress of BMT permanently alters

mitochondria and HSC functions (109). The mechanisms causing

alteration in mitochondrial functions in HSC following

transplantation involves deregulation in mitochondrial dynamism

and decreased expression of mitochondrial genes (109). Inability to

remove abnormal mitochondria could contribute to secondary

BMF/MDS in multiple ways. Abnormal mitochondria likely

cause abnormal metabolism, including abnormal TCA cycle and

OXPHOS that could mimic IDH or Tet2 mutation phenotypes.

Abnormal mitochondria could contribute to secondary BMF/MDS

via activation of innate immune signaling. Indeed, mitochondria

serve as platform of innate immune signaling. Activation of

numerous innate immune pathways occurs at the plasma

membrane of mitochondria and depends on mitochondrial

regulation (110, 111). For instance, activation of the

inflammasome can depend on ROS production from stressed

mitochondria (112). Viral infections, as seen above, lead to

MAVS activation (97–99). MAVS activation requires

mitochondrial polarization (i.e., established mitochondria

membrane potential [MMP]) and is enhanced by mitochondrial

fusion (111). Conversely, termination of the innate immune

response is mediated by removal of mitochondria via mitophagy

(113–115). Finally,mitochondrial stress is often accompanied by an

abnormal release of mitochondrial DNA, which could activate

DNA sensingpathways and subsequently innate immune signaling.

Hence, abnormal mitochondria could be a mediator of

inflammation following transplantation directly or in the context

of added infection, and thus create an inflammatory a context for a

mutated clone to expand.

The case for combinatorial effects: possible interactions between

dysregulated TGFB, defective mitochondria and innate immune

pathways as causal factors of secondary BMF/MDS. TGFb
upregulation and mitochondria abnormality occur in tandem in

many BMFs. The source or consequence of this relationship is not

completely clear. Our group recently reported the possible link

between overexpression of TGFb and mitochondria in the

development of BMF/MDS (106). Using an TGFb overexpressing

mouse model, we demonstrated that elevated TGFb signaling alone

is not sufficient to cause BMF or MDS. However, elevated TGFb
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signaling plus challenge with the double-stranded RNA pIC cause

chronic pancytopenia, bone marrow dysplasia, increased

hematopoietic stem and progenitor cell pools, which are

phenotypes to human BMF. We further showed that elevated

TGFb plus pIC challenge alters mitochondrial functions with an

elevated mitochondrial membrane potential and mitochondrial

content. The gene expression profile of HSC shows persistent

changes in the transcription profile in HSC from overexpressed

TGFb mice challenged with pIC that includes nuclear-encoded

mitochondrial genes. Only overexpressed TGFb HSC had higher

expression of mrpl46 and other genes essential for the regulation of

mitochondrial translation following pIC stress. This phenotype was

associated with elevated levels of reactive oxygen species, and

caspase-1 activation (106). Our findings imply that bone marrow

failure with dysplastic features can occur without a prior genetic

damage when chronic enhanced TGFb signaling changes the acute

immune response to pIC. Because pIC triggers an innate immune

response mimicking a viral response, TGFb may alter the innate

immune pathways by modifying mitochondrial response, thus

leading to development of an environment favored for BMF/

MDS initiation and progression. These findings suggest a

combinatorial effect between TGFb and mitochondrial-mediated

innate immune pathways could contribute to secondary BMF/

MDS (Figure 2).
Conclusions and future directions

The formation of BMF involves numerous crucial interrelated

factors, including genetics, proteomics, nutrition, cellular signaling,

metabolism, and interaction between the HSC and other stromal

cells. Mitochondria are emerging as important factors in the

pathogenesis of BMF/MDS. How exactly mitochondria

contribute to BMF/MDS remain to be analyzed in detail. We

need to further understand the potential effects of damaged

mitochondria on BMF/MDS development, including the

potential consequences on HSC metabolism in disease context

and how metabolic changes contribute to disease development.

Examining this will need to be done both in the context of de novo

BMF/MDS and secondary BMF/MDS. How the stress of bone

marrow transplantation, with or without viral infection, alters

mitochondrial functions is another area of interest. The fact that

mitochondria serve as platform of innate immune signaling is very

intriguing and will need to be examined in detail, as abnormal

mitochondria could represent an important mechanism of

hyperinflammation associated with BMF/MDS. Finally, the

development of mitochondrial transfer or metabolic

reprogramming through metabolite addition could be

complimentary to current therapeutics, and need to be carefully

evaluated. Therefore, a fuller understanding of interplay between

mitochondrial functions and inflammation is essential for both our

fundamental understanding of HSC biology and BMF/MDS

pathogenesis as well as for the developmental of novel therapies.
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It will be important to systematically investigate the role of

mitochondrial functions and associated metabolism in BMF/MDS.
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