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Background: Characterization of the tumor microenvironment is helpful to understand
the tumor immune environment of lung cancer and help predict the prognosis.

Methods: First, immune subtypes were identified by consensus subtype among lung
squamous carcinoma (LUSC) patients. Immune cell infiltration was evaluated by
CIBERSORT and ESTIMATE analyses. Then, based on differentially expressed genes
(DEGs) identified, a risk score model was constructed. Finally, gene FPR1 was validated
by using YTMLC-90.

Findings: LUSC samples were divided into four heterogeneous immune subtypes, with
significantly different prognoses with subtype 4 having the poorest overall survival (OS).
The immune infiltration score showed that subtype 4 was characterized as immune
enriched and fibrotic, while subtype 3 was tumor enriched. DEG analysis showed that
upregulated genes in subtype 4 were enriched of neutrophil and exhausted T cell-related
biological processes. Based on a univariate Cox regression model, prognostic 7 immune-
related genes were combined to construct a risk score model and able to predict OS rates
in the validation datasets. Wound healing and transwell assay were conducted to evaluate
the invasion property after activating the gene FPR1.

Interpretation: The analysis of tumor immune microenvironments among LUSC
subtypes may provide new insights into the strategy of immunotherapy.

Keywords: lung squamous cell carcinoma, immune, prognosis, immune infiltration, neutrophil
INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide (1).
Histologically, non-small cell lung cancer is divided into lung adenocarcinoma, lung squamous cell
carcinoma (LUSC), and large cell carcinoma (2). Despite great improvement in lung cancer
treatment, many patients still experience resistance to drug with poor survival rates, especially
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for locally advanced NSCLC (3). Thus, more effective treatments
are in urgent need. Cancer immunotherapy has revolutionized
the clinical management of lung cancer (4). There is growing
evidence that showed the importance of immune regulation in
lung cancer (5, 6). For example, immune checkpoint inhibitors
(ICIs) have been approved as the first-line treatment for
advanced-stage lung squamous cell carcinoma with PD-L1
expression >1% (7–9). However, the heterogeneity of the
tumor microenvironment brings confusing treatment response
among individual patients (10). It is documented that some
patients with high PD-L1 expression do not respond to ICIs
while some patients with low PD-L1 expression obtain benefits
from ICI treatment. The development of more effective
treatments is hindered by incomplete knowledge of the genetic
determinant of immune responsiveness.

Tumors grow under an intricate regulation environment of
epithelial cells, vascular and lymphatic vessels, cytokines and
chemokines, and infiltrating immune cells (5). Different immune
cells, such as the various types, functional polarization, and local
distribution through the tumor, have been shown to influence
the clinical outcome for cancer patients (5). The tumor-immune
microenvironment consists of multiple immune and stromal
cells as well as some immunomodulators (11). Increasing
evidence has shown that the different responses of ICI
treatment are related to the heterogeneity of the tumor
microenvironment. Thus, characteriz ing the tumor
microenvironment of LUSC would be helpful to understand
the tumor immune environment in LUSC patients and predict
prognosis of patients.

In this study, we aimed to identify the immune subtypes in
LUSC and explore the potential prognostic genes among
different subtypes. LUSC expression data from the Cancer
Genome Atlas (TCGA) were divided into four consensus
subtypes according to the immune related genes’ expression.
We demonstrated that subtype 4 was characterized as immune-
enriched but fibrotic with the poorest overall survival (OS).
There are 7 genes upregulated in subtype 4 which correlates
with neutrophil and exhausted T cell and were used to construct
a risk model to validate in different datasets. Overall, these data
demonstrated that the heterogeneity in LUSC and identified
prognostic genes among different immune subtypes potentially
plays a role in antitumor immunity.
MATERIALS AND METHODS

Patients and Clinical Characteristics
The gene expression profile and clinical information of lung
squamous carcinoma patients were obtained from the TCGA
database. In addition, validation datasets GSE29013 (12),
GSE67061 (13), and GSE73403 were obtained from Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo).

Data Preprocessing
For the TCGA dataset, the RSEM-normalized RNA-seq data
were downloaded from the TCGA data portal. The gene
Frontiers in Oncology | www.frontiersin.org 2
expression value was log2-transformed for subsequent analysis.
GEO raw datasets were obtained and converted to normalized
data using the median scale method by the R package “limma”
(14) and then used for the analysis.

Identification of Immune Subtypes of
LUSC
Immune-related genes were extracted from the Gene Ontology
(GO) database by searching immune/inflammation/defense-
related GO terms, obtaining 3,555 genes. The genes with no
expression in RNA-Seq data from LUSC-TCGA are more than
80% of samples and were excluded in the study. 2,678 genes were
used to conduct Consensus Subtype Plus analysis (15). Gene
expression data were median centered. The subtyping program
was performed with 1,000 iterations, by sampling 80% of samples
at each iteration. The optimal subtype number was determined
by cumulative distribution function curves of the consensus
score. Pairwise comparisons among identified subtypes were
performed by SigClust analysis (16).

Immune Cell Abundance Identified
CIBERSORT (17) is based on a linear support vector regression
that estimates the degree of immune cell infiltration. By using the
CIBERSORT method, the proportion of 22 kinds of immune
cells infiltrating different subtypes was identified. Twelve
exhausted T cell markers and 19 immune checkpoint markers
were also evaluated between the subtypes. ESTIMATE was used
to calculate immune and stromal scores (18).

Differential Analysis of Expressed Genes
For the differentially expressed genes between different subtypes,
Student’s t-test was utilized to compare the samples in one
subtype to other subtypes. |log FC| ≥ 2, p <.05 was considered
as significantly differentially expressed. The GO (gene ontology)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were analyzed by using the DAVID tool for exploring
DEG function (19). Gene Set Enrichment Analysis (GSEA) was
performed as previously described (20). Correlation R package
and Pearson’s test were used to evaluate the correlation between
genes’ expression and immune infiltration scores.

Survival Analysis Risk Score
To build a predictive model related to prognosis, 20 upregulated
cytokine genes in subtype 4 were correlated with neutrophils to
undergo a LASSO analysis. Seven genes were identified and
constructed as a risk model for survival prediction. The risk
model combines the expression data with their coefficient and
was validated in independent GEO validation datasets.

Cell Culture
YTMLC-90 cell lines were human LUSC cell lines purchased
from the Cell Library Committee on Type Culture Collection of
the Chinese Academy of Sciences, Beijing. Cells were cultured in
RPMI-1640 supplemented with 10% FBS in a humidified, 5%
CO2 atmosphere at 37°C.
February 2022 | Volume 11 | Article 778549
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Transwell Assay
YTMLC-90 cells were treated with the indicated concentration of
fMLP for 24 h. Thereafter, cells were starved in serum-free RPMI
1640 medium for 12 h at 37°C in 5% CO2. Cell suspensions
(4 × 104 in 200 ml) were then added to the upper chambers with a
pore size of 8 mm (Corning) and 400 ml of complete medium to
the lower chambers. After being incubated for 24 h at 37°C in 5%
CO2, the cells in the lower chamber were stained with crystal
violet and then imaged and counted under the microscope.

Wound Healing Assay
YTMLC-90 cells were cultured in 6-well plates overnight. The
next day, a straight scratch was made in the center of each well
using a micropipette tip. Cells were then washed with PBS and
treated with the indicated concentration of fMLP for 24 and 48 h.
Cell motility was assessed by measuring the movement of the
cells into the scratch area after 24 and 48 h of treatment
with fMLP.
Frontiers in Oncology | www.frontiersin.org 3
Statistical Analysis
R software (version 3.6.2) was used to perform all statistical
analyses using the Student’s t-test. To conduct a survival
analysis, the Kaplan–Meier approach was used, and the
subsequent findings were compared using the log-rank test.
GraphPad Prism was used to perform experimental analysis.
(*p-value <0.05; **p-value <0.005; ***p-value <0.0005; ****p-
value <0.00005).

RESULTS

Identification of Immune Subtype of LUSC
To identify the immune subtype of LUSC patients, 2,678 genes
related to the immune biological process were analyzed. For all
TCGA LUSC patients, Consensus Subtype Plus was used to
sample into k (k = 2–10) different subtypes. According to the
cumulative distribution function curves of the consensus score,
the optimal division was achieved when k = 4 (Figures 1A, B).
A B

C D

FIGURE 1 | Identification of immune subtypes in lung squamous cancer patients in TCGA. (A) The consensus score matrix of all samples when k = 4. A higher
consensus score between two samples demonstrated that they were more likely to be grouped into the same cluster in different iterations. (B) The cumulative
distribution function (CDF) curves by consensus cluster analysis. CDF curves of consensus scores by different subtype numbers (k = 2–10) are presented. (C) Two-
dimensional scaling plot of the expression profiles of immune-related genes in TCGA LUSC patients. Each point represents a single sample with different colors
representing the four subtypes. (D) Survival analysis for the four subtypes of TCGA LUSC patients. The p value was calculated by the log-rank test. ****P < 0.0001
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SigClust analysis was used to analyze the difference among the
four subtypes (Supplementary Table 1). The data showed that
the consensus subtypes were significantly different among all
pairwise comparisons. The distributions of the clinical
parameters among the four subtypes are displayed in
Supplementary Table 2. The two-dimensional scaling plot
showed that the four subtypes were separated, with subtype
four distinct from other three subtypes (Figure 1C). Next, we
tested the prognosis of four subtypes by using TCGA-LUSC
RNA-Seq data. The OS was significantly different among the four
subtypes (p = 0.027, Figure 1D) with subtype 3 having better
survival and subtype 4 being the worst.

Landscape of the Immune Cells’
Infiltration for Four Immune Subtypes
To investigate the causes for OS difference among the four
subtypes, we evaluated the difference in respect to immune cell
infiltration among four subtypes by using the CIBERSORT
method. The result was characterized by an abundance of
infiltration of macrophage M2, neutrophil, myeloid dendritic
cell activated, CD8+T cell, and CD4+ resting memory T cell in
subtype 4, while subtype 3 was characterized as low abundance of
infiltration of immune cells. Subtype 1 and subtype 2 were
characterized as mixed infi ltration of immune cells
(Figure 2A). Based on the specific immune cell expression
score, the expression signatures of M2 cell, neutrophil, and M0
cell were significantly higher in subtype 4 compared to the other
subtypes (Figures 2B, C, E). Interestingly, the expression
signature of CD8+ T cells was also higher in subtype 4
(Figure 2G). Follicular helper T cells were highly infiltrated
in subtypes 1 and 2 compared to subtype 4 (Figure 2F), while
CD8+ T cell, M0, M1, M2, and neutrophil cell were characterized
as low infiltration in subtype 3.

Microenvironment Analysis Among Four
Subtypes
We next assessed the abundance of immune and stromal cell
infiltration in the four subtypes. The significant differences were
in subtype 3 and subtype 4 (Figures 3A–C). The data showed
that immune score and stromal score were higher in subtype 4
than in the other subtypes, especially subtype 3 (p < 0.0001). In
contrast, subtype 3 showed lower immune cell infiltration and
stromal cell infiltration. We defined subtype 4 as “Immune-
enriched, fibrotic” and subtype 3 as “tumor enriched”. We then
analyzed the expression of T cell exhausted gene signatures
which play an important role in T cell regulation and immune
checkpoint genes. Interestingly, expressions of a panel of T cell
exhausted gene signatures were also upregulated in subtype 4 but
downregulated in subtype 3 (Figures 3D–O). Notably, some of
the checkpoint genes showed a differential expression between
subtype 3 and subtype 4. Most of the checkpoint genes were
significantly upregulated in subtype 4 and downregulated in
subtype 3 (Figures 3F, G and Supplementary Figure 1),
which indicated that the immune environment of subtype 4
was immune suppressed and subtype 3 was not.
Frontiers in Oncology | www.frontiersin.org 4
Differential Gene Analysis Between
Subtype 3 and Subtype 4
Then we focused on the two differential subtypes—subtype 3 and
subtype 4. First, we investigated the OS difference in TCGA-
LUSC data. The data showed that subtype 3 had significantly
better OS compare to subtype 4 (Figure 4A). Then, the
differentially expressed genes between subtype 3 and subtype 4
were identified. There were 2,326 genes upregulated and 1,211
genes downregulated in subtype 4 compared to subtype 3. The
GO showed that the upregulated genes were enriched with
neutrophil activation, neutrophil-mediated immunity, T cell
activation in terms of biological process (Figure 4B), and
molecular function (Supplementary Figure 2A). The KEGG
pathway enrichment showed that the top pathways were
cytokine–cytokine receptor interaction, PI3K−Akt signaling
pathway, chemokine signal ing pathway, neutrophil
extracellular trap formation, etc. (Supplementary Figure 2B).

Similarly, different cytokines between subtype 3 and
subtype 4 were investigated. A total of 73 genes were
upregulated (p < 0.05, and fold change >2) and 13 genes were
downregulated in subtype 4 compared to subtype 3 (p < 0.05, and
fold change <-2). Then the top 20 upregulated cytokine genes
and 13 downregulated genes were used to evaluate the
correlation index with immune cell infiltration scores for
TCGA subtype 4 expression profiles. The data showed that
most of the upregulated cytokines were positively correlated
with neutrophils and monocytes but negatively correlated
with B cells, follicular helper T cells, and regulatory T cells
(Figure 4C). Most of the downregulated cytokines were
positively correlated with B cells, follicular helper T cells, and
regulatory T cells and negatively correlated with neutrophil cells
(Supplementary Figure 3).

GSEA analysis showed that the upregulated genes were
significantly enriched to neutrophil degranulation, neutrophil
chemotaxis, and neutrophil migration (Figures 4D–F), which
represented a correlation with neutrophil-related immune
activity, while the GSEA analysis also showed that the
upregulated genes were enriched with interleukin 10 signaling
and oxidative phosphorylation, but not respiratory electron
transport (Figures 4G–I). This indicated correlation with
exhausted T cell function.

Validation of the Risk Model in GEO
Datasets
Based on the above results, 11 cytokine genes which were
upregulated in subtype 4 and significantly correlated with
follicular helper T cell or neutrophil were selected to construct
the risk model. Lasso was used to perform variable selection to
enhance the prediction accuracy with 7 genes selected, as shown
in Figure 5A. TCGA expression data of LUSC were utilized as
the training set to construct the risk model. There was a
significant survival difference between low-risk subtype and
high-risk subtype in the TCGA data set (Figure 5B) and three
lung squamous cancer data sets from GEO datasets
(Figures 5C–E).
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Validation of Immune-Related Gene FPR1
Among the 7 genes, FPR1 was correlated with neutrophil
significantly. A high expression of FPR1 was associated with low
OS in LUSC (Figure 6A). FPR1 was originally found on human
neutrophils (21). The activation of this receptor triggers many
Frontiers in Oncology | www.frontiersin.org 5
functions of neutrophils, including chemotaxis, degranulation,
ROS production, and phagocytosis (22). The main ligands of
FPR1 are bacteria and mitochondrial formylated peptides
(N-formylmethionyl-leucyl-phenylalanine, fMLP), which are
effective polymorphonuclear leukocyte (PMN) chemokines.
A

B C D

E F G

FIGURE 2 | Analysis of the immune environment among the four subtypes. (A) Heatmap of gene expression scores of 22 immune signatures among four subtypes.
Blue represented low expression. Red represented high expression. (B–G) The expression scores of signatures of six immune cells for four subtypes. Comparisons
between two subtypes were performed by Student’s t test. p < 0.05 was considered significant. **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, no significant
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A B C

D E F G

H I J K

L M N O

FIGURE 3 | Analysis of the microenvironment among the four subtypes. (A–C) The immune score, stromal score, and tumor purity score evaluated among the four
subtypes by ESTIMATE. (D–O) Differential expression of markers representing exhausted T cells in four subtypes of the TCGA LUSC cohort. The plot was presented
as mean ± SEM. Comparisons between two subtypes were performed by Student’s t test. p < 0.05 was considered significant. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, ns, no significant.
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A

C

D E F

G H I

B

FIGURE 4 | DEGs and differentially expressed cytokines identified between subtype 3 and subtype 4. (A) Survival analysis between subtype 3 and subtype 4.
Kaplan–Meier curves showed the distinct outcome of patients in the two subtypes. (B) Gene Ontology analysis of upregulated genes in subtype 4 compared to
subtype 3. The top 20 GO terms representing biological processes are shown. (C) Correlation plot of the correlation analysis between the expression of upregulated
cytokines in subtype 4 and the scores of immune cell signatures. (D–F) GSEA representing the function of neutrophils of upregulated genes in subtype 4 compared
to subtype 3. (G–I) GSEA representing the function of exhausted T cells of upregulated genes in subtype 4 compared to subtype 3.
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To explore its function in LUSC cells, LUSC cell line YTMLC-90
was utilized. Cells were treated with DMSO or 100 nM fMLP and
500 nM fMLP for the indicated duration time. The cell invasion
and migration to the low chamber were significantly increased
in the fMLP-treated group. The 500-nM-treated group had
Frontiers in Oncology | www.frontiersin.org 8
higher cell invasion and migration compared to the 100-nM
fMLP-treated group (Figures 6B, C). Similarly, wound
healing experiments also showed that the fMLP-treated group
had higher migrated cells compared to the control group
(Figures 6D, E). These results indicated that the activation of
A B

C

E

D

FIGURE 5 | Kaplan–Meier survival analysis of the risk model gene signatures for both the training set and testing sets. (A) The forest plot for 7 genes used to
construct the risk model. (B) The survival analysis of high- to low-risk patients in the training set TCGA LUSC. (C–E) The survival analysis of high- to low-risk patients
in the validation sets from LUSC GEO datasets. #: note.
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FPR1 could increase the migration and invasion ability in LUSC
cell lines.
DISCUSSION

Major advances and breakthroughs in human cancer
immunotherapy have changed the treatment scheme of lung
cancer (23). Due to differential response to ICI treatment,
researchers have now focused more on the function of
immune cell infiltration for the disease progression and overall
prognosis of lung cancer (24). Thus, we analyzed immune
infiltration differences in the TCGA LUSC cohort and
identified four subtypes based on their immune-related gene
expression profile. Four subtypes were identified, namely,
subtype 1 (mixed type), subtype 2 (mixed type), subtype 3
(tumor enriched), and subtype 4 (immune enriched, fibrotic).
These four subtypes showed distinct prognosis (Figure 1). In
estimating the proportions of immune cell infiltration,
CIBERSORT was used. The differences among four subtypes
Frontiers in Oncology | www.frontiersin.org 9
included macrophages, follicular helper T cells, neutrophils, and
monocytes. M2 macrophages, neutrophils, and monocytes were
most enriched in subtype 4 while least in subtype 3. Follicular
helper T cells were least enriched in subtype 4 (Figure 2). The
immune environment score was evaluated by the ESTIMATE
approach. The biggest difference is between subtype 3 and
subtype 4. Among the four subtypes, subtype 3 had the best
OS while subtype 4 had the worst (Figure 3). Then, we focused
on the two subtypes and discovered that the DEGs and
differentially expressed cytokines were associated with
exhausted T cells and neutrophils (Figure 4). Ultimately, we
constructed a risk model by using 7 DEGs and validated its
prediction value among the three independent GEO datasets
(Figure 5) and validated one gene by using the experimental
model (Figure 6).

Among the four subtypes, subtype 4 had the highest immune
score and stromal score but lowest tumor purity score. However,
opposite to subtype 4, subtype 3 had a low immune score and
stromal score, but high tumor purity score. In addition, subtype 4
had a worse prognosis compared to subtype 3. Interestingly,
A B

C

D E

FIGURE 6 | Validation of one of the risk model genes by experiment. (A) Kaplan–Meier survival analysis of high-low expression of FPR1 in TCGA LUSC cohorts.
(B) The images show Transwell experiments conducted in the YTMLC-90 cell line. (C) Quantification of cells migrating to the lower chamber in three different fields
under a magnification of 400*. (D) Wound healing images of YTMLC-90 cells at 0 timepoint and 48 h by the indicated treatment. (E) The images were analyzed using
ImageJ software to evaluate the scratch area by quantification of the areas occupied by the lesion. The graph shows the average values and the standard error of
three experiments in triplicate. Each experiment was repeated three times, and the data are presented as the mean ± SD. *P < 0.05, ****P < 0.0001.
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compared to subtype 3, there was infiltration of more CD8
T cells. CD8+T cells are important in defense immunity
against intracellular pathogens and tumors. In antitumor
reactions, CD8+T cells are constantly exposed to antigens and
inflammatory signals (25). In contrast, excessive and persistent
signals lead to the state of T cell dysfunction, called “exhaustion.”
Exhausted T cells are characterized as low proliferation and loss
of effector function in response to antigen stimulation. A high
expression of multiple inhibitory receptors such as PD-1,
HAVCR2, and CTLA4 and metabolic alterations from
oxidative phosphorylation to glycolysis are also markers of
exhausted T cells (25, 26). Markers representing exhausted T
cells were obtained from the literature (27). The results revealed
that almost all these markers’ expressions were highest among
four subtypes, while lowest in subtype 3 (Figure 3). GSEA
analysis also showed consistent results that the upregulated
genes in subtype 3 have negatively enriched oxidative
phosphorylation (Figure 4).

The checkpoint receptors are expressed on activated immune
cells to prevent overabundance (28). As for checkpoint gene
expression, we found that the overall expression of checkpoint
receptors was expressed higher in subtype 4 than in subtype 3,
such as PD-1 and CTLA-4, resulting in an immunosuppressive
environment. All these results pointed out that although subtype
4 is an immune-cell enriched environment, most infiltrated
immune cells played a suppressive role.

The differentially expressed genes and cytokines between
subtype 4 and subtype 3 both correlated with neutrophil
activation. In cancer, neutrophils have emerged as an important
component of the tumor environment (29). In most cancers, high
neutrophil infiltration was associated with poor prognosis (30, 31).
Studies showed that an elevated pretreatment neutrophil/
lymphocyte rate was associated with shorter OS and
progression-free survival and with lower response rates in
patients with metastatic NSCLC treated with nivolumab
independent of other prognostic factors (30). Neutrophils can be
part of tumor-promoting inflammation by driving angiogenesis,
ex t race l lu l a r mat r i x r emode l ing , me ta s ta s i s , and
immunosuppression. Conversely, neutrophils can also mediate
antitumor responses by direct killing of tumor cells by
participating in cellular networks that mediate antitumor
resistance (32). FPR1 is one of the important regulators of
neutrophil recruitment (33). Studies have shown that FPR1
plays an important role in inflammation, immunity, and
tumors. Leslie et al. suggested that FPR1 is an important
regulatory molecule of neutrophils. In the pulmonary fibrosis
model, FPR1–/– mice are exempt from bleomycin-induced
pulmonary fibrosis. The mechanism is secondary to reduced
neutrophil recruitment in the lung tissue in FPR1–/– mice after
bleomycin stimulation (33). Shao et al. showed that in lung
epithelial cells, the formylated peptides released from the
mitochondria of damaged lung epithelial cells can stimulate
migration of normal lung epithelial cells through FPR1 and
promote wound closure (34). Morris and other studies have
shown that elevated levels of FPR1 mRNA can predict the
diagnosis of lung cancer, with a sensitivity of 55% and a
Frontiers in Oncology | www.frontiersin.org 10
specificity of 87% in the validation sample set (35). In our study,
we also discovered that after activation of FPR1, the migration and
invasion abilities of lung squamous cancer cells are increased,
which is consistent with other studies. High expression of FPR1 is
correlated with poor prognosis of LUSC patients.

In conclusion, using the gene expression profile of global
immune genes, we identified four subtypes in LUSC. Among
them, two subtypes were distinct in terms of immunity features
and immune checkpoint molecules. These directly correlate with
patient outcomes. Given that subtype 4 is characterized as
immune enriched but fibrotic, anti-PD1 or anti-PDL1 alone
may not get an effective response. Combination treatment,
chemotherapy plus anti-PD1, or anti-PDL1 or combined with
anti-CTLA4 might be effective in these patients. These findings of
the intra-tumor immune microenvironment may shed light on
the strategy of immunotherapy in human lung squamous cancer.
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functions are shown. (B) KEGG analysis of upregulated genes in subtype 4
compared to subtype 3. The top 50 KEGG terms was shown.

Supplementary Figure 3 | Correlation plot of correlation analysis between the
expression of downregulated cytokines in subtype 4 and the scores of immune cell
signatures.
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Supplementary Table 1 | SigClust analysis of four subtypes identified by the
consensus cluster method.
Supplementary Table 2 | Association of four molecular subtypes with clinical
parameters in TCHA-LUSC cohort.
REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA: Cancer J Clin

(2020) 70(1):7–30. doi: 10.3322/caac.21590
2. Rodriguez-Canales J, Parra-Cuentas E, Wistuba II. Diagnosis and Molecular

Classification of Lung Cancer. Cancer Treat Res (2016) 170:25–46.
doi: 10.1007/978-3-319-40389-2_2

3. Herbst RS, Heymach JV, Lippman SM. Lung Cancer. N Engl J Med (2008) 359
(13):1367–80. doi: 10.1056/NEJMra0802714

4. Kline J, Gajewski TF. Clinical Development of Mabs to Block the PD1
Pathway as an Immunotherapy for Cancer. Curr Opin Investig Drugs (Lond
Engl: 2000) (2010) 11(12):1354–9.

5. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The Immune Contexture
in Human Tumours: Impact on Clinical Outcome. Nat Rev Cancer (2012) 12
(4):298–306. doi: 10.1038/nrc3245

6. Waldmann TA. Effective Cancer Therapy Through Immunomodulation.
Annu Rev Med (2006) 57:65–81. doi: 10.1146/annurev.med.56.082103.104549

7. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüs ̧ M, Mazières J, et al.
Pembrolizumab Plus Chemotherapy for Squamous Non-Small-Cell Lung
Cancer. N Engl J Med (2018) 379(21):2040–51. doi: 10.1056/NEJMoa1810865
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