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ABSTRACT: The efficiency of automated compound screen-
ing is heavily influenced by the design and the quality of the
screening libraries used. We recently reported on the assembly
of one diverse and one target-focused lead-like screening
library. Using data from 15 enzyme-based screenings
conducted using these libraries, their performance was
investigated. Both libraries delivered screening hits across a
range of targets, with the hits distributed across the entire
chemical space represented by both libraries. On closer
inspection, however, hit distribution was uneven across the
chemical space, with enrichments observed in octants
characterized by compounds at the higher end of the
molecular weight and lipophilicity spectrum for lead-like compounds, while polar and sp3-carbon atom rich compounds were
underrepresented among the screening hits. Based on these observations, we propose that screening libraries should not be
evenly distributed in lead-like chemical space but be enriched in polar, aliphatic compounds. In conjunction with variable
concentration screening, this could lead to more balanced hit rates across the chemical space and screening hits of higher ligand
efficiency will be captured. Apart from chemical diversity, both screening libraries were shown to be clean from any pan-assay
interference (PAINS) behavior. Even though some compounds were flagged to contain PAINS structural motifs, some of these
motifs were demonstrated to be less problematic than previously suggested. To maximize the diversity of the chemical space
sampled in a screening campaign, we therefore consider it justifiable to retain compounds containing PAINS structural motifs
that were apparently clean in this analysis when assembling screening libraries.

■ INTRODUCTION
The advent of high-throughput screening (HTS) for drug
discovery in the 1980s enabled the rapid screening of diverse
chemical compounds during hit identification. In the early days
of HTS, compound collections were mainly assembled from
internal resources and often also contained compounds from
previous company activities such as dyes and fine chemicals.1

Through the introduction of combinatorial chemistry, the size
of screening libraries expanded. However, their quality could
remain poor owing to limited compound diversity and
undesirable compound properties.1 Since the establishment of
drug-like and lead-like concepts into drug discovery,2−4

physicochemical properties represented key parameters for
compound selection that led to higher quality hits in HTS
campaigns.1 Nowadays, the focus of enhancing screening
libraries lies on increasing scaffold diversity for general
screening purposes and the assembly of target- or gene-family
tailored libraries, often under consideration of physicochemical
property constraints to maintain the lead-like character of the
selected compounds.1,5,6

Lead-like compounds are considered to be smaller and
structurally less complex than drug-like molecules.3,4 This

allows expansion of molecules in lead optimization, and at the
same time enables more efficient sampling of chemical space
since the latter is estimated to expand exponentially for every
extra heavy atom in a molecule.7 Moreover, compound affinities
of lead-like molecules can be detected at typical screening
concentrations in the low micromolar range using conventional
HTS laboratory setup without the need for sensitive detection
methodologies such as biophysical techniques commonly
required for fragment-based hit discovery.8

A common problem associated with compound libraries is
the presence of compounds displaying promiscuous behavior.
These false positives, sometimes also termed “frequent hitters”
or more recently, pan-assay interference compounds (PAINS),9

display nonspecific enzyme inhibition through mechanisms
including, but not limited to, compound aggregation and
covalent protein binding through the presence of reactive
functional groups (see the work of Thorne et al. for a
comprehensive review).10 Compounds displaying promiscuous
behavior reduce the efficiency of hit identification in library
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screening by wasting valuable resources in attempted, but
unsuccessful, compound optimization efforts. Several recent
publications have highlighted structural characteristics and
motifs responsible for such behavior that the authors suggested
as useful filters in screening libraries to enhance the efficiency of
hit discovery.9,11,12

At the University of Dundee, we have reported the assembly
of several screening libraries, including a diverse screening
library (DSL) and target-focused libraries against kinases (FKL)
and ion channels, all compiled using physicochemical proper-
ties compliant to lead-like criteria (Table 1).13,14 To date, a
number of enzyme- and cell-based screens have been carried
out using these libraries, with a wide target spectrum across
multiple species of organisms using various assay readout
technologies. These screening results provide a valuable
opportunity to assess the performance of lead-like screening
libraries. In the current work, we report the analysis of results
collected from 15 enzyme-based screenings conducted using
DSL and FKL. We evaluated the utilization of chemical space
represented by each library and the distribution of screening
hits within this chemical space. We then assessed whether any
library compounds should be classified as pan-assay interfer-
ence (PAINS) according to the definitions of Baell and
Holloway. Finally, we investigated if compounds containing
previously identified structural motifs of PAINS were indeed
promiscuous inhibitors in our screens.9 On the basis of these
analyses, we give recommendations on the composition of lead-
like libraries and associated screening practice to obtain an even

distribution of hit compounds in the chemical space
represented, and the application of PAINS filters to remove
compounds when assembling screening libraries.

■ RESULTS

Data Collection. The data from 15 enzyme-based screening
campaigns were selected for analysis (Tables 2 and 3).15−29

The applied assays were end point assays using a variety of
readout technologies, with typical compound concentration at
30 μM. All campaigns discussed in this analysis had Z′ values
>0.5, indicating excellent assay performance.30 To allow
consistent comparison across multiple assays, only compounds
that have been screened against all targets were included in the
analysis. This led to a collection of 59 443 compounds from
DSL against seven targets and 3287 compounds from FKL
against 10 targets, which together represented data from five
different assay readout technologies (Tables 2 and 3). Primary
hits were defined as compounds above a certain threshold
percentage inhibition value that was derived from the mean
percentage inhibition value and its standard deviation for each
individual assay. Compounds interfering with the particular
assay readout technology, for example, colored compounds in
colorimetric assays, were excluded. Followed-up hits were
defined as primary hits that subsequently had identity and
purity confirmed using LC-MS, IC50 values determined (a
minimum of two independent measurements), and a Hill slope
of the log concentration−response curve within the range 0.7−
1.5. The latter criterion was applied to only include inhibitors
that were potentially competitive with respect to the substrate
and to exclude promiscuous inhibitors due to aggregate
formation that often result in high Hill slopes.31 It is
noteworthy that the number of primary hits selected for
subsequent IC50 determination was dependent on the capacity
of the individual biological assay and the presence of structure−
activity relationships within the primary screening data.
Therefore, not every compound was followed up in certain
assays, particularly those which resulted in a large number of
primary hits. Hence, one should not draw conclusions about
false positives based on the difference in the number of
compounds between the two stages. In total, DSL delivered
1720 primary hits and 302 followed-up hits, whereas FKL
delivered 747 primary hits and 255 followed-up hits (Tables 2
and 3).

Hit Compound Distribution in Chemical Space. The
chemical space represented by each screening library was
defined using 15 descriptors characterizing the physicochemical
properties and molecular complexity of the screening
compounds (Table 4). These descriptors are mainly common

Table 1. Lead-like Selection Criteria Used for Compounds in
DSL and FKL13

selection criteria definition

size and
physicochemical
properties

10−27 heavy atoms

<4 hydrogen-bond donors
<7 hydrogen-bond acceptors
0 < (hydrogen-bond donors + hydrogen-bond
acceptors) < 10

0 ≤ ClogP/ClogD ≤ 4
at least one nonring atom if compound contains only
one ring system

limited complexity <8 rotatable bonds
<5 ring systems
no ring systems with more than two fused rings

absence of
unwanted
functionalities

exclusion of compounds containing potentially reactive,
metabolically labile or toxic groups (as defined in the
work of Brenk et al.13)

Table 2. Number of Compounds Reported As Primary Hits and Followed-up Hits, Together with the Hit Rates and Readout
Technology Used, for Each Biological Target Screened Using DSL

target target class no. of primary hits (hit rate (%)) no. of followed-up hits readout technology

HsOGA28 glycosidase 38 (0.06) 6 fluorescence
picornaviral 3C cysteine protease20 cysteine protease 3 (0.005) 0 fluorescence
TbNMT15,18 acyltransferase 275 (0.46) 111 scintillation proximity
HsOGT27 glycosyltransferase 132 (0.22) 10 scintillation proximity
TbTryS29 ligase 611 (1.03) 127 colorimetric
TbTryR17 oxidoreductase 722 (1.21) 51 colorimetric
TbUAP24 nucleotidyltransferase 7 (0.01) 3 colorimetric
total 1720a (2.9)b 302a

aAfter removing duplicate compounds. bPercentage of compounds that were active in at least one screen.
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parameters used for describing molecular features and binding
capabilities of small molecules.32,33 All categorical descriptors
with discrete unit values were normalized relative to the
number of heavy atoms or the number of carbon atoms to
reflect the intrinsic trends of each descriptor independent of the
size of a molecule.
Principal component analysis (PCA) was performed on the

descriptor matrix to visualize the chemical space represented by
each screening library (Figure 1). For DSL, the first three
principal components accounted for 22%, 20%, and 16% of the
X-variance, respectively, with a cumulative R2 of 0.58 (Figure 1a
and b). The mapping of hit compounds in the projected
chemical space suggested that all the primary hits and followed-
up hits were distributed across the entire chemical space, with
no particular regions observed where no screening hits were
reported. Similarly, the mapping of hit compounds in the 3D
PCA projection for FKL (cumulative R2 = 0.62, Figure 1c and
d) displayed a scattered distribution of all the primary hits and
followed-up hits across the entire chemical space. Again, there
were no particular regions of the chemical space where no
screening hits were reported.
In an attempt to quantify the distribution of primary hits and

followed-up hits in the screening libraries, the volume of

chemical space represented in the 3D PCA plots was divided
into eight regions (octants) around the center of origin (Figure
2a). The percentage of each category of compounds in all eight
octants of the PCA plots was then assessed (Figure 2b and c).
The compounds in DSL were evenly distributed across all

eight octants, with 10−15% of compounds in each octant
(Figure 2b). Each octant also contained primary hits and
followed-up hits from a broad range of targets (Figures S1 and
S2, Supporting Information). However, the hit rates per octant
varied. Of notable differences were octants 1 and 2, where
approximately a 1.5-fold enrichment of primary hits and follow-
up hits relative to the percentage of all screening compounds in
the particular octant was observed. Mapping of descriptors in
these octants on the loading plot (Table 5) revealed that these
regions of chemical space were characterized by aromatics
(octant 1) and heavy, lipophilic compounds (octant 2). The
average molecular weight of compounds within these octants
was, respectively, 21 and 45 Da higher than the average of the
full library (318 Da), whereas the average ALogP was increased
by 0.6−0.8 units compared to the DSL average (2.6) (Figure
3a). On the contrary, octants 4 and 8 displayed a 2-fold
decrease in the percentage of primary hits and followed-up hits
as compared to the percentage of all screening compounds
(Figure 2b). These regions of chemical space featured more
polar and heteroatom rich compounds (PSA = 113 (octant 4)
vs 77 Å2 for the DSL average; fHetAtoms 20% and 32% above
the DSL average, respectively), compounds with higher fraction
of heterocycles (fHetRings 23% and 35% above the DSL
average, respectively), and compounds with higher FCFP4den-
sity (FCFP4density 7% and 13% above the DSL average,
respectively) (Figure 3a). A decrease in the percentage of
primary hits and followed-up hits was also observed in octant 7
(Figure 2b), where compounds were characterized by a high
fraction of sp3-carbon atoms (fSP3C 0.49, 88% above the DSL
average, Figure 3a).
For FKL, the entire library was again evenly distributed

across all eight octants, with each comprising of 10−15% of
screening compounds (Figure 2c). Again, all octants contained
primary hits and followed-up hits from a range of targets
(Figures S1 and S2, Supporting Information). A similar trend as
in DSL was observed with an enrichment of primary hits and
followed-up hits in octants 1 (1.4-fold increase) and 2 (2-fold
increase) where the chemical space was characterized by heavy,
lipophilic compounds (octant 1) and aromatics (octant 2)
(Table 5). For instance, the average molecular weight of
compounds in octant 1 was 70 Da higher than the average of

Table 3. Number of Compounds Reported As Primary Hits and Followed-up Hits, Together with the Hit Rates and Readout
Technology Used, for Each Biological Target Screened Using FKL

target target class no. of primary hits (hit rate (%)) no. of followed-up hits readout technology

HsOGT27 glycosyltransferase 5 (0.15) 1 scintillation proximity
TbTryS29 ligase 25 (0.76) 19 colorimetric
BpHSP9021 ATP-dependent chaperone 14 (0.43) 1 fluorescence polarization
LmCRK316 Ser/Thr kinase 72 (2.19) 45 fluorescence polarization
PfCDPK525 Ser/Thr kinase 43 (1.31) 20 fluorescence
TbPLK22 Ser/Thr kinase 62 (1.89) 6 luminescence
TbGSK323 Ser/Thr kinase 406 (12.4) 55 luminescence
TbPK5326 Ser/Thr kinase 199 (6.05) 62 luminescence
TbPK5026 Ser/Thr kinase 425 (12.9) 82 luminescence
EcIspE19 GHMP kinase 1 (0.03) 1 luminescence
total 747a (22.7)b 255a

aAfter removing duplicate compounds. bPercentage of compounds that were active in at least one screen.

Table 4. Descriptors Used for Describing the Chemical
Space Represented by Each Screening Library

descriptor abbreviation

molecular weight MW
number of heavy atoms HevAtoms
logarithmic octanol/water partition coefficient ALogP
polar surface area PSA
fraction of a

hydrogen-bond acceptors fHBA
hydrogen-bond donors fHBD
heteroatoms fHetAtoms
rotatable bonds fRotBonds
unsaturated bonds fUnsatBonds
rings fRings
heterocycles fHetRings
aromatic rings fAromRings
ring systems fRingSys
sp3-hybridized carbon atoms b fSP3C

normalized functional class extended connectivity
fingerprints32 a

FCFP4density

aNormalized relative to the number of heavy atoms unless stated
otherwise. bNormalized relative to the number of carbon atoms.33
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the full library (318 Da), and the average ALogP was 1.1 units
higher than the FKL average (2.7) (Figure 3b). The regions of
chemical space which had a decrease in percentage of primary
hits and followed-up hits were octants 4 (3-fold decrease) and 8
(3.2-fold decrease) (Figure 2c), where the chemical space was
characterized by polar compounds (octant 4; PSA = 93 vs 72 Å2

for the FKL average) and aliphatic compounds (octant 8;
fSP3C 0.42, 99% above the FKL average, Figure 3b).
We then proceeded to further evaluate the average ligand

efficiency of followed-up hits within each octant (Figure 4).34

As expected, hits with the highest average ligand efficiency were
located in octants characterized by compounds with the lowest

average molecular weight (octant 8 for DSL and octants 3 and
7 for FKL). However, we also observed differences in the
average ligand efficiency in octants where the average molecular
weight of followed-up hits was comparable. For instance,
octants 1−4 of DSL contained followed-up hits of similar size
(MW = 360−372 Da, Figure 4a). Out of those hits, the polar
and heteroatom rich compounds in octant 4 (Figure 3a)
displayed the highest average ligand efficiency (0.30 kcal mol−1

per heavy atom). This trend was also present in FKL.
Compounds in octant 4 (polar compounds, Figure 3b)
achieved the highest average ligand efficiency (0.36
kcal mol−1 per heavy atom) among the octants containing

Figure 1. Scoring plots (left) and corresponding loading plots (right) of the PCA of the chemical space represented by DSL (a and b) and FKL (c
and d). The gray ellipsoid corresponds to a confidence level of 95% of Hotelling’s T2 distribution. Primary hits are colored in blue, and followed-up
hits are colored in red.
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followed-up hits of similar size (MW = 332−342 Da, Figure
4b).
PAINS Evaluation. The presence of nonspecific frequent

hitters within screening libraries is a common problem
associated with false positives from screening campaigns.11

To investigate if any problematic compounds were present in
our screening libraries, we followed the definitions of Baell and
Holloway9 which stated that screening compounds might be
displaying PAINS behavior if reported active in more than 50%
of the number of assays screened. Compounds within each
screening library were grouped according to the number of
assays in which each individual compound was reported as
active (Table 6). Primary hits and followed-up hits were
tabulated separately. Screened against seven different targets
(Table 2), DSL had no individual compound reported as
primary hits in more than three assays. At the level of followed-
up hits, no compound was active in more than two assays
(Table 6). Similarly, FKL was screened against ten different
targets (Table 3), and no compound was active in more than

five assays at the level of primary hits or followed-up hits (Table
6). These observations suggested that both DSL and FKL did
not contain any compounds displaying PAINS behavior
according to the definitions of Baell and Holloway.
In addition, we evaluated whether compounds containing

structural motifs mapping to literature PAINS filters9 were
frequently reported as active in multiple assays using our
screening data. We applied the PAINS substructure filters
published by Baell and Holloway9 to flag any compounds
within these libraries that contained structural motifs which are
likely to display PAINS behavior (Table 7 and Supporting
Information). For DSL, 1725 compounds (2.9%) matching 97
literature PAINS structural motifs were flagged by the
substructure filters as potential PAINS, whereas 50 compounds
(1.5%) matching 9 literature PAINS structural motifs were
flagged for FKL (Supporting Information Tables S1 and S2).
Only 85 of the flagged 1725 compounds in DSL were reported
as a primary hit, with 28 compounds also satisfying our
followed-up hit criteria (Table 7). This illustrated that over 95%
of the flagged compounds were inactive against all seven targets
screened. Switching to FKL, 31 of the 50 flagged compounds
were not active against any of the ten targets screened, which
represented a 62% clean rate of these flagged compounds. Most
of the remaining flagged compounds were only active in one or
two assays.
Further, we assessed PAINS behavior on a structural motif

level instead of on an individual compound level. For this
analysis, we grouped the flagged compounds within each library
according to the PAINS structural motifs and investigated in
how many different assays representatives of each motif
appeared as actives. Out of the 97 motifs present in DSL
compounds, 55 motifs were considered underrepresented with
fewer than five examples and were excluded from the following
analysis (Supporting Information Table S1). No active
compounds were reported for 19 of the remaining 42 motifs,
while another 12 motifs contained compounds that were active
only in one assay. Only one motif (5-membered alkylidene
heterocycles, ene_five_het_B in Baell and Holloway)9

contained compounds that were altogether reported as primary
hits in more than half of the assays (Tables 8 and S1). In FKL,
only two of the nine motifs present were reasonably
represented by at least five examples, and none of these
contained compounds that were altogether reported as primary
hits in more than half of the assays (Tables 8 and S2). Since
there were only a small number of flagged compounds that
were classified as followed-up hits, we decided that the analysis
of followed-up hits grouped into PAINS structural motifs
would be inconclusive.

■ DISCUSSION
The efficiency of hit identification in automated screening relies
heavily on the quality of the screening libraries used. There are
numerous ways to evaluate the quality of a screening library.
Here, we were interested in the utilization of chemical space
represented by a diverse (DSL) and a kinase-focused (FKL)
lead-like screening library and the distribution of screening hits
within their respective chemical space. We also assessed
whether any library compounds were displaying PAINS
behavior according to the definitions of Baell and Holloway.9

Both libraries delivered screening hits across a range of
targets (Tables 2 and 3). DSL had hit rates ranging from 0.005
to 1.21%, whereas the hit rates for FKL range from 0.03 to
12.9%, with the highest hit rates against protein kinases for

Figure 2. (a) Illustrative diagram of octant assignments of the PCA
diagrams in Figure 1. The center of origin (0, 0, 0) is at the
intersection of all eight octants in the middle. (b and c) Percentage
distribution of the full library, primary hits, and followed-up hits in
each of the eight octants in DSL (b) and FKL (c).

Table 5. Location of the 15 Descriptors around the Center of
Origin of the 3D Loading Plots of the PCA Diagrams in
Figure 1b (DSL) and d (FKL)

octant DSL FKL

1 fAromRings, fUnsatBonds ALogP, HevAtoms, MW
2 ALogP, HevAtoms, MW fAromRings, fUnsatBonds
3 fRotBonds fHBD
4 fHBA, fHBD, fHetAtoms, PSA fHBA, fHetAtoms, fRotBonds, PSA
5 fRings, fRingSys −
6 − fRings, fRingSys
7 fSP3C FCFP4density, fHetRings
8 FCFP4density, fHetRings fSP3C
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Figure 3. continued
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which the library was originally designed.13 These hit rates are
comparable to those typically reported for screening
campaigns,35−37 especially considering that most of the targets
apart from the protein kinases have not previously been
subjected to automated screening. This indicates that the
investigated libraries are overall suitable for hit discovery.
According to the chemical space analyses, both DSL and

FKL libraries were able to deliver hits across the entire chemical

space represented, and there were no apparent regions of
chemical space where no hits could be found (Figure 1). This
illustrates that the entire chemical space covered by these lead-
like libraries can be utilized to probe interactions between
proteins and small-molecule ligands. However, despite that hits
were identified across the entire chemical space of the
respective libraries, the distribution of hits was uneven when
we analyzed the occupancy of each octant of the 3D-PCA plots

Figure 3. Plots showing the average values of each descriptor within octants 1, 2, 4, 7, 8, and that for the full library for DSL (a) and FKL (b).

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300382f | J. Chem. Inf. Model. 2013, 53, 534−544540



of each library individually (Figure 2). We observed, for both
libraries, enrichments in the percentage of reported hits in
octants occupied by heavy, lipophilic compounds, whereas the

percentage of reported hits decreased in octants characterized
by polar compounds or compounds containing a high fraction
of sp3-carbon atoms (Figure 3). Nonetheless, it should be
emphasized that all of the hits are well within lead-like chemical
space.
We propose that the observed uneven distribution of

screening hits across the analyzed chemical space may be
explained by the different intrinsic binding capabilities of
compounds in the relevant octants. Hit compounds in the
enriched octants are relatively lipophilic and bulky and contain
a large fraction of aromatic rings (Figure 3). Accordingly, these
molecules are rich in unsaturation and represent relatively flat
molecular shapes. Owing to the relatively simple and generic
molecular shapes, these compounds are more likely to
participate in protein−ligand interactions without requiring a
stringent spatial complement, therefore leading to higher hit
rates. On the contrary, compounds with a high fraction of sp3-
carbon atoms represent more complex molecular shapes that
require a higher shape complementarity at the protein−ligand
interface to accommodate ligand binding.33 Similarly, a
complementary electrostatics match would be required for
the successful binding of polar and heteroatom rich
compounds. Hence, the hit rate obtained from polar
compounds or compounds containing a high fraction of sp3-
carbon atoms would inevitably be lower than that from
lipophilic aromatic compounds.
Recently, it was argued that compounds that are polar,

heteroatom rich, or contain a high fraction of sp3-carbon atoms
represent better prospects for drug discovery, as candidates
derived from these compounds are more likely to be successful
in clinical trials.33,38,39 Our analysis demonstrated that these
compounds are also better lead candidates in terms of average
ligand efficiency, exceeding on average the 0.30 kcal mol−1 per
heavy atom cutoff that is generally considered favorable for
developing a potent, Rule-of-Five compliant drug candidate
(octants 4, 7, and 8; Figure 4).34 It would therefore be desirable
to increase the number of hits obtained from these octants. In
order to attain this, we suggest that the entire screening library
should not be evenly distributed across the octants but instead
be enriched in compounds from the underrepresented octants

Figure 4. Plots showing the average ligand efficiency and molecular weight (MW) of followed-up hits within each octant and that for the full library
for DSL (a) and FKL (b).

Table 6. Breakdown of the Number of Assays in Which Each
Compound Was Reported Active As a Primary Hit or
Followed-up Hit

no. of assays

DSL 0 1 2 3 4 5 6+ total

primary hits 57723 1657 58 5 0 0 0 59443
followed-up hits 59141 296 6 0 0 0 0 59443

FKL 0 1 2 3 4 5 6+ total

primary hits 2540 400 221 100 20 6 0 3287
followed-up hits 3032 223 27 5 0 0 0 3287

Table 7. Breakdown of the Number of Assays in Which Each
Compound Flagged As PAINS Was Reported Active As a
Primary Hit or Followed-up Hit

no. of assays

DSL 0 1 2 3 4 5 6+ total

primary hits 1640 76 9 0 0 0 0 1725
followed-up hits 1697 27 1 0 0 0 0 1725

FKL 0 1 2 3 4 5 6+ total

primary hits 31 10 6 2 1 0 0 50
followed-up hits 45 4 1 0 0 0 0 50

Table 8. Breakdown of the Number of Assays in Which Each
PAINS Structural Motif Contained Compounds Reported As
a Primary Hit

no. of assays

DSL 0 1 2 3 4 5 6+ total

all motifs 70 15 4 7 1 0 0 97
motifs with at least five
representatives

19 12 4 6 1 0 0 42

FKL 0 1 2 3 4 5 6+ total

all motifs 2 0 5 1 0 1 0 9
motifs with at least five
representatives

0 0 1 0 0 1 0 2
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to achieve a more even distribution of screening hits across the
entire chemical space represented.
In addition to library composition, we also envisage that a

departure from screening at the same fixed molar concentration
for all library compounds in a single screening campaign may
help balance the distribution of screening hits from bias toward
heavy, lipophilic compounds that on average have comparably
lower ligand efficiency (octants 1 and 2, Figure 4). Since
smaller compounds tend to display a lower potency, the
commonly used screening paradigm of one-concentration-fits-
all favors the identification of heavy compounds, whereas
smaller compounds are disadvantaged even when all com-
pounds are within lead-like chemical space.40 If compounds are
screened at variable concentrations, with higher concentrations
used for smaller compounds to match with their theoretical
binding capacity,41 screening hits with lower potency but higher
ligand efficiency would no longer be discriminated.
Both libraries are free from compounds displaying PAINS

behavior according to the definitions of Baell and Holloway
(Tables 6 and 7).9 As frequent hitters are a common source of
false positives in screening campaigns,10 this is a surprisingly
positive result. It is noteworthy that in the classification criteria
used for primary hits and followed-up hits, compounds which
might be interfering with a certain assay readout technology
(for example compounds that absorb light at a certain
wavelength of a colorimetric assay, or compounds which
displayed quenching behavior in a fluorescence assay) were
excluded as primary hits from the corresponding assays in the
first place. Hence, the presented analysis of PAINS should be
clean from assay-dependent problematic compounds. When
compiling the libraries, apart from removing obviously colored
compounds, no specific filters were used to remove potentially
promiscuous compounds.13 However, reactive compounds that
potentially bear toxicity issues were discarded. As there is some
overlap between these filters and the PAINS motifs, it appears
that this also helped to improve the libraries in terms of
promiscuous behavior.
Even though some compounds were still flagged to contain

PAINS structural motifs, upon detailed analysis, the majority of
these compounds did not show any activity against the panel of
targets screened (Table 7 and the Supporting Information).
This was also valid when the analysis was carried out on a
structural motif level instead of on an individual compound
level (Table 8 and the Supporting Information). Thus, in our
hands, many of the reasonably represented PAINS structural
motifs in our libraries appeared to be less of a nuisance in
biochemical screens for enzyme assays than suggested
previously by others.9,42 For the purpose of enhancing the
diversity of a screening library, we therefore consider it
justifiable to include compounds containing PAINS structural
motifs that were demonstrated to be relatively clean in our
analysis, in particular when such compounds contain additional
scaffolds that are otherwise not commercially available without
the PAINS substituents. However, such compounds should be
annotated in the library to ensure that the absence of
promiscuous behavior is rigorously verified prior to any
optimization efforts.

■ CONCLUSIONS
Using screening data from two lead-like screening libraries
against 15 enzyme targets, we demonstrated that both libraries
delivered hits across a range of targets. The screening hits
spanned the entire lead-like chemical space covered by these

libraries, although the distribution of screening hits was found
to be uneven. With observed enrichments of screening hits that
are at the higher end of the molecular weight and lipophilicity
spectrum for lead-like compounds, we propose that screening
libraries should in the future be enriched in polar, aliphatic
compounds. In conjunction with the introduction of variable
concentrations screening, we envisage that these could rectify
the uneven distribution of hits observed. Such a movement in
future screening library design should assist in discovering a
higher proportion of screening hits with higher ligand efficiency
and properties that have recently been suggested to lead to
better selectivity and reduced likelihood of promiscuity, thereby
maximizing potential success in clinical trials.
In addition, our analysis suggests a less stringent approach in

the application of the literature PAINS filters in removing
screening compounds. Both screening libraries were shown to
be clean from any PAINS behavior according to the literature
definitions. Even though some compounds were flagged as
PAINS, the analysis on reasonably represented structural motifs
demonstrated that some of these motifs appeared to be less
problematic than previously suggested. Although compounds
flagged by these PAINS structural motifs may not represent the
top candidates for optimization into a drug when there are a
large number of screening hits available, it is arguable whether
such compounds should be completely excluded from a
screening library. This is particularly relevant in diverse
screening libraries that are compiled for screening against a
wide spectrum of targets and phenotypes, since challenging
screening campaigns might not always achieve high hit rates.
We therefore consider it justifiable to retain compounds
containing PAINS motifs demonstrated to be apparently clean
in this study to maximize the chemical diversity in a screening
library.

■ EXPERIMENTAL PROCEDURES
Descriptor Calculations. The 15 descriptors were

calculated using Pipeline Pilot professional client 8.0 (Accelrys,
Inc.) applying the definitions in the software unless stated
otherwise. All categorical descriptors with discrete unit values
were normalized relative to the number of heavy atoms unless
stated otherwise.
A heteroatom was defined as the elements S, O, or N. An

unsaturated bond was defined as a bond with a bond order
greater than one. A heterocycle was defined as a ring containing
S, O, or N in the fragment that resulted from generating
fragments by rings. An sp3-hybridized carbon atom was defined
as any carbon atom which has an atom hybridization of sp3

according to Pipeline Pilot calculations. The fraction of sp3-
hybridized carbon atoms was normalized relative to the total
number of carbon atoms in the same molecule.33 FCFP4density
was defined as the ratio between the number of bits in the
FCFP4 fingerprint generated and the number of heavy atoms.32

Ligand efficiency of followed-up hits was determined using the
IC50 value (the most potent IC50 was chosen for calculations
when a compound has IC50 values for more than one target)
following the equation

= −RTligand efficiency ln(IC )/number of heavy atoms50

where R = 1.98 × 10−3 kcal K−1 mol−1 and T = 300 K.34 (IC50
values were typically determined with a substrate concentration
close to Km so that IC50 ≈ Ki assuming competitive inhibition.)

Chemical Space Analysis. The 3D-PCA plots were
generated using Simca-P+ 12.0.1 (Umetrics). The descriptor
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matrix was normalized to unit variance before carrying out PCA
using the PCA-X option under standard settings. The number
of principal components was based on automatic cross-
validation within the software.
PAINS Analysis. The literature PAINS filters in SLN format

(Tables S6, S7, and S9 in the Supporting Information from the
work of Baell and Holloway)9 were applied using Sybyl-X 1.2
(Tripos). The flagged compounds were mapped to individual
PAINS substructure motifs using in-house Python scripts.

■ ASSOCIATED CONTENT
*S Supporting Information
Figures of the distribution of primary and followed-up hits
among enzyme targets screened within each octant and tables
listing the PAINS structural motifs that were present in DSL
and FKL. This material is available free of charge via the
Internet at http://pubs.acs.org.
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