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Robust statistical tools were applied on the water quality datasets with the aim of determining the most significance parameters
and their contribution towards temporal water quality variation. Surface water samples were collected from four different sampling
points during dry and wet seasons and analyzed for their physicochemical constituents. Discriminant analysis (DA) provided better
results with great discriminatory ability by using five parameters with (P < 0.05) for dry season affording more than 96% correct
assignation and used five and six parameters for forward and backward stepwise in wet season data with P-value (P < 0.05)
affording 68.20% and 82%, respectively. Partial correlation results revealed that there are strong (rp = 0.829) and moderate
(rp = 0.614) relationships between five-day biochemical oxygen demand (BOD5) and chemical oxygen demand (COD), total
solids (TS) and dissolved solids (DS) controlling for the linear effect of nitrogen in the form of ammonia (NH3) and conductivity
for dry and wet seasons, respectively. Multiple linear regression identified the contribution of each variable with significant values
r = 0.988, R2 = 0.976 and r = 0.970, R2 = 0.942 (P < 0.05) for dry and wet seasons, respectively. Repeated measure t-test confirmed
that the surface water quality varies significantly between the seasons with significant value P < 0.05.

1. Introduction

River water represents a readily available source of water
for human activities and historically many civilizations have
relied on the ample supplies of fresh water found in major
river catchment. Currently, rivers worldwide serve as the
recipient of great quantities of waste discharge by agricul-
tural, industrial, and domestic activities [1]. The availability
of fresh water in rivers is one of the major issues facing the
human population especially in developing countries [2].
The constant discharge of domestic and industrial wastewa-
ter and seasonal surface run-off due to the climate change all
have a strong effect on the river discharge and water quality
[3]. Information on water quality and pollution sources is
important for the implementation of sustainable water
resource management strategies [4]. Physical and chemical
characterization of aquatic environment has become an
important aspect due to the seasonality of river water [5].

High concentrations of all kinds of pollutants have an
influence on the river water quality and determine the use
of water and also can lead to diverse problems such as
algal blooms, loss of oxygen, and loss of biodiversity [6].
It is, therefore, necessary to monitor river water quality,
understand the chemistry of the water, and provide a reliable
assessment of water quality for effective water resource
management.

In modern research, different statistical techniques such
as multivariate statistical analysis through principal com-
ponent analysis, cluster analysis, discriminant analysis, and
multiple linear regressions have been used to evaluate and
interpret complex datasets to better understand the river
water quality [3]. Statistical tools have often been used
in exploratory data analyses for classification of sampling
stations [7, 8], identification of possible pollution sources
[9–14], and identifying common patterns in data distri-
bution that allow identification of the most significant
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variable responsible for river water variation [9, 15–18]. Very
recently, statistical approaches have been applied to the data
observed in several complex systems where the problem
of environmental data reduction and interpretation can be
easily handled through the application of robust statistical
techniques. These statistical analyses are capable of allowing
the detection of long-range correlations that are artificial
nonstationeries compared to traditional conventional meth-
ods. Conventionally, the usual methods of interpretation of
surface water quality are only descriptive and lack statistical
significance. Furthermore, it is only relied on univariate
procedure, which is inadequate to characterize simultaneous
similarities and differences between samples and variables
in a complex environment, hence the need to apply robust
statistical tools to the surface water quality datasets. Several
researchers apply robust statistical tools to evaluate surface
water quality variation. For example, a study conducted by
Koklu et al. [15] revealed that DA gave indicator parameters
responsible for large variation in water quality and multiple
regressions analysis identified the important and effective
parameters that contributed to water quality variation in
Melen River system, Turkey. A recent study conducted by
Osman et al. [19] found that DA is an important multivariate
statistical tool that reduces dimensionality of the data and
brings out the most statistically significant parameters that
result in variation of the datasets. Zhang et al. [6] used DA to
evaluate water quality variation in southwest new territories
and Kowloon, Hong Kong. They concluded that DA provided
an important data reduction by revealing only four and eight
parameters with 84.2% and 96.1% correct assignment for
temporal and spatial water quality variation, respectively.

Jakara Basin is located in the northwestern Nigeria and
lies in the center of Kano city, the most populous city in the
whole of Nigeria with over six million people. The region has
rapid population growth and industrial development, which
increase the mass of sewage discharge. With an increase in
population, surface water quality needs to be monitored
continuously in order to take measures, when necessary
to sustain the portability of the surface water resources
[20]. Jakara Basin is located on longitude 8◦31′E to 8◦45′

and latitude 12◦10′N and 12◦13′N. The basin is about 30 km2

with northwest, southwest orientation sprawling about 0.33◦.
The climate of the area is strongly influenced by the tropical
maritime air masses during wet season and tropical conti-
nental air masses during dry season. The seasonal migra-
tion of the intertropical discontinuity (ITD) gives rise to
two seasons, one dry and the other wet. The wet season lasts
from June to September although May is sometimes humid.
The dry season extends properly from mid-October of one
calendar year to mid-May of the next. The annual mean rain-
fall in the region is between 800 mm and 900 mm.Variation
of the mean value is up to +30 or −30 percent. More than
300 mm of the rainfall is received in August alone, while the
truly wet season lasts from June to September. In addition,
the mean monthly temperature of the study area is 21◦C and
23◦C with diurnal range of 12–14◦C [17].

The present study aims at evaluating the temporal
variation of river water quality and determining the most
meaningful parameters and their contribution towards water

quality variation between dry and wet seasons in Jakara
Basin.

2. Material and Methods

2.1. Sample Collection and Analytical Technique. Samplings
were carried out every day from 1st April to 31st May,
2011 and 31st July to 30th September, 2011 for dry and
wet seasons, respectively, at four different sampling locations
along Jakara River. Samples were taken from 10 cm to 15 cm
below the surface water using acid washed plastic container
to avoid unpredicted changes. Samples were stored in a
chilled cold box during transportation to the laboratory. Fif-
teen physicochemical water quality parameters were selected
for analyses, these being dissolved oxygen (DO), five-day bio-
chemical oxygen demand (BOD5), chemical oxygen demand
(COD), suspended solids (SS), pH, conductivity, salinity,
temperature, nitrogen in the form of ammonia (NH3),
turbidity, dissolved solids (DS), total solids (TS), nitrates
(NO3), chloride (Cl), and phosphates (PO4). Samples were
analyzed in the Soil and Water Laboratory of Ministry of
Environment, Kano, Nigeria.

The samples were filtered using filter paper with a pore
size of 5 μm [21]. Water temperature, DO, pH, conductivity
and turbidity of the water samples were determined and
detected using multiparameters monitoring instrument (YSI
incorporated, Yellow Spring OH, USA). The instruments
were calibrated using specific calibrating solutions. A mean
value was calculated for each parameter, with standard
deviation (SD) being used as an indication of the precision
of each parameter [18]. NH3 was measured using ultraviolet
absorbance spectrophotometer. The UV light absorbance
NH3 analyzer was calibrated to measure the wavelength of
UV light (within the range of 200–450 nm). NaOH reagent
was added to the sample to act as a buffer by adjusting the pH
of the sample to a value greater than 12. Second reagent
hypochlorite was added to react with free NH3 in the samples
to form monochloramine. The difference in the UV light
is proportional to the amount of free NH3 in the sample.
TS was measured by drying the sample at temperature of
105◦C in preweighted porcelain and then cooled in a dry
atmosphere in desiccators and then weighted on an analytical
balance by subtracting the porcelain dish and dividing by the
original amount of sample. DS was measured by filtering the
water sample through a tarred fiber filter, which was then
dried and the weight of the materials captured on the filter
was used to figure the total suspended solids (TSS). The DS
can be estimated from the difference between the TS and
TSS. BOD determination of the water samples was carried
out using the standard method [22]. The dissolved oxygen
content was determined before and after the incubation.
Sample incubation was for 5 days at 20◦C in BOD bottle and
BOD5 was calculated after the incubation period. COD
was determined after oxidation of organic matter in strong
tetraoxosulphate VI acid medium by K2Cr2O7 at 148◦C with
back titrations. Cl was determined using 100 mL of the water
sample, which was measured into 250 mL conical flask, and
pH was adjusted with 1 M NaOH. 1 mL K2Cr2O4 indicator
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was then added and titrated with AgNO3 solution. A blank
titration was carried out using distilled water and Cl in mg/L
was then calculated. NO3 and PO4 were determined using
calorimetric method [22].

2.2. Data Management and Treatment. The normality dis-
tribution test of the data for each variable under study
was checked by analyzing statistical value of kurtosis and
skewness. The original data showed that the value of kurtosis
ranged from −0.37 to 54.68 and from −0.29 to 14212, and
the skewness value ranged from −0.29 to 6.93 and from
−0.02 to 3.73 for both dry and wet seasons data, respectively,
indicating that the data were not normally distributed.

The raw data of all the parameters under study were
log transformed x = log10(x). Log transformation removes
outliers and renders geochemical data normalized. Although
log transformation is generally used to obtain normal distri-
bution, it can also be applied to standardize the datasets and
reduce the influence of extreme cases and outliers [23–25].
After the transformation the kurtosis ranged from −1.42 to
7.08 and from −0.75 to 6.52, and the value for skewness
ranged from −2.50 to 2.06 and from −2.39 to 1.20 for both
dry and wet seasons data, respectively. These ranges showed
that both data were now within the normal distribution
population.

2.3. Statistical Analysis

2.3.1. Discriminant Analysis (DA). Discriminant analysis is
a statistical method which determines the variables that dis-
criminate between two or more naturally occurring groups
[16]. It constructs a discriminate function (DF) for each
group as in equation

f (Gi) = ki +
∑

(i = 1)n
(
wi− qi

)
, (1)

where i is the number of groups (G), ki is the constant inherit
to each group, n is the number of parameters used to classify
set of data into a given group, and w is the weight coefficient
assigned by DA to a given selected parameter q.

In this study, temporal (dry and wet seasons) data were
evaluated. DA was applied to the log transformed data
using the standard, forward stepwise, and backward stepwise
modes and construct DFs to evaluate temporal variation in
river water quality.

2.3.2. Partial Correlation. Partial correlation allows looking
at the relationship between bivariates when the effect of the
third variable is held constant. Partial correlation is similar
to Pearson’s product moment correlation except that it also
allows control for an additional variable. This is usually
the variable that you suspect might be influencing the two
variables of interest [24, 26].

2.3.3. Multiple Linear Regression. Multiple linear regression
is a statistical tool for understanding the relationship
between an outcome variable and several predictors (inde-
pendent variables) that best represent the relationship in

a population [15]. The technique is used for both pre-
dictive and explanatory purposes within experimental and
nonexperimental designs. Multiple linear regressions can be
expressed using the equation:

Y = βo + β1X1 + β2X2 + · · · + βmXm + ε, (2)

where Y represents the dependent variable, X1 · · ·Xm rep-
resent the several independent variables, βo · · ·βm represent
the regression coefficients, and ε represents the random error.

2.3.4. Repeated Measure Sample t-Test. This statistical tool
performs a paired two-sample t-test to deduce whether the
difference between the sample means is statistically distinct
from a hypothesized difference. Repeated measure test does
not assume that the variances of both populations are equal,
it is used when only one group of experiment and data
is collected from two different occasions or under two
different conditions [26]. The t-value result from the analyses
ranges between − infinity and + infinity, in which positive
value indicates an increase while negative value indicates
a decrease. The repeated measure test is calculated using
equation

t =
−
X1 −

−
X2√

s2
P/n1 + s2

P/n2

, (3)

where t is the test statistic (Student’s t-distribution)
−
X2 is the

mean of the paired difference for the sample
−
X2 is the mean

of the paired difference for the population s2
P is the standard

error of the mean of the paired difference for the sample n1 is
the number of paired difference values, and n2 is the number
of paired difference values.

3. Results and Discussion

3.1. Descriptive Statistics. The descriptive statistics of physio-
chemical parameters under study are given in Table 1. It pro-
vides a summary of the mean, standard deviation, variance,
sekwness, and kurtosis values of fifteen measured parameters
for both dry and wet seasons data. The pH value of the water
samples is acidic to slightly above neutral ranging from 6.67
to 7.14 for dry and wet seasons, respectively.

The mean for temperature and conductivity ranged from
28◦C and 1.96 μS/cm to 29.5◦C and 4.10 μS/cm for dry and
wet seasons, respectively. The values of DS, TS, SS, turbidity,
and salinity are generally more enhanced in wet season.
These parameters are reactive compounds and qualitatively
reflect the status of inorganic pollution, dissolved solids
increases salinity as well as conductivity measures. The
reason for the high values of these parameters during wet
season could have been the result of the geology of the area
and soil erosion effects.

The mean values of DO, BOD5, and COD are more
pronounced in dry season than wet season. This represents
organic and nutrients pollution and may be from natural
organic matter decomposition. This suggests that during dry
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Table 1: Descriptive statistics of physicochemical parameters under study in mg/L except temperature, conductivity, and pH.

Parameters
Dry season Wet season

Mean SD Variance Skewness Kurtosis Mean SD Variance Skewness Kurtosis

DO 0.72 0.19 0.04 −2.50 7.08 0.41 0.24 0.06 −0.37 0.28

BOD5 0.22 0.33 0.11 1.59 2.76 0.61 0.29 0.09 1.20 2.89

COD 1.33 0.17 0.03 1.39 1.25 1.65 0.18 0.03 0.44 0.75

SS 1.25 0.32 0.10 −0.93 2.69 1.70 0.53 0.28 0.67 −0.13

pH 6.67 0.03 0.00 0.17 −0.44 7.14 0.02 0.00 −0.47 1.25

NH3 −0.56 0.74 0.54 0.06 −1.03 0.46 0.32 0.10 −1.65 5.20

Temperature 28.0 0.02 0.00 −0.42 −0.33 29.5 0.02 0.00 −0.14 0.29

Conductivity 1.96 0.71 0.51 1.85 2.84 4.10 0.47 0.22 −1.99 4.65

Salinity −1.30 0.79 0.62 1.56 1.61 0.85 0.50 0.25 −1.99 4.62

Turbidity 1.36 0.30 0.09 −0.24 0.93 1.66 0.53 0.28 0.76 0.05

DS 1.54 0.69 0.48 1.78 2.97 3.87 0.47 0.22 −1.97 4.63

TS 1.74 0.44 0.19 2.06 5.19 3.89 0.42 0.17 −1.64 3.25

NO3 −0.70 0.45 0.20 −1.56 2.06 1.16 0.08 0.01 0.19 −0.57

Cl 0.42 0.38 0.15 0.74 −0.09 3.59 0.53 0.28 −2.39 6.52

PO4 −1.08 0.97 0.94 0.45 −1.42 1.44 0.09 0.01 −0.45 0.75

Table 2: Dry season classification functions for discriminant analysis (DA) of parameters in mg/L except for temperature, conductivity, and
pH.

Variables
Standard mode Forward stepwise mode Backward stepwise mode

Lambda P value Lambda P value Lambda P value

DO 0.623 <0.0001 0.623 <0.0001 0.623 <0.0001

BOD5 0.793 <0.0001

COD 0.699 <0.0001 0.699 <0.0001 0.699 <0.0001

SS 0.994 0.508

pH 0.893 0.004 0.893 0.004 0.893 0.004

NH3 0.725 <0.0001 0.725 <0.0001 0.725 <0.0001

Temperature 0.954 0.064

Conductivity 0.867 0.001

Salinity 0.776 <0.0001

Turbidity 0.999 0.811

DS 0.891 0.004

TS 0.930 0.021

NO3 0.988 0.339

Cl 0.985 0.296 0.985 0.296 0.985 0.296

PO4 0.991 0.427

Wilks’ lambda 0.37 0.42 0.42

Chi-square 381.57 46.60 46.60

P level <0.0001 <0.0001 <0.0001

season, the volume of the water in the river significantly
reduced and there is substantial addition of organic materials
from residential areas of Kano Metropolitan to the Jakara
River [27].

3.2. Discriminant Functions. The objective of DA was to test
the significance of discriminant functions and to determine
the most significance variables that result in water quality
variation in both dry and wet seasons.

Tables 2 and 3 show that the values of Wilks’ lambda
for both dry and wet seasons for each discriminant function

were quite small (0.37, 0.42, 0.42: dry season and 0.25,
0.84, 0.48: wet season) for standard, forward stepwise
and backward stepwise mode-respectively. In the forward
stepwise mode, variables/parameters were included step by
step, beginning with the most significant variable until no
significant changes were obtained. In the backward stepwise
mode, variables/parameters were removed step by step
beginning with the least significant variable until no signifi-
cant changes were obtained [4, 15, 16].

The standard DA mode constructed discriminant func-
tions including all the fifteen parameters under study.
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Table 3: Wet season classification function for discriminant analysis (DA) of parameters in mg/L except for temperature, conductivity, and
pH.

Variable
Standard mode Forward stepwise mode Backward stepwise mode

Lambda P value Lambda P value Lambda P value

DO 0.914 0.011 0.914 0.011 0.914 0.011

BOD5 0.851 0.001 0.851 0.001

COD 0.839 0.035 0.839 0.035 0.839 0.035

SS 0.983 0.021 0.983 0.021 0.983 0.021

pH 0.962 0.482

NH3 0.956 0.426

Temperature 0.908 0.160

Conductivity 0.902 0.141

Salinity 0.903 0.144 0.903 0.144

Turbidity 0.878 0.084 0.878 0.084

DS 0.906 0.152

TS 0.894 0.120 0.894 0.120

NO3 0.954 0.406

Cl 0.912 0.001 0.912 0.001

PO4 0.969 0.553

Wilk’s lambda 0.25 0.84 0.48

Chi-square 1.82 1.96 88.45

P level 0.01 0.03 0.01

Table 4: Partial correlations of the dry and wet season variables.

Dry season Wet season

Control variables BOD5 COD NH3 Control variables TS DS Conductivity

BOD5 1 TS 1

COD 0.866 1 DS 0.993 1

NH3 0.458 0.478 1 Conductivity 0.988 0.995 1

NH3 BOD5 1 0.829 Conductivity TS 1 0.614

COD 0.829 1 DS 0.614 1

Forward stepwise and backward stepwise modes showed
that DO, COD, pH, NH3, and Cl are the most significant
parameters responsible for water quality variation in the dry
season assigning more than 96% (P < 0.05) of cases cor-
rectly. In the wet season, the stepwise forward discriminant
functions discriminate five variables with 68.20% (P < 0.05)
of cases correctly. Forward stepwise mode showed that DO,
BOD5, COD, SS, and Cl are the most significant parameters
responsible for water quality variation in the wet season.
However, backward stepwise DA mode produced a classifica-
tion matrix of more than 82% (P < 0.05) correct assignations
using six variables: DO, COD, salinity, turbidity, SS, and
TS. The box and whisker plots of discriminating parameters
identified by DA (forward stepwise and backward stepwise)
for both seasons were given in Figures 1, 2 and 3.

3.3. Temporal Control Relationship between Variables. Partial
correlation was applied to the log transformed data to
estimate the correlation between BOD5 and COD controlling
for the linear effect of NH3 in the dry season data and
TS and DS controlling for conductivity in the wet season
data. There was a strong positive correlation (rp = 0.829,

P = 0.0001) with high content of NH3 being associated
with high level of BOD5 and COD and a moderate positive
correlation (rp = 0.614, P = 0.0001) with high content of
conductivity associated with high level of TS and DS for dry
and wet season water quality variation (Table 4).

An inspection of zero-order correlation of dry season
(r = 0.866) and wet season (r = 0.993) suggests that con-
trolling for NH3 and conductivity for dry and wet seasons,
respectively has strong influence.

3.4. Temporal Water Quality Predictors. To find out the best
predictor of water quality variation in the Jakara Basin, a
stepwise multiple linear regression model was used. Before
interpreting the result, classical assumptions of linear regres-
sions were checked: an inspection of normal p-p plot
of regression standardized residuals revealed that all the
observed values fall roughly along the straight line indicating
that the residuals are from normally distributed population.
Moreover, the scatter plot (standardized predicted values
against observed values) indicated that the relationship
between the dependent variable and the predictors is linear
and the residuals variances are equal or constant.
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Table 5: Estimates of coefficient of the model (dry season) of parameters in mg/L except for temperature, conductivity, and pH.

Beta unstandardized coefficient Std. error Beta standardized coefficient t-value P value

(Constant) 62.793 6.003 10.459 0.000

DO 4.184 0.191 0.539 21.878 0.000

COD −0.427 0.034 −0.423 −12.645 0.000

SS −0.076 0.015 −0.097 −4.958 0.000

NH3 −1.529 0.292 −0.184 −5.244 0.000

Temperature 0.629 0.175 0.079 3.595 0.001

pH −1.266 0.492 −0.050 −2.571 0.012

Conductivity 0 0 −0.052 −2.491 0.015

R = 0.988; R2 = 0.976; Adj. R2 = 0.973.
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Figure 2: Box and whisker plot of discriminant parameters in wet
season (forward stepwise).

Based on the collinearity diagnostic table obtained, none
of the models dimensions has conditional index about the
threshold limit 30.0, none of the tolerance values is smaller
than 0.10, and none of the VIF statistics is less than 10.0. This
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Figure 3: Box and whisker plot of discriminant parameters in wet
season (backward stepwise).

indicated that there is no multicollinearity problem among
the predictors variables of the models. Since there is no
multicollinearity problem between the predictors included
in the dry and wet seasons samples in the final models and
the classical assumptions of normality, linearity and equality
of variance are all met. It is reasonably to conclude that
estimated multiple linear regression models to explain water
quality variation in the Jakara Basin are stable, good, and
quite respectable.

3.4.1. Dry Season Water Quality Predictors. Based on the
stepwise method of linear regressions, seven predictor vari-
ables were found to be of significance in explaining water
quality variation in dry season (Table 5). The water quality
variation was explained by seven predictors, namely, DO,
COD, SS, NH3, temperature, pH, and conductivity, other
variables were excluded because they did not contribute in
explaining dry season water quality variation. The obtained
R-square of 0.976 implies that the seven predictor variables
explained about 97.6% of the water quality variation in the
dry season.

The ANOVA table revealed that the F-statistics (F =
381.22) was very large and the corresponding P value was
highly significant (P = 0.0001) or lower than the alpha value
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(0.05). As depicted in Table 5, the largest beta coefficient was
DO with 0.539, this means that DO makes the strongest
unique contributions in explaining the variation of water
quality in dry season, when the variance explained by other
predictors in the model is controlled. This showed that,
one standard deviation increase in the concentration of
DO is followed by 0.539 standard deviation increase in the
variation of water quality in the dry season. The Beta value
for COD was the second highest (−0.423), followed by NH3

(−0.184), SS (−0.97), temperature (0.079), and conductivity
(−0.052). The beta value for pH was the smallest (−0.050)
and indicating that it made at least contribution in the water
quality variation in the dry season.

3.4.2. Wet Season Water Quality Predictors. The water quality
variation in the wet season was explained by five predictor
variables, namely, DO, BOD5, SS, TS, and Cl. The R-square
of 0.94.2 revealed that 94.2% of the variation of water quality
during wet season was explained by the mentioned five pre-
dictors. The wet season estimate of coefficient of the model
is presented in Table 6. The largest beta coefficient among
the parameters calibrated by stepwise regression analysis,
TS, makes the strongest unique contribution in the wet
season water quality variation. The beta value for DO (0.547)
was the second highest, followed by Cl (0.545) and BOD5

(−0.292), and the least contributor was SS with −0.292.
The ANOVA table showed that the F-statistics (F=

112.697) was very large and the corresponding P value is
highly significant (P = 0.0001) or lower than the alpha
value (0.05). This indicated that the slope of the estimated
linear regression model is not equal to zero for both seasons,
confirming that there is linear relationship between the
predictors of the models.

3.5. Temporal Water Quality Variation. Temporal variation
of water quality was examined using repeated measure
sample t-test, this determines whether the mean of samples
obtained in the dry season differ from that of wet season
samples. A quick check of the box plot shown in Figure 4
indicates that the mean of the wet season is much higher than
the mean of the dry season.

Repeated measure sample t-test was conducted to com-
pare means of dry and wet season samples. The null hypoth-
esis states that there are no differences in the mean samples
of river water quality in the dry and wet seasons. A pre-
liminary assumption testing was checked for normality with
no violation noted (KS = 0.113, P = 0.200), and the Q-Q plot
indicated that the distribution for the dry season is normal.
Although the test for normality for wet season samples did
not showed a perfect normal distribution (KS = 0.103, P
= 0.100), an inspection of the Q-Q plot for wet season
samples show that the distribution is approaching normal.
The detrended Q-Q plot showed that the data fall within
−0.25 to 0.75 and −1.5 to 1.0 for dry and wet seasons,
respectively, showing that there are no data that deviate from
normal distribution.

The result obtained from paired sample t-test revealed
that there is a significant difference in the mean of dry and
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Figure 4: The box plot of mean of samples of dry and wet seasons.

wet seasons samples (M = 1.184, SD = 0.277, t = −27.372,
P = 0.0001). The decision is that the null hypothesis
was rejected and research hypothesis was supported, this is
because the mean differences obtained were rather-large and
the t-statistics obtained was very large (t = −27.372) and
the corresponding P value (0.0001) was very much smaller
than the alpha of 0.05. Comparing the eta-square obtained
(η2 = 0.86) to Cohen [28] criteria (0.01 = small effect, 0.06
= moderate effect, and 0.14 large effect), the magnitude of
the mean differences was large (η2 = 0.86) showing that river
water quality varies largely between the two seasons.

4. Conclusion

In this study, different statistical techniques were used to
assess temporal variation in surface water quality of the
Jakara River Basin. DA rendered an important data reduction
as it uses only five and six parameters (DO, COD, pH, NH3,
and Cl and DO, BOD5, SS, salinity, turbidity, and Cl) afford-
ing more than 96% and 68% correct assignation for dry and
wet seasons, respectively. Thus, DA allowed reduction in
the dimensionality of the large data sets and revealing few
indicator parameters responsible for large variation in water
quality. Further, partial correlation analysis revealed strong
and moderate partial correlation between BOD5 and COD,
TS and DS controlling for the linear effect of HN3 and
conductivity for the dry and wet seasons, respectively.
Multiple linear regressions supported DA and identified the
contribution of each variable with significant value r = 0.988,
R2 = 0.976 and r = 0.970, R2 = 0.942 (P < 0.05) for dry
and wet seasons, respectively. Repeated measure t-test con-
firmed that the surface water quality varies significantly
between dry and wet season samples (P < 0.05). These
statistical tools provided more objective interpretation of
water quality variables, and, from the analyses, it is clear
that DO, COD, BOD5, NH3, Cl, SS, turbidity, pH, and
salinity were found to be the most abundance parameters
responsible for water quality variation in the Jakara River
Basin. Consequently, this study suggests that further studies
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Table 6: Estimates of coefficients of the model (wet season) of parameters in mg/L.

Beta unstandardized coefficient Std. error Beta standardized coefficient t-value P value

(Constant) 40.689 7.211 5.642 0.000

DO 23.952 2.058 0.547 11.639 0.000

BOD5 −17.866 1.654 −0.491 −10.805 0.000

SS −5.825 0.953 −0.292 −6.11 0.000

TS 16.979 5.225 0.668 3.25 0.003

Cl −10.995 4.078 −0.545 −2.696 0.011

R = 0.970; R2 = 0.942; Adj. R2 = 0.933.

in this area should be conducted to identify the sources of
these parameters revealed by statistical techniques, so as to
control the menace.
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