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Abstract: The delivery of docosahexanoic acid (DHA) to the fetus is dependent on maternal one-
carbon metabolism, as the latter supports the hepatic synthesis and export of a DHA-enriched
phosphatidylcholine molecule via the phosphatidylethanolamine N-methyltransferase (PEMT) path-
way. The following is a post-hoc analysis of a choline intervention study that sought to investigate
whether common variants in one-carbon metabolizing genes associate with maternal and/or fetal
blood biomarkers of DHA status. Pregnant women entering their second trimester were randomized
to consume, until delivery, either 25 (n = 15) or 550 (n = 15) mg choline/d, and the effects of genetic
variants in the PEMT, BHMT, MTHFD1, and MTHFR genes on DHA status were examined. Variant
(vs. non-variant) maternal PEMT rs4646343 genotypes tended to have lower maternal RBC DHA
(% total fatty acids) throughout gestation (6.9% vs. 7.4%; main effect, p = 0.08) and lower cord
RBC DHA at delivery (7.6% vs. 8.4%; main effect, p = 0.09). Conversely, variant (vs. non-variant)
maternal MTHFD1 rs2235226 genotypes exhibited higher cord RBC DHA (8.3% vs. 7.3%; main effect,
p = 0.0003) and higher cord plasma DHA (55 vs. 41 µg/mL; main effect, p = 0.05). Genotype tended to
interact with maternal choline intake (p < 0.1) to influence newborn DHA status for PEMT rs4646343
and PEMT rs7946. These data support the need to consider variants in one-carbon metabolic genes in
studies assessing DHA status and requirements during pregnancy.
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1. Introduction

Docosahexanoic acid (DHA) is a long-chain, omega 3 polyunsaturated fatty acid
(22:6n-3) necessary for normal brain growth and cognitive development [1,2]. Although
data are mixed [3], DHA supplementation is recommended throughout pregnancy to
support fetal cognitive and retinal development [4] with emerging evidence supporting a
protective effect on birth outcomes, such as preterm birth [5].

DHA circulates in several forms with a significant fraction found esterified within
phosphatidylcholine (PC) molecules; such DHA-enriched PCs are a major end-product
of the hepatic phosphatidylethanolamine N-methyltransferase (PEMT) pathway [6]. The
PEMT pathway is a major consumer of one-carbon (methyl) units derived from nutrients
such as choline and folate. Indeed, supplementation with choline has been shown to im-
prove DHA bioavailability in women of reproductive age [7] as well as pregnant women [8]
by bolstering methyl group supply for PEMT activity.

The presence of common variants in genes involved in the metabolism of choline
and folate have the potential to influence the bioavailability of DHA. For example, genes,
such as BHMT, MTHFD1, and MTHFR, all play a central role in the provision of methyl
groups ultimately utilized by the PEMT pathway (Figure 1). Notably, variants within these
genes, as well as common variants within PEMT, have previously been shown to influence
biomarkers of both choline and folate metabolism [9–11]. Thus, the current analysis
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sought to investigate whether common variants in one-carbon metabolizing genes associate
with maternal and/or fetal blood biomarkers of DHA status. The interactive effects of
genotype and maternal choline intake were also assessed. Ultimately, these data, and future
analyses spurred by this investigation, are expected to inform more individualized dietary
recommendations and contribute to the growing field of precision nutrition.

Nutrients 2022, 14, x FOR PEER REVIEW 2 of 10 
 

 

to investigate whether common variants in one-carbon metabolizing genes associate with 
maternal and/or fetal blood biomarkers of DHA status. The interactive effects of genotype 
and maternal choline intake were also assessed. Ultimately, these data, and future anal-
yses spurred by this investigation, are expected to inform more individualized dietary 
recommendations and contribute to the growing field of precision nutrition. 

 
Figure 1. The role of one-carbon metabolism in phosphatidylcholine synthesis through the phos-
phatidylethanolamine N-methyltransferase (PEMT) pathway. Key enzymes are underlined. BHMT: 
betaine-homocysteine S-methyltransferase; MTHFD1: methylenetetrahydrofolate dehydrogenase; 
MTHFR: methylenetetrahydrofolate reductase; PEMT: phosphatidylethanolamine N-methyltrans-
ferase; SHMT1: serine hydroxymethyltransferase 1. * Denotes the domain of the MTHFD1 tri-func-
tional enzyme containing the rs2235226 variant. 

2. Materials and Methods 
2.1. Study Design and Participants 

The current study is a post-hoc analysis of a randomized choline intervention study 
[8]. Healthy pregnant women (21–40 years of age, BMI < 32, and between 12–16 gestational 
weeks) were recruited in Ithaca, NY, between October 2017 and April 2019. Participants 
were randomized into either a control group (25 mg choline/d; n = 15) or an intervention 
group (550 mg choline/d; n = 15) from gestational week 12–16 through delivery. Through-
out the study, all participants consumed a self-selected diet along with a daily 200 mg 
DHA supplement (Nature’s Way EfaGold Neuromins 200 mg DHA [plant source]; DSM 
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CA, USA). Compliance with the study protocol was monitored via the return of supple-
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ter in Ithaca, NY, USA (where women delivered their babies). All participants gave writ-
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2.2. Data Collection 
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DNA was extracted from blood buffy coat using a DNEasy kit (DNEasy Blood and 
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Figure 1. The role of one-carbon metabolism in phosphatidylcholine synthesis through the
phosphatidylethanolamine N-methyltransferase (PEMT) pathway. Key enzymes are underlined.
BHMT: betaine-homocysteine S-methyltransferase; MTHFD1: methylenetetrahydrofolate dehy-
drogenase; MTHFR: methylenetetrahydrofolate reductase; PEMT: phosphatidylethanolamine N-
methyltransferase; SHMT1: serine hydroxymethyltransferase 1. * Denotes the domain of the MTHFD1
tri-functional enzyme containing the rs2235226 variant.

2. Materials and Methods
2.1. Study Design and Participants

The current study is a post-hoc analysis of a randomized choline intervention study [8].
Healthy pregnant women (21–40 years of age, BMI < 32, and between 12–16 gestational
weeks) were recruited in Ithaca, NY, between October 2017 and April 2019. Participants
were randomized into either a control group (25 mg choline/d; n = 15) or an intervention
group (550 mg choline/d; n = 15) from gestational week 12–16 through delivery. Through-
out the study, all participants consumed a self-selected diet along with a daily 200 mg
DHA supplement (Nature’s Way EfaGold Neuromins 200 mg DHA [plant source]; DSM
Nutritional Products; Heerlen, The Netherlands), and an over-the-counter prenatal vita-
min/mineral supplement (Nature Made Prenatal Tablet; Pharmavite LLC; San Fernando,
CA, USA). Compliance with the study protocol was monitored via the return of supplement
containers. The study was approved by the Institutional Review Board for Human Study
Participant Use at Cornell University in Ithaca, NY, USA and Cayuga Medical Center in
Ithaca, NY, USA (where women delivered their babies). All participants gave written
informed consent before enrollment.

2.2. Data Collection

Participants visited the Human Metabolic Research Unit (HMRU) at Cornell University
(Ithaca, NY, USA) three times throughout their pregnancy. The first visit was between
weeks 12 and 16; the second, between weeks 20 and 24; and the third between weeks 28 and
32. During each visit, participants were given their daily supplements (described above)
and provided a fasting blood sample. Maternal blood and fetal cord blood were collected
at delivery.

2.3. Genotyping and Analytical Measurements

DNA was extracted from blood buffy coat using a DNEasy kit (DNEasy Blood and
Tissue Kit; Qiagen, Hilden, Germany), and re-precipitated with ethanol to increase quality
and concentration. Five single nucleotide polymorphisms (SNPs), rs4646343 and rs7946
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in the PEMT gene, rs11081133 in the MTHFR gene, rs2236225 in the MTHFD1 gene, and
rs3733890 in the BHMT gene, were determined using a fluorescence-based hybridization
assay with a master mix (TaqManTM Genotyping Master Mix; catalog Number: 4371355;
Thermofisher Scientific; Waltham, CA, USA) and probe (TaqManTM Genotyping Assay,
human; catalog number 4351379; Thermofisher Scientific; CA, USA) according to the
instructions of the manufacturer.

Fatty acid composition of maternal and cord washed RBCs, as well as maternal and
cord plasma, was measured via gas chromatography (GC) coupled to a flame ionization
detector at OmegaQuant® [8]. DHA content is expressed as a percent of total fatty acids in
RBCs, and as an absolute concentration in plasma.

2.4. Statistical Analysis

All statistical analyses were performed with R (version 1.1.419). Mixed linear models
were employed to examine the effect of maternal genotype on maternal RBC and maternal
plasma DHA content. Each model included genotype, choline intervention arm, and
time (study visit) as fixed effects and participant ID as a random effect. Additionally,
the interaction terms, genotype x time and genotype x choline intervention arm, were
included to assess whether the effect of genotype was modified by either study time-point or
maternal choline intake. Generalized linear models were utilized to assess the relationship
of maternal and newborn genotype to cord RBC and cord plasma DHA content; fixed
effects included genotype and choline intervention arm, and interactive effects between
these two variables was considered. All p-values ≤ 0.05 were considered significant; given
the exploratory nature of the study, p-values less than 0.15 were considered as trends.

Line plots were made using the least square means (LSMs) data, with confidence
intervals as error bars, and box plots were made using raw data. Visualization was
performed using the R ggplot2 package.

3. Results
3.1. Participant Characteristics

This post-hoc analysis included genotype data from 30 pregnant women and 28 of their
newborns. The frequency of maternal and newborn genotypes in each choline intervention
arm are shown in Table 1, while demographic and clinical characteristics by maternal
genotype are shown in Table 2. The frequency of variants and non-variants did not differ
(p > 0.05) by choline intervention arm, and no differences (p > 0.05) were detected in the
demographic and clinical characteristics within a maternal genotype.

3.2. Study Outcomes

The outputs of the regression models for each genotype (maternal and newborn) are
shown in Supplementary Table S1 (p-values for maternal genotype), Table S2 (p-values for
newborn genotype), and Table S3 (DHA outcome values).

3.2.1. PEMT rs4646343

Carriers (versus non-carriers) of the maternal PEMT rs4646343 variant exhibited
borderline lower DHA as a percentage of total fatty acids in RBCs (RBC-DHA) in both the
maternal and fetal compartments. Compared to non-variants, pregnant women who carried
the variant allele tended to have lower RBC-DHA across the duration of the study (6.9%
vs. 7.4%; main effect, p = 0.08) (Figure 2A) and lower cord RBC-DHA upon delivery (7.6%
vs. 8.4%; main effect, p = 0.09) (Figure 2B). Carriers (versus non-carriers) of the maternal
PEMT rs4646343 variant did not exhibit significantly different amounts of maternal plasma
DHA (main effect, p = 0.54) or cord plasma DHA (main effect: p = 0.50). Similarly, carriers
(versus non-carriers) of the newborn PEMT rs4646343 variant did not exhibit significantly
different amounts of cord RBC-DHA (main effect, p = 0.82) or cord plasma DHA (main
effect, p = 0.48).
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Table 1. Frequency of maternal (n = 30) and newborn (n = 28) genotypes by choline intervention arm 1.

Genotype Control Intervention

PEMT rs4646343 (Maternal)
Non-variant 5 4

Variant 10 11
PEMT rs4646343 (Newborn)

Non-variant 6 5
Variant 9 8

PEMT rs7946 (Maternal)
Non-variant 5 8

Variant 10 7
PEMT rs7946 (Newborn) 2

Non-variant 6 6
Variant 8 7

BHMT rs3733890 (Maternal)
Non-variant 7 9

Variant 8 6
BHMT rs3733890 (Newborn)

Non-variant 8 8
Variant 7 5

MTHFD1 rs2236225 (Maternal)
Non-variant 4 3

Variant 11 12
MTHFD1 rs2236225 (Newborn)

Non-variant 7 4
Variant 8 9

MTHFR rs11081133 (Maternal)
Non-variant 9 9

Variant 6 6
MTHFR rs11081133 (Newborn) 2

Non-variant 8 5
Variant 7 7

1 No differences (p > 0.05) were detected in genotype frequency between the control and intervention groups.
2 Lower sample number in genotype is due to missing data from one newborn.

Table 2. Maternal clinical and demographic characteristics by maternal genotype 1.

PEMT
rs4646343

PEMT
rs7946

BHMT
rs3733890

MTHFD1
rs2236225

MTHFR
rs11081133

Non-
Variant
(n = 9)

Variant
(n = 21)

Non-
Variant
(n = 13)

Variant
(n = 17)

Non-
Variant
(n = 7)

Variant
(n = 23)

Non-
Variant
(n = 13)

Variant
(n = 17)

Non-
Variant
(n = 7)

Variant
(n = 23)

Intervention
Control 5 10 5 10 4 11 5 10 4 11

Intervention 4 11 8 7 3 12 8 7 3 12

Age, y
[mean (SD)] 31.6 (2.9) 31.9 (5.2) 33.9 (3.0) 33.9 (3.0) 31.4 (4.0) 31.8 (4.0) 31.0 (4.3) 32.3 (3.6) 31.4 (4.0) 31.8 (4.0)

Maternal Race
White 8 20 12 16 7 21 12 16 7 21

Non-White 1 1 1 1 0 2 1 1 0 2

Maternal
Ethnicity

Non-Hispanic 7 21 12 16 6 22 12 16 6 22
Hispanic 2 0 1 1 1 1 1 1 1 1

Pre-Pregnancy BMI
[mean (SD)] 23.6 (3.7) 23.9 (3.4) 23.3 (2.7) 23.3 (2.7) 23.9 (2.7) 23.6 (3.8) 23.2 (3.2) 24.1 (3.7) 23.9 (2.7) 23.6 (3.8)

Gestational Age, week
[mean (SD)] 13.1 (2.5) 13.8 (1.9) 14.1 (1.8) 14.1 (1.8) 13.6 (1.4) 13.3 (2.5) 12.5 (2.8) 14.0 (1.6) 13.6 (1.4) 13.3 (2.5)

Baseline RBC-DHA,
% fatty acids
[mean (SD)]

5.9 (0.9) 6.2 (1.0) 6.1 (1.1) 6.1 (1.1) 5.6 (1.1) 6.1 (0.8) 5.9 (0.7) 6.1 (1.0) 5.6 (1.1) 6.1 (0.8)

Baseline plasma DHA,
µg/mL

[mean (SD)]
88 (20) 90 (30) 91 (33) 91 (33) 78 (9) 92 (26) 82 (13) 94 (29) 78 (9) 92 (26)

1 No differences (p > 0.05) were detected in genotype frequency between the control and intervention groups.
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Figure 2. Relationship between maternal PEMT rs4646343 genotype and RBC-DHA (% of total
fatty acids). (A) Maternal RBC-DHA throughout gestation (LSM ± confidence interval); (B) cord
RBC-DHA at delivery (raw data boxplot).

The maternal PEMT rs4646343 genotype tended to interact with choline intake to
influence cord plasma DHA (interaction effect, p = 0.09). While no significant differences in
cord plasma DHA were detected between intervention arms among non-variant pregnant
women (p = 0.30), DHA content in cord plasma tended to be higher among variant pregnant
women who were supplemented with choline versus variant pregnant women who were
not supplemented with choline (p = 0.12) (Figure 3).
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The maternal or newborn PEMT rs4646343 genotype did not significantly interact
with time or choline intervention arm for other maternal or cord biomarkers of DHA status
(Supplementary Tables S1 and S2).

3.2.2. MTHFD1 rs2236225

Carriers (versus non-carriers) of the maternal MTHFD1 rs2236225 variant exhibited
higher DHA in cord RBCs (8.3% vs. 7.3%; main effect, p = 0.0003) (Figure 4A) and higher
cord plasma DHA (55 vs. 41 µg/mL; main effect, p = 0.05) (Figure 4B). Carriers (versus non-
carriers) of the maternal MTHFD1 rs2236225 variant did not exhibit significantly different
amounts of maternal RBC-DHA (main effect, p = 0.22) or maternal plasma DHA (main
effect, p = 0.23). Similarly, carriers (versus non-carriers) of the newborn MTHFD1 rs2236225
variant did not exhibit significantly different amounts of cord RBC-DHA (main effect,
p = 0.31) or cord plasma DHA (main effect, p = 0.55).
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The maternal or newborn MTHFD1 rs2236225 genotype did not significantly interact
with time or choline intervention arm for any maternal or cord biomarkers of DHA status
(Supplementary Tables S1 and S2).

3.2.3. PEMT rs7946

Carriers (versus non-carriers) of the maternal PEMT rs7946 variant tended to have
higher maternal plasma DHA (main effect, p = 0.12). No additional main effects of the
maternal or fetal PEMT rs7946 genotype were detected on other biomarkers of DHA status
in the maternal or fetal compartment (Supplementary Tables S1 and S2).

The newborn PEMT rs7946 genotype tended to interact with choline intake to influ-
ence cord plasma DHA (interaction effect, p = 0.08). While no significant differences in
cord plasma DHA were detected between choline intervention arms among non-variant
newborns (p = 0.32), DHA content in cord plasma tended to be higher among variant
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newborns whose mothers were supplemented with choline versus variant newborns whose
mothers were not supplemented with choline (p = 0.12) (Figure 5).
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The maternal PEMT rs7946 genotype also tended to interact with choline intake to
influence maternal plasma DHA (interaction effect, p = 0.10). However, upon stratification
by choline intervention arm and further analysis, it became clear that this interaction
arose from differences between the intervention arms within the same genotype at baseline.
When these baseline differences were controlled for in the statistical analysis, the interaction
term became non-significant (main effect of baseline, p = 0.003; main effect of interaction,
p = 0.48).

The maternal or newborn PEMT rs7946 genotype did not significantly interact with
time or choline intervention arm for other maternal or cord biomarkers of DHA status
(Supplementary Tables S1 and S2).

3.2.4. BHMT rs3733890

Carriers (versus non-carriers) of the newborn BHMT rs3733890 variant exhibited
lower cord RBC-DHA (7.7% vs. 8.4%; main effect, p = 0.01). No additional main effects of
the maternal or newborn BHMT rs3733890 genotype on other biomarkers or DHA status
were detected.

The maternal BHMT rs3733890 genotype interacted with choline intake to influence
maternal plasma DHA (interaction effect, p = 0.05). However, upon stratification by
intervention arm and further analysis, it became clear that this interaction arose from
differences between the choline intervention arms within the same genotype at baseline.
When these baseline differences were controlled for in the statistical analysis, the interaction
term became non-significant (main effect of baseline, p = 0.0007; main effect of interaction,
p = 0.15).

The maternal or newborn BHMT rs3733890 genotype did not significantly interact
with time or choline intervention arm for other maternal or cord biomarkers of DHA status
(Supplementary Tables S1 and S2).
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3.2.5. MTHFR rs11081133

The maternal or newborn MTHFR rs11081133 genotype was not significantly associ-
ated with any of the maternal and cord measures of DHA status; model outputs are shown
in Supplementary Tables S1 and S2. Trends toward a significant interaction of MTHFR
rs110811 genotype and time were observed for maternal RBC-DHA (p = 0.14).

4. Discussion

This post-hoc analysis, conducted in pregnant women and their newborns, sought to
investigate the effects of five common variants found in one-carbon metabolizing genes on
biomarkers of DHA status. Two main findings emerged: (i) carriers of the maternal PEMT
rs4646343 variant exhibited borderline lower DHA in maternal RBC membranes across
gestation, and (ii) carriers of the maternal MTHFD1 rs2236225 variant exhibited higher
DHA in cord plasma and cord RBC at delivery.

PEMT performs three sequential methylation reactions to convert phosphatidylethanolamine
into phosphatidylcholine (PEMT-PC), using S-adenosylmethionine as a methyl donor [12].
The PEMT pathway has been shown to produce DHA-enriched PC, making genetic variants
in the PEMT pathway putative modifiers of DHA status [6,13,14]. The promoter region of
the PEMT gene has several estrogen-response elements (EREs) that allow for upregulation
during pregnancy [15]. The PEMT rs4646343 variant has been found to be in high linkage
disequilibrium with a second, functional SNP, PEMT rs12325817. PEMT rs12325817 is
proximal to one of these EREs and has been associated with a disrupted ability of PEMT to
respond to estrogen regulation [16]. In the current study, carriers of the PEMT rs4646343
variant tended to have lower DHA in maternal RBCs throughout gestation (6.9% vs. 7.4%;
p = 0.08) and lower cord RBC-DHA upon delivery (7.6% vs. 8.4%; p = 0.09), which is
consistent with impaired upregulation of the PEMT gene. This could indicate that carriers
of this variant require higher DHA intakes in order to achieve a maternal DHA status that
is similar to their non-carrier counterparts.

MTHFD1 is a tri-functional enzyme that catalyzes the interconversions of tetrahydro-
folate (THF), 10-formyl-THF, 5,10-methenyl-THF, and 5,10-methylene-THF (Figure 1) [12].
Overwhelmingly, this series of reactions occurs in the order outlined above. The MTHFD1
rs2236225 variant resides in the 10-formyl-THF synthetase domain, and while this poly-
morphism does not affect the enzyme’s ability to perform its synthetase activity, it has
been found to decrease its half-life and stability [17]. In the present study, carriers of the
maternal MTHFD1 rs2235226 variant exhibited higher cord RBC-DHA (8.3% vs. 7.3%;
p = 0.0003) and higher DHA in cord plasma (55 vs. 41 µg/mL; p = 0.05). This finding was
unexpected since a decreased half-life should diminish 5,10-methylene-THF formation,
ultimately reducing the supply of methyl groups for the PEMT pathway (Figure 1). Fur-
thermore, previous studies in mice have shown that heterozygosity for a copy of MTHFD1
with no synthetase activity, effectively blocking the MTHFD1 pathway, has deleterious
consequences on one-carbon metabolism, and results in lower concentrations of methionine
in plasma [18]. One possible explanation for our unexpected finding is that a different
enzyme compensates for these impairments in one-carbon metabolism. Serine hydrox-
ymethyltransferase 1 (SHMT1) bypasses the MTHFD1 pathway by using serine to convert
THF into 5,10-methylene-THF [12], and mice with a compromised MTHFD1 pathway have
lower concentrations of serine in their plasma, suggesting an upregulation of SHMT1 [18].
Thus, it is possible that SHMT1 becomes upregulated to rescue one-carbon metabolism
in carriers of the MTHFD1 2235226 variant, thereby supporting PEMT activity (Figure 1).
Nonetheless, this hypothesis is not fully satisfactory since increases in DHA were not
observed in the maternal compartment, and PEMT is not expressed in placenta or fetal liver.
Compensatory mechanisms at the level of the placenta should be investigated, including
fatty acid transport and endogenous synthesis of DHA.

Two interactions between genotype and maternal choline intake were detected, sug-
gesting that choline intake during pregnancy may influence the impact of select one-carbon
metabolic genes. Carriers of the variant allele for the maternal PEMT rs4646343 genotype
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and newborn PEMT rs7946 genotype tended to exhibit higher DHA content in cord plasma
amongst mothers consuming the higher (versus lower) choline intake level. While it is
possible that a higher maternal choline intake rescues the effects of these variants, further
analysis with larger cohorts is needed to confirm these findings. Indeed, the main limitation
of this study is its small sample size, which can yield spurious results.

To conclude, two common genetic variants, namely PEMT rs4646343 and MTHFD1
rs2236225, were found to be associated with biomarkers of DHA status in this pregnancy
cohort. These findings highlight the potential importance of considering variants in one-
carbon metabolizing genes when assessing DHA status or determining DHA requirement,
particularly at the level of the individual. Such assessments may be especially important
among pregnant mothers with other risk factors for low DHA status such as obesity [19,20].
Further research in larger cohorts assessing the relationship of these variants to DHA
status and related outcomes (e.g., cognition, pre-term birth), as well as whether DHA
supplementation can attenuate the effects of the PEMT rs4646343 variant, is warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14183801/s1, Table S1: P-values for regression models by
maternal genotype and outcome variable. For genotype, table shows non-variant vs variant; and
for intervention, table shows control vs. intervention. Table S2: P-values for regression models by
newborn genotype and outcome variable. For genotype, table shows non-variant vs variant; and for
intervention, table shows control vs. intervention. Table S3: DHA biomarker values for all regression
models by genotype and outcome variable. The values are estimated marginal means derived from
the model ± confidence interval.
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