

Meta-analysis of the effectiveness of combined enteral nutrition therapy for inflammatory bowel disease

Yun Wu, MDa, Zhenyu Jiang, MDa, *D, Gu Ge Su Ri, MDa, Lu Wang, MDa, Feilong Tian, MDa, Lin Liu, MDa

Abstract

Background: So far, there are still many difficulties in the treatment of inflammatory bowel disease (IBD), among which enteral nutrition (EN) is the most valuable and controversial treatment. Therefore, this study will compare the effectiveness of conventional medication with EN in the treatment of inflammatory bowel disease.

Methods: Searching the Pubmed, Embase, Web of Science, Cochrane Library, Clinical trial, CNKI, Chinese biomedical literature, VIP, and Wanfang databases, Randomized controlled trials and cohort studies on conventional drug + EN and conventional drug therapy for IBD were also retrieved, The data of their efficiency and nutritional status (hemoglobin, albumin, and body mass index) were extracted independently, After a qualitative evaluation of the included literature. The meta-analysis was performed using the RevMan5.3 software.

Results: A total of 33 study articles were included, including 2466 IBD patients, 1248 patients in the test group (conventional drugs combined with EN), and 1218 patients in the control group (conventional drugs). The meta-analysis showed that the clinical response of conventional drugs with EN for IBD was higher than the conventional drug group (RR = 1.25, 95% CI: 1.17–1.34, Z = 6.37, P < .00001); incidence of total adverse effects: compared with the combination group (RR = 0.98, 95% CI: 0.64–1.48, Z = 0.11, P = .91). Nutritional status: hemoglobin, albumin, and body mass index in the combined EN group were significantly higher than those in the control group.

Conclusion: For IBD patients (including UC and CD), the combination of conventional drugs and EN was more effective than conventional drug treatment alone, hemoglobin, albumin and body mass index were significantly higher than conventional drug treatment alone, and the difference in adverse reactions was not significant. However, the current research evidence is not enough to fully prove the reliability of the combination therapy, and further studies need to be verified in the future.

Abbreviations: ADA = adalimumab, BMI = body mass index, CD = Crohn's disease, CI = confidence interval, CNKI = China National Knowledge Infrastructure, EEN = Exclusive Enteral Nutrition, EN = enteral nutrition, ESPEN = European Society for Parenteral and Enteral Nutrition, IBD = inflammatory bowel disease, IFX = infliximab, iNOS = inducible nitric oxide synthase, MD = mean difference, MPO = myeloperoxidase, NOS = Newcastle—Ottawa Scale, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, RCT = randomized controlled trial, RR = relative risk, TNBS = 2,4,6-trinitrobenzenesulfonic acid, TNF = tumor necrosis factor, UC = ulcerative colitis, VIP = Very Important Paper (Database).

Keywords: enteral nutrition, inflammatory bowel disease, meta-analysis

1. Introduction

Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease in the department of gastroenterology. IBD can be divided into ulcerative colitis (UC) and Crohn's disease (CD), and patients usually develop intestinal symptoms such as abdominal pain, diarrhea, dyspepsia, and blood in the

stool, some may have parenteral manifestations. The pathogenesis of this disease is complex, and it is considered to be the result of multifactor interaction of genes, environment, immunity and microorganisms.^[1] Clinically, the drug treatment of inflammatory bowel disease mainly includes 5-aminosalicylic acid, glucocorticoids, immunosuppressants, biological agents and others.^[2] While there has been some evidence of efficacy with

Baotou Health Science and Technology Plan: wsjkkj2022053.

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

The research did not involve in any human or animal research, therefore there was no ethical approval from any ethics committee.

Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Wu Y, Jiang Z, Su Ri GG, Wang L, Tian F, Liu L. Metaanalysis of the effectiveness of combined enteral nutrition therapy for inflammatory bowel disease. Medicine 2024;103:49(e40499).

Received: 19 September 2023 / Received in final form: 9 March 2024 / Accepted: 17 May 2024

http://dx.doi.org/10.1097/MD.000000000040499

^a Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.

^{*} Correspondence: Zhenyu Jiang, Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Qingshan District, Baotou, Inner Mongolia 014300, China (e-mail: wuyunxhk@163.com).

conventional medication treatment, many people return after a time of remission. The length of the treatment regimen, which might occasionally last a lifetime, has a substantial influence on disease management.

Patients with IBD are at high risk of malnutrition, mainly nutritional deficiency, which can be by decreased body mass, decreased muscle mass, negative nitrogen balance, hypoproteinemia, micronutrient deficiency, anemia, low bone mass, and osteoporosis.[3-5] Malnutrition in IBD patients can have a serious impact on the recovery, affect the quality of life of patients, and is also an important factor for the poor prognosis of IBD. The efficacy of supportive nutrition therapy for IBD has been recognized as crucial to the current treatment of IBD. Nutritional support includes enteral nutrition (EN) and parenteral nutrition support. At present, many studies have proved that the enteral nutrition (EN) is more effective on IBD than parenteral nutrition, which may be related to lower incidence of complications and lower treatment cost; In addition, EN is currently considered the basic nutritional factor of intestinal mucosa, which also prevents bacterial displacement and maintains gastrointestinal function.^[5] The ESPEN guidelines also recommend that EN should always be prioritized over parenteral nutrition for IBD,[6] unless completely contraindicated.

EN provides essential nutrients directly to the body and intestinal mucosa, regulate intestinal flora, reduce inflammation of intestinal mucosa, improve intestinal permeability, and promote intestinal mucosa healing, and play an important role in inducing and maintaining IBD remission, as well as reducing postoperative recurrence. Numerous studies have demonstrated that total EN therapy is an effective treatment measure for pediatric CD patients, and it has been recommended as the first-line treatment. However, for adult CD patients, the British Society of Gastroenterology recommends steroids, immunosuppressants or surgical as preferred treatments, with Exclusive Enteral Nutrition (EEN) reserved for cases where 5-aminosalicylic acid is ineffective or contraindicated due to steroids. [7] The treatment of IBD currently remains great challenges, and EN remains a controversial but promising treatment modality for adult IBD patients.[8] The effectiveness and safety of EN, especially when paired with conventional therapy, are gaining attention despite the difficulties in treating IBD and the debates surrounding it.. This study aims to evaluate, the efficacy and safety of this combines approach, as well as its impact on nutritional status, through comprehensive meta-analysis to inform future clinical treatment.

2. Data and methods

PRISMA criteria were adhered to in this meta-analysis, and the PRISMA Statement checklist for reporting systematic reviews was used. The research did not involve any human or animal research, therefore there is no ethical approval from any ethics committee.

2.1. Literature search

Search the Chinese and English databases: CNKI, Wanfang database (WanFang), VIP database (VIP), PubMed, Embase, Cochrane Library, Web of Science. The time limit for database searches extended until August 2023. For Chinese databases, search terms included: inflammatory bowel disease, Crohn's disease, ulcerative colitis, enteral nutrition. For English databases, search terms included: inflammatory bowel disease, ulcerative colitis, Crohn's disease, enteral nutrition, elemental diet, medical foods, and polymeric diet. Cohort studies and randomized controlled trials were included, both in Chinese and English.

2.2. Inclusion and exclusion criteria

2.2.1. Inclusion criteria. Study type: randomized controlled trial and cohort studies investigating conventional drugs combined with EN for IBD. Subjects: patients diagnosed with IBD, aged 18 years regardless of gender, race or nationality. Interventions: comparison between a test group receiving conventional drugs combined with EN and a control group receiving conventional drugs alone; control group for IBD alone. clear efficacy criteria in the study.

2.2.2. Exclusion criteria. Any of the following cases in the study was excluded: non-IBD patients; studies involving children as subjects; reviews, letters to the editor, and case analysis; repeated the published literature.

2.3. Data extraction

The relevant data for inclusion in the study comprised the research topic, year, population characteristics, sample size, follow-up time, intervention measures, efficacy indicators, and results. Two independent researchers extracted the data and, in case of disagreement, discussed the issues or solicit opinions from a third party.

2.4. Literature evaluation

The literature quality of the included randomized controlled trials was evaluated by 2 evaluators against the risk of bias criteria in the Cochrane systematic evaluation manual. The literature quality of the cohort study was evaluated using the Newcastle Ottawa scale.

2.5. Statistical analysis

Data analysis was performed using the RevMan 5.3 software. The Q test was used to assess heterogeneity among studies: when $I^2 \le 50\%$, $P \ge .1$, less heterogeneity of included studies; when $I^2 > 50\%$, P < .1, more heterogeneity of included studies, indicated that source of heterogeneity should be analyzed for subgroup analysis and the study results should be interpreted. Since various baseline treatment drugs may cause heterogeneity, random effects models were employed. For the analysis relative risk (RR), mean difference (MD) and 95% confidence intervals (Cis) were calculated for categorical data, with P < .05 indicating statistically significance.

3. Results

3.1. Literature search

A total of 7329 articles were retrieved using Endnote to remove duplicate literature, abstracts, and full articles; 33 studies were included (13 studies for UC, 16 studies for CD, 4 studies did not distinguish IBD types; 22 Chinese articles, and 11 English articles). The literature screening process is shown in Figure 1.

3.2. Basic characteristics and quality evaluation of the literature

A total of 2466 subjects were included, 1248 in the test group (conventional drug + EN) and 1218 in the control group (conventional drug). The types of patients had definite IBD (Table 1). Among them, RCT 18, 15 cohort studies; literature quality evaluation: 11 high qualities, 22 moderate qualities (Table 1).

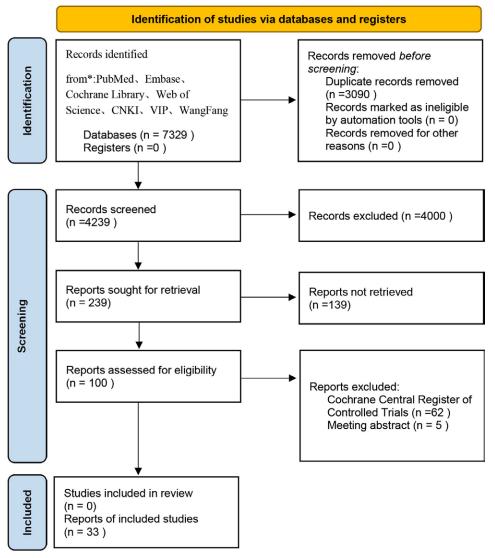


Figure 1. Flow chart of literature screening.

3.3. Meta-analytic result

3.3.1. Effective rate. A sum of 25 studies on IBD^[9-19,22-34,38] reported effective rates with low heterogeneity between studies (P = .02, $I^2 = 41\%$) using random effects model analysis, conventional drugs combined with EN were significantly more effective in IBD than in conventional drugs alone, with statistically significant differences (RR = 1.25, 95% CI: 1.17–1.34, Z = 6.37, P < .00001; Fig. 2). Among them, 11 studies on UC^[9-19] showed high heterogeneity (P = .002, $I^2 = 64\%$). Meta-analysis using random effects model showed that the clinical response rate of conventional therapy combined with EN for UC was statistically significant (RR = 1.29, 95% CI: 1.13~1.47, Z = 3.82, P = .0001; Fig. 2).

Among them, 13 studies^[22–34] on CD showed little heterogeneity between (P = .24, I² = 20%). The random effects model analysis showed the clinical response rate of CD compared with conventional treatment alone (RR = 1.22, 95% CI: 1.12–1.32, Z = 4.77, P < .00001; Fig. 2).

3.3.2. Subgroup analysis (effective rate). Among them, 11 studies^[9–19] on the English literature in meta-analysis using random-effects models showed that the clinical response rate of conventional therapy combined with EN was significantly higher and statistically significant (RR = 1.22, 95% CI:

1.08–1.39, Z=3.19, P=.001). Among them, 14 studies^[22–34,36] on the Chinese literature conducted in meta-analysis using random effects models showed that the clinical response rate of conventional therapy combined with EN was significantly higher, with statistically significant differences (RR = 1.27, 95% CI: 1.16–1.38, Z=5.25, P<.0001).

Among the 20 studies^[11-19,22-32] on high NOS, random-effects models showed significant clinical response compared with EN alone (RR = 1.25, 95% CI: 1.14–1.37, Z = 4.88, P < .0001). Among them, 6 studies on middle NOS,^[23-28] using meta-analysis using random-effects models, showed that the clinical response rate of conventional therapy combined with EN was significantly higher and statistically significant (RR = 1.21, 95% CI: 1.10–1.32, Z = 4.09, P < .0001).

Among these, 10 studies^[24–30,34–36] with 30 days' follow-up using a random-effects model, the clinical response of conventional therapy combined with EN was statistically significant (RR = 1.32, 95% CI: 1.18–1.47, Z = 4.88, P < .0001). Among them, 15 studies^[9–16,22–28] with follow-up time < 30 days in meta-analysis showed that the clinical response rate of conventional therapy combined with EN was significantly higher, with statistically significant differences (RR = 1.21, 95% CI: 1.11–1.32, Z = 4.31, P < .0001).

Among these, 10 studies[11-19,22] of Infliximab (IFX) + EN/IFX using meta-analysis showed that the clinical response rate of

Table 1
Basic characteristics and literature quality of the included literature.

Author	Year	Object of study	N (test group/ control group)	Age (test group/control group)	Intervention (test group/control group)	Follow-up time (test group/ control group)	NOS	Outcome
Horiuchi ^[9]	2016	UC	16/10	The median age was 39 yr	IFX + EN/IFX	2 wk	High	1
Sahu ^[10]	2021	Severe UC	32/30	$32.8 \pm 10.8/37.9 \pm 13.1$	Glucocorticoids + EN/glucocorticoids	7 d	High	1-4
Lu ^[11]	2016	Moderate to severe UC	25/21	$42.1 \pm 7.8/41.2 \pm 7.2$	Mesalazine + Probiotics + EN/Mesala- zine + Probiotics	4 wk	High	1, 3, 4
Gong ^[12]	2009	Mild to mod- erate UC	13/11	44.25 ± 17.69/38.6 ± 10.69	Mesalazine + EN/Mesalazine	14 d	Middle	1
Zhuang ^[13]	2020	Moderate to severe UC	43/42	$44.08 \pm 5.72/43.03 \pm 5.65$	Mesalazine + Probiotics + EN/Mesala- zine + probiotics	4 wk	High	1, 3–5
Yang ^[14]	2016		59/62	$35.6 \pm 10.4/36.2 \pm 11.4$	Compound glutamine + EN/compound glutamine	4 Wk	High	1, 2, 4, 5
Bai ^[15]	2016	UC	27/25	45.15 ± 13.64/42.48 ± 12.22	Conventional drugs + EN/conventional drugs	≥8 wk	High	1-4
Che ^[16]		Mild to mod- erate UC	50/55	42.2 ± 14.6/43.5 ± 15.4	Conventional drugs + EN/conventional drugs	20 d	High	1, 3, 4
Xin ^[17]	2014	UC	23/22	$44 \pm 16/46 \pm 14$	Mesalazine + EN/Mesalazine	7-30 d	Middle	1, 2
Deng ^[18]	2015	Mild to mod- erate UC	16/17	$39.21 \pm 10.13/37.86 \pm 9.82$	Mesalazine + EN/Mesalazine	2 wk	High	1, 2
Cheng ^[19]	2020		45/45	40.15 ± 3.22/40.05 ± 3.15	Compound glutamine + EN/compound gluta- mine + EN	4 wk	High	1, 3, 4
Pan ^[20]	2018	Moderate to severe CD	24/25	$35 \pm 13.7/36 \pm 14.8$	Basic treatment + EN/basic treatment	1 mo	High	3–5
Wang ^[21]	2019	Moderate to severe CD	56/34	44.68 ± 14.12/49.47 ± 16.19	Conventional drugs + EN/conventional drugs	5–25 d	Middle	3–5
Hirai ^[22]	2013	Moderate to severe CD	45/57	$35.7 \pm 1.5/31.2 \pm 1.3$	IFX + EN/IFX	(78 ± 3) wk	High	1, 2
Hirai ^[23]	2019		37/35	$31.6 \pm 12.5/31.9 \pm 12.4$	ADA or IFX + EN/ADA or IFX	2 yr	High	1
Yoshimura ^[24]	2014	Moderate to severe CD	42/34	None	ADA + EN/ADA	4 wk	High	1
Kamata ^[25]	2014	Moderate to severe CD	28/97	$36.9 \pm 7.6/36.1 \pm 10.9$	IFX + EN/IFX	(799 ± 398) d/ (771 ± 497) d	High	1
Sazuka ^[26]	2012	Moderate to severe CD	29/45	31.2	IFX + EN/IFX	85 wk	High	1
Ono ^[27]	2015	Moderate to severe CD	42/38	None	IFX + EN/IFX	3 yr	High	1
Matsumoto ^[28]	2005	Moderate to severe CD	49/12	33/32	IFX + EN/IFX	2 wk	High	1
Yamamoto ^[29]	2010	Moderate to severe CD	32/24	$31 \pm 1.6/33 \pm 1.6$	IFX + EN/IFX	56 wk	High	1
Tanaka ^[30]	2006	Moderate to severe CD	51/59	None	IFX + EN/IFX	16 wk	High	1
Zhang ^[31]	2019		40/40	38.52 ± 1.54/38.56 ± 1.68	Mesalazine + prednisone + EN/Mesala- zine + prednisone	2 wk	Middle	1
Shi ^[32]	2020	Mild to mod- erate CD	45/44	32.2 ± 10.3/31.2 ± 11.0	IFX + EN/IFX	12 wk	Middle	1–5
Hu ^[33]	2015	Moderate to severe CD	30/30	$32.1 \pm 8.4/32.6 \pm 8.2$	IFX + EN/IFX	6 wk	Middle	1, 2, 5
Zhao ^[34]	2015		46/46	$38.8 \pm 7.4/39.3 \pm 7.6$	Mesalazine + prednisone + EN/Mesala- zine + prednisone	14 d	Middle	1, 4
Zhu ^[35]	2005	CD	31/8	$11-69 (35 \pm 13)$	hormone + EN/hormone	4 wk	Middle	3, 4
Gong ^[36]	2009		42/20	34.2 ± 13.3/36.2 ± 12.2	TWP + EN/TWP	12 wk	High	3–5
Qu ^[37]	2019		48/48	$38.45 \pm 5.40/39.42 \pm 5.27$	Parenteral nutrition at 4 wk before surgery + EN/ parenteral nutrition at 4 wk before surgery	3 mo	High	2–5
Xia ^[38]	2020	IBD	41/41	$37.53 \pm 8.33/39.85 \pm 7.69$	Mesalazine + prednisone + EN/Mesalazine + prednisone	None	High	1
Wang ^[39]	2016	IBD	57/57	21-65 (43.61 ± 1.70)	Basic treatment + EN/basic treatment	None	High	2, 4, 5
Peng ^[40]	2020		43/43	44.21 ± 5.68/42.83 ± 4.29	Mesalazine or prednisone + EN/Mesalazine or prednisone	4 wk	High	4
Fan ^[41]	2016	IBD	41/41	45.21 ± 1.9	Basic treatment + EN/basic treatment	None	Middle	2, 4, 5

Note: 1 = effective rate, 2 = the incidence of adverse reactions, 3 = hemoglobin levels, 4 = albumin, 5 = BMI.

ADA = Adamumab, BMI = body mass index, CD = Crohn's disease, EN = enteral nutrition, IBD = inflammatory bowel disease, IFX = Infliximab, NOS = The Newcastle-Ottawa Scale, TWP = Tripteryium Wilfordii Polyglycosidium, UC = ulcerative colitis.

conventional therapy compared with EN was statistically significant (RR = 1.27, 95% CI: 1.17–1.39, Z = 5.59, P < .0001). Among them, 2 studies on conventional drugs + EN/conventional drugs, using meta-analysis using random-effects

models, showed that the clinical response rate of conventional therapy combined with EN was significantly higher, with no statistically significant difference (RR = 1.43, 95% CI: 0.92-2.23, Z=1.57, P=.12). Among these, 5 studies^[9-13] on

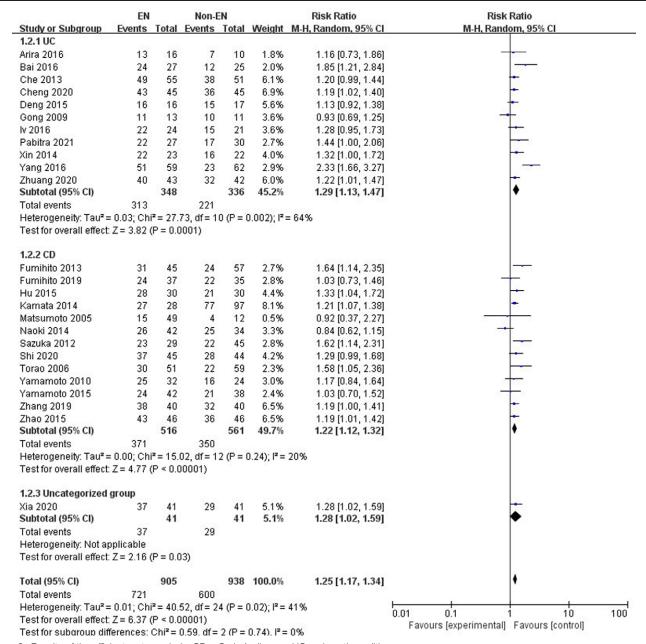


Figure 2. Results of the efficient meta-analysis. CD = Crohn's disease, UC = ulcerative colitis.

Mesalazine + Probiotics + EN/Mesalazine + Probiotics, metaanalysis using random effects model, showed that the clinical response rate of conventional therapy compared with EN was statistically significant (RR = 1.22, 95% CI: 1.12–1.33, Z = 4.40, P < .0001). Two studies^[11,12] of ADA + EA/ADA in meta-analysis using random-effects models showed that the clinical response rate combined with EN was lower than that alone and not significant (RR = 0.92, 95% CI: 0.73–1.16, Z = 0.69, P = .49). Three of the studies^[16–18] on Mesalazine + EN/ Mesalazine in meta-analysis using random effects models showed that clinical response with EN was higher than that (RR = 1.13, 95% CI: 0.95–1.33, Z = 1.41, P = .16; Table 2).

3.3. Comparison of the incidence of adverse reactions

A total of 11 studies^[10,14,15,17,18,22,32,33,37,39,41] compared the incidence of adverse reactions with heterogeneity test (P = .03,

 I^2 = 50%), considering that heterogeneity originated from patient IBD, different types, treatment follow-up time, EN support, and severity of adverse reactions. Meta-analysis using random effects models showed that there was no significant difference in the incidence of adverse effects (RR = 0.98, 95% CI: 0.64–1.48, Z = 0.11, P = 0.91; Fig. 3).

3.4. Comparison of the nutritional status situation

3.4.1. Hemoglobin levels. Eight articles on UC^[10,11,13,15,16,19-21] and 4 projects on CD^[31,34-36] documented post-treatment hemoglobin levels, with heterogeneity tests between studies (P = .03, $I^2 = 48\%$), considering the heterogeneity derived from disease severity, basic treatment agents, and follow-up time among studies. Using the random effects model analysis, the results showed that the hemoglobin level after IBD with EN was significantly higher than in the conventional drug treatment

alone, statistically significant (MD = 7.25, 95% CI: $3.55 \sim 10.95$, Z = 3.84, P = .0001; Fig. 4).

3.4.2. Albumin levels. Nine articles on UC, [10,11,13-16,19-21] 5 items on CD, [32,34-37] and 3 unclassified IBD articles [39-41] studied post-treatment albumin, with high heterogeneity between studies (P < .00001, $I^2 = 91\%$), considering the heterogeneity originated from the disease severity, basic treatment agents and follow-up duration of the studies. Using random effects model analysis, the results showed that the albumin level after IBD with EN was significantly higher than in IBD group, statistically significant (MD = 5.39, 95% CI: 3.60–7.17, Z = 5.90, P < .00001; Fig. 5).

3.4.3. Body mass index. Four articles on UC, [13,14,20,21] 4 articles on CD, [32,33,36,37] and 2 unclassified IBD articles [39,41] studied the BMI after treatment, with high heterogeneity between studies (P < .00001, $I^2 = 92\%$), considering the heterogeneity originated from the disease severity, basic treatment, and follow-up time of each study. Using a random effects model analysis, the results showed that the BMI level after IBD with EN was significantly higher than in the IBD group, statistically significant (MD = 2.22, 95% CI: 1.18–3.26, Z = 4.18, P < .0001; Fig. 6).

Table 2
Subgroup analysis based on NOS, Chinese and English literature, follow-up period, measures in effective rate.

Subgroup		f (%)	95% CI	<i>P</i> value
Literature	English (N = 11)	34	1.22 [1.08, 1.39]	.13
	Chinese $(N = 14)$	52	1.27 [1.16, 1.38]	.01
NOS	High (N = 19)	52	1.25 [1.14, 1.37]	.003
	Middle $(N = 6)$	0	1.21 [1.10, 1.32]	.5
Measures	IFX + EN/IFX (N = 11)	0	1.27 [1.17, 1.39]	.52
	Conventional drugs + EN/ conventional drugs (N = 2)	73	1.43 [0.92, 2.23]	.12
	Mesalazine + probiotics + EN/ Mesalazine + probiotics (N = 5)	0	1.22 [1.12, 1.33]	.98
	ADA + EN/ADA (N = 2)	0	0.92 [0.73, 1.16]	.39
	Mesalazine + EN/Mesalazine (N = 5)	32	1.13 [0.95, 1.33]	.23
Follow up day	$\geq 30 \text{ d (N} = 10)$	29	1.32 [1.18, 1.47]	.18
. ,	<30 d (N = 15)	47	1.21 [1.11, 1.32]	.02

ADA = Adamumab, CI = confidence interval, EN = enteral nutrition, IFX = Infliximab, NOS: = The Newcastle-Ottawa Scale.

3.5. Sensitivity analysis and publication bias

In the response rate analysis, among the 11 UC studies included, there was a great heterogeneity among the studies. According to the statistical graph shift, the suggestion of Yang et al^[14] study may have a high risk of bias, so the sensitivity analysis of meta-analysis results was conducted after excluding this study (Fig. 7). The findings of the before and after analysis revealed little changes, and the heterogeneity test indicated lowered heterogeneity among studies (P = .38, $I^2 = 6\%$). The possible reasons were as follows: Disease severity, basic interventions, therapeutic drugs and doses were not completely consistent among studies. A funnel plot analysis was performed for the total response rate, which showed a mild asymmetry, suggesting a potential publication bias (Fig. 8).

4. Discussion

Inflammatory bowel disease (IBD) is a chronic, recurrent, inflammatory disease of the digestive tract. IBD incidence has been rising in recent years due to a number of causes, including nutrition. [42] There is a correlation between an increased risk of IBD and Western diets, particularly those with a high n-6/n-3 fatty acid ratio. Dietary variables, the gut microbiota, and the mucosal system may interact to cause IBD.[43] Meanwhile, malnutrition, as one of the complications of IBD, has the prevalence of between 20% and 85%. [5] A systematic review reported that up to 60% of IBD patients decreased muscle mass^[44] compared to healthy subjects; in a Romanian study, the prevalence of BMI was 30.6%^[45]; in a Serbian study, of 76 IBD patients (23 CD and 53 UC), 68.4% were malnourished and 31.6% were severely malnourished.[46] The causes of malnutrition in IBD patients are multifaceted, including discomfort from symptoms like abdominal pain, nausea, reduced oral nutrition intake due to hospitalization, complications from small intestinal bacterial overgrowth and motility issues, and the direct impacts of the disease such as increased intestinal and nutrient loss.^[5,6] In recent years, due to the increasing incidence of IBD and its impact on quality of life and the huge burden on society-economy, more attention has been paid to its treatment plan. Nutritional support has also become one of its important ways.

In IBD treatment, nutritional support often prioritizes EN, which can not only improve the malnutrition status of patients, regulate inflammatory reactions, promote the healing of diseased intestinal mucosa, and play an important role in the treatment of IBD. Enteral nutrition(EN) may reduce the degree of disease activity and promote mucosal healing by regulating

	EN		Non-I	EN		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI
Yang 2016	28	59	15	62	17.2%	1.96 [1.17, 3.29]		
Xin 2014	17	23	16	22	20.0%	1.02 [0.71, 1.45]		+
Wang 2016	9	57	13	57	13.1%	0.69 [0.32, 1.49]		
Shi 2020	3	45	3	44	5.6%	0.98 [0.21, 4.59]		
Qu 2019	3	48	11	48	7.9%	0.27 [0.08, 0.92]		
Pabitra 2021	7	32	4	30	8.7%	1.64 [0.53, 5.04]		4
Hu 2015	5	30	3	30	6.9%	1.67 [0.44, 6.36]		7/ 7/3
Fumihito 2013	2	45	8	57	5.8%	0.32 [0.07, 1.42]		
Fan 2016	6	41	11	41	11.3%	0.55 [0.22, 1.34]		
Deng 2015	2	16	0	17	1.8%	5.29 [0.27, 102.49]		-
Bai 2016	3	27	0	25	1.9%	6.50 [0.35, 119.88]		
Total (95% CI)		423		433	100.0%	0.98 [0.64, 1.48]		+
Total events	85		84					
Heterogeneity: Tau ² =	= 0.20; Ch	$i^2 = 19$.	84, df = 1	0 (P =	0.03); $I^2 =$	50%		-1
Test for overall effect				,	78		0.01	0.1 1 10 100 Favours [EN] Favours [Non-EN]

Figure 3. Meta-analysis results of adverse reaction rates.

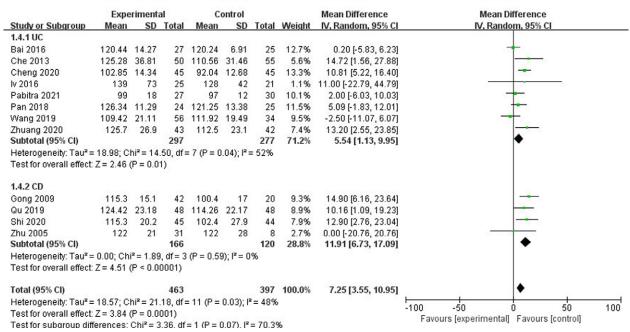


Figure 4. Results of a meta-analysis of hemoglobin levels after treatment. CD = Crohn's disease, UC = ulcerative colitis.

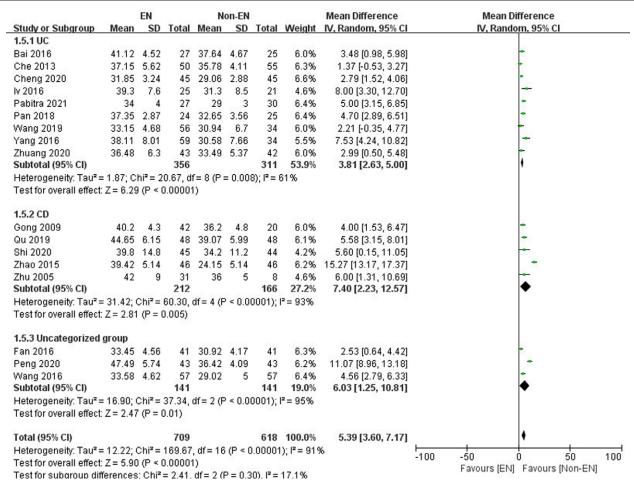


Figure 5. Results of the meta-analysis of albumin levels after treatment. CD = Crohn's disease, UC = ulcerative colitis.

intestinal flora, regulating intestinal mucosal immune response and inflammatory response, repairing epithelial barrier, restoring mesenteric fat abnormalities, and affecting antioxidant enzymes. [47] Yu [48] study found that EN was effective in improving weight loss, colon length shortening, loose stools and blood in the stool. Furthermore, it also improved the signs of TNBS

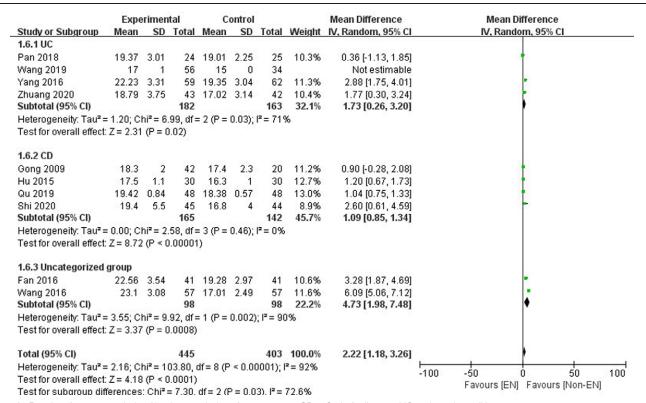


Figure 6. Results of a meta-analysis of body mass index after treatment. CD = Crohn's disease, UC = ulcerative colitis.

	EN		Non-I	EN		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Arira 2016	13	16	7	10	2.8%	1.16 [0.73, 1.86]	+
Bai 2016	24	27	12	25	3.3%	1.85 [1.21, 2.84]	
Che 2013	49	55	38	51	16.3%	1.20 [0.99, 1.44]	 •
Cheng 2020	43	45	36	45	21.4%	1.19 [1.02, 1.40]	<u>*</u>
Deng 2015	16	16	15	17	13.8%	1.13 [0.92, 1.38]	+
Gong 2009	11	13	10	11	6.8%	0.93 [0.69, 1.25]	
lv 2016	22	24	15	21	6.8%	1.28 [0.95, 1.73]	-
Pabitra 2021	22	27	17	30	4.7%	1.44 [1.00, 2.06]	-
Xin 2014	22	23	16	22	8.1%	1.32 [1.00, 1.72]	-
Zhuang 2020	40	43	32	42	15.9%	1.22 [1.01, 1.47]	•
Total (95% CI)		289		274	100.0%	1.21 [1.12, 1.31]	•
Total events	262		198			17 10 101	
Heterogeneity: Tau ² =	= 0.00; Ch	$i^2 = 9.6$	0, df = 9 (P = 0.3	8); $I^2 = 69$	6	100 100 100
Test for overall effect	10.0				<i>6</i> %		0.01 0.1 1 10 100 Favours [EN] Favours [Non-EN]

Figure 7. Clinical effective meta-analysis results. UC = ulcerative colitis.

induced colitis, as histopathological analysis showed that EN reduced the pathological damage of colon tissue, and inhibited the activity of myeloperoxidase (MPO) and nitric oxide synthase (iNOS), along with cytokine secretion in colon tissue.

Exclusive enteral nutrition (EEN) has been recommended as the first-line treatment for pediatric CD patients. For adults IBD patients, EN is selected when glucocorticoid therapy is intolerated.^[49] While some guidelines recommend EN along with other drugs for^[50] in remission. However, in Japan, EEN therapy has become the first-line treatment in adult CD patients, with EN also being widely employed in the maintenance phase treatment.^[51]

In addition, the efficacy of EN in treating UC remains controversial, despite an increasing number of studies exploring its application. Abigail Marsh conducted a systematic evaluation^[52] of 10 different dietary management (including enteral nutrition,

total parenteral nutrition, exclusion diet, and standard oral diet) in inpatient and outpatient adult active UC found no strong evidence supporting the use of any specific dietary prescription to improve clinical outcomes in patients with active UC. Chen and Dong study on enteral nutrition combined with compound glutamine in UC^[53] showed that the levels of TNF- α and IL-8 were significantly reduced in the combination treatment group, and lower than that of the control group (compound glutamyl group), statistically significant (P < .05). The total effective rate of the combination group was 95.56%, significantly higher than 80.00% in the control group. Zhang^[54] conducted a study with 70 cases of ulcerative enteritis patients, randomly dividing them into control group (conventional treatment) and observation group (based on the control group and parenteral, enteral high nutrition therapy), 2 groups of 35 cases, after the corresponding

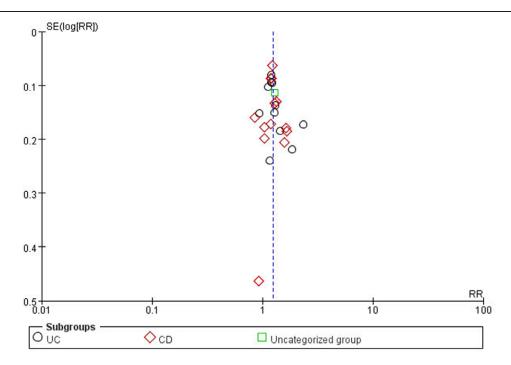


Figure 8. Total efficiency comparison funnel plot.

treatment, in the observation group total efficiency and treatment satisfaction is significantly better than the control group, the contrast between the 2 groups the difference is significant, has the corresponding statistical significance, P < .05.

A previous meta-analysis of IFX with EN for CD showed that IFX combined with EN was more effective, with lower recurrence rate, and no significant difference in adverse effects. [55] This meta-analysis involved a comprehensive search of domestic and foreign database, including more studies and cases, a total of 33 articles, 11 literature quality evaluation for high quality, 22 literature quality evaluation for middle quality, analysis compared the clinical efficiency of combined therapy and conventional treatment, nutritional status improvement and adverse reactions, and the CD and UC patients respectively, the results show that. The results showed that the combination of EN for IBD treatment was more effective than conventional drug treatment group (RR = 1.25, 95% CI: 1.17~1.34, Z = 6.37, P < .00001). And it was statistically significant in both the UC and CD subgroups (UC group: RR = 1.29, 95% CI: $1.13\sim1.47$, Z = 3.82, P = .0001; CD group: RR = 1.22, 95% CI: 1.12~1.32, Z = 4.77, P < .00001). It was beneficial to improve the nutritional status of patients. BMI, hemoglobin and albumin in the test group were higher than that in the control group. And the total incidence of adverse reactions between the 2 groups was not significant (RR = 0.98, 95% CI: 0.64-1.48, Z = 0.11, P = .91).

Meanwhile, this study conducted subgroup analysis of NOS, Chinese and English literature, follow-up time, and intervention measures, the results show that, the overall efficacy of conventional drugs with EN for IBD was better than the conventional drug alone group (RR = 1.24, 95% CI: 1.20~1.28, Z = 12.79, P < .00001), There was no significant difference only in the conventional drugs + EN/conventional drugs, ADA + EN/ADA, and Mesalazine + EN/Mesalazine subgroups.

This study has some limitations. Although included in RCT, it was mainly in Chinese. Most studies were included in China, only 1 in India; other included studies were cohort studies, and some studies did not mention patient compliance. Some included literature for IBD induced remission, some studies to maintain remission, some studies failed to clarify disease severity, the IBD treatment duration, EN preparation types,

dosages, administration methods, and evaluation of active IBD remission criteria, studies have certain heterogeneity, failed to perform further subgroup analysis due to the limited number of the included literature. In order to comprehensively evaluate the role of enteral nutrition in the treatment of IBD, further meta-analysis is needed to design and implement more randomized controlled trials of higher quality. În conclusion, conventional drugs combined with EN has better clinical efficacy than conventional drug treatment of IBD (including CD and UC), can better improve the nutritional status of patients, and has good safety, which can provide certain guidance for the induction and maintenance of IBD remission. However, the broader adoption of EN combination therapy in clinical practice requires larger scale, multi-center clinical research, to further prove its clinical efficacy, no, incidence of good response, and nutritional status improvement, and guidance in the induction and maintenance of disease remission in the timing of the EN treatment, nutritional support and nutritional dose, etc.

Author contributions

Conceptualization: Yun Wu, Zhenyu Jiang, Lin Liu. Data curation: Yun Wu, Zhenyu Jiang, Lin Liu. Formal analysis: Yun Wu, Feilong Tian. Funding acquisition: Zhenyu Jiang. Investigation: Gu Ge Su Ri. Methodology: Gu Ge Su Ri, Feilong Tian. Project administration: Gu Ge Su Ri. Resources: Zhenyu Jiang, Gu Ge Su Ri. Software: Gu Ge Su Ri, Lu Wang, Lin Liu. Supervision: Zhenyu Jiang, Lu Wang, Lin Liu. Validation: Lu Wang. Visualization: Lu Wang. Writing – original draft: Yun Wu. Writing – review & editing: Zhenyu Jiang.

References

[1] Saeed S, Ekhator C, Abdelaziz AM, et al. Revolutionizing inflammatory bowel disease management: a comprehensive narrative

- review of innovative dietary strategies and future directions. Cureus. 2023;15:e44304.
- [2] Jaramillo AP, Abaza A, Sid Idris F, et al. Diet as an optional treatment in adults with inflammatory bowel disease: a systematic review of the literature. Cureus. 2023:15:e42057.
- [3] Lin A, Micic D. Nutrition considerations in inflammatory bowel disease. Nutr Clin Pract. 2021;36:298–311.
- [4] Zhang X, Rosh Joel R. Safety summary of pediatric inflammatory bowel disease therapies. Gastroenterol Clin North Am. 2023;52:535–48.
- [5] Sabo CM, Simiras C, Ismaiel A, Dumitrascu DL. Diet and gut inflammation: the effect of diet on inflammatory markers in inflammatory bowel disease - a scoping review. J Gastrointestin Liver Dis. 2023;32:402–10.
- [6] Sugihara K, Morhardt TL, Kamada N. The role of dietary nutrients in inflammatory bowel disease. Front Immunol. 2019;9:31–83.
- [7] Shakhshir M, Zyoud Sa'ed H. Global research trends on diet and nutrition in Crohn's disease. World J Gastroenterol. 2023;29:3203–15.
- [8] Marques JG, Schwerd T, Bufler P, Koletzko S, Koletzko B. Metabolic changes during exclusive enteral nutrition in pediatric Crohn's disease patients. Metabolomics. 2022;18:96.
- [9] Horiuchi A, Tamaki M, Kajiyama M. Beneficial effects of oral ingestion of elemental diet at induction therapy with infliximab in patients with ulcerative colitis. J Gastroenterol Hepatol (Australia). 2016;31:265.
- [10] Sahu P, Kedia S, Vuyyuru SK, et al. Randomised clinical trial: exclusive enteral nutrition versus standard of care for acute severe ulcerative colitis. Aliment Pharmacol Ther. 2021;53:568–76.
- [11] Lu X, Qiu S. Application of probiotics combined with enteral nutrition in patients with ulcerative colitis. Health Care Nutrition, China. 2016;26:128–9.
- [12] Gong Y. Multicenter, randomized, parallel controlled study of enteral nutrition for active phase ulcerative colitis [D]. Beijing: Capital Medical University; 2009:1–98.
- [13] Zhuang W, Dong Y. Efficacy of enteral nutrition combined with probiotics in moderate to severe ulcerative colitis. Armed Police Medicine. 2020;31:973–975, 992.
- [14] Yang Y, Zhuo S, Wu X. Efficacy of compound glutamine granules combined with enteral nutrition in ulcerative colitis. J Guangzhou Medical Univ. 2016;44:80–2.
- [15] Bai H. Evaluation of efficacy and quality of life of enteral nutrition in patients with ulcerative colitis [D]. Jilin University; 2016:1–125.
- [16] Che Q, Guo J. Efficacy of immunoenteral nutrition combined with drugs for ulcerative colitis. J Shandong Univ (Medical Edition). 2013;51:75–8.
- [17] Xin L, Li N, Wang X, et al. The clinical efficacy of enteral nutrition in ulcerative colitis. J Gastroenterol Hepatol. 2014;23:1166–70.
- [18] Deng L. Clinical effect of conventional methods combined with enteral nutrition for ulcerative colitis. J Gastroenterol Hepatol. 2015;24:852–4.
- [19] Chen Y, Dong J. Clinical study of compound glutamine granules and enteral nutrition for the treatment of ulcerative colitis. Shaanxi Med J. 2020;49:115–117, seal 3.
- [20] Pan S, Yang J. Study of the efficacy of enteral nutrition support in patients with ulcerative colitis. Diet Health care. 2018;5:42.
- [21] Wang F, Miao Y, Zhang X, et al. Retrospective analysis of enteral nutritional supportive therapy in patients with moderate to severe ulcerative colitis. Gastroenterology. 2019;24:235–8.
- [22] Hirai F, Ishihara H, Yada S, et al. Effectiveness of concomitant enteral nutrition therapy and infliximab for maintenance treatment of crohn's disease in adults. Dig Dis Sci. 2013;58:1329–34.
- [23] Hirai F, Ishida T, Takeshima F, et al; Additional Power of Elemental Diet on Maintenance Biologics Therapy in Crohn's Disease (ADORE) Study Group. Effect of a concomitant elemental diet with maintenance anti-tumor necrosis factor-α antibody therapy in patients with Crohn's disease: a multicenter, prospective cohort study. J Gastroenterol Hepatol. 2019;34:132–9.
- [24] Yoshimura N, Kawaguchi T, Sako M, Saniabadi A, Takazoe M. Su1126 in patients with crohn\"s disease, concomitant enteral nutrition reduces the loss of response to adalimumab maintenance therapy. Gastroenterology. 2014;146:S–382.
- [25] Kamata N, Oshitani N, Watanabe K, et al. Efficacy of concomitant elemental diet therapy in scheduled infliximab therapy in patients with Crohn's disease to prevent loss of response. Dig Dis Sci. 2015;60:1382–8.
- [26] Sazuka S, Katsuno T, Nakagawa T, et al. Concomitant use of enteral nutrition therapy is associated with sustained response to infliximab in patients with Crohns disease. Eur J Clin Nutr. 2012;66:1219–23.
- [27] Ono Y, Hirai F, Matsui T, et al. Value of concomitant endoscopic balloon dilation for intestinal stricture during long-term infliximab therapy in patients with Crohn's disease. Dig Endosc. 2012;24:432–8.
- [28] Matsumoto T, Iida M, Kohgo Y, et al. Therapeutic efficacy of infliximab on active Crohn's disease under nutritional therapy. Scand J Gastroenterol. 2005;40:1423–30.

- [29] Yamamoto T, Nakahigashi M, Umegae S, Matsumoto K. Prospective clinical trial: enteral nutrition during maintenance infliximab in Crohn's disease. J Gastroenterol. 2010;45:24–9.
- [30] Tanaka T, Takahama K, Kimura T, et al. Effect of concurrent elemental diet on infliximab treatment for Crohn's disease. J Gastroenterol Hepatol. 2006;21:1143–9.
- [31] Zhang W. Investigation of the effect of enteral nutritional support in patients with nutritional disorders in Crohn's disease. Health Nutrition China. 2019;29:318.
- [32] Shi Y, Tang M, Wang J, et al. A randomized controlled study of enteral nutrition combined with infliximab for adult Crohn's disease. J Tongji Unive (Medical edition). 2020;41:51–6.
- [33] Hu X. Efficacy of infliximab and enteral nutrition in Crohn's disease. Int Med Health Guide. 2015;21:2410–2.
- [34] Zhao W, Lu Y, Huang A, et al. Effect of enteral nutrition support on IGF-I, IGF-IR, and IGFBP-5 levels in patients with nutritional disorders in Crohn's disease. Adv Modern Biomed. 2015;15:6091–4.
- [35] Zhu F, Wang L, Qian J, et al. Enteral nutrition in the treatment of Crohn's disease. Chin J Clin Nutrit. 2005;13:356–60.
- [36] Gong J, Niu L, Wei X, et al. Study of enteral nutrition combined with tripterygioside to induce remission of Crohn's disease. Chin J Surg. 2009;47:1213–7.
- [37] Qu G, Guo J, Dong Y, et al. Effect of enteral nutritional adjuvant therapy on disease activity and complications in Crohn's disease patients with malnutrition. Modern Digest Interv Diagnosis Treat. 2019;24:257–60.
- [38] Xia Y, Wang Y, Shao X, et al. Evaluation of the effect of enteral nutritional support therapy in patients with inflammatory bowel disease. Contemp Med Theory Series. 2020;18:42–3.
- [39] Wang H. Exploration and analysis of enteral nutrition therapy in inflammatory bowel diseases. Maternal Infant World. 2016;3:70–70.
- [40] Peng J, Cao J, Zhang Y. The influence of different nutritional intervention methods on the treatment effect and nutritional status of patients with inflammatory bowel disease. Hainan Med. 2020;31:1669–71.
- [41] Fan X. To explore the therapeutic value of parenteral nutrition for inflammatory bowel diseases. China Pract Med J. 2016;129:34–5.
- [42] Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106:563–73.
- [43] Chapman-Kiddell CA, Davies PSW, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:137–51.
- [44] Ryan E, McNicholas D, Creavin B, Kelly ME, Walsh T, Beddy D. Sarcopenia and inflammatory bowel disease: a systematic review. Inflamm Bowel Dis. 2019;25:67–73.
- [45] Gheorghe C, Pascu O, Iacob R, et al. Nutritional risk screening and prevalence of malnutrition on admission to gastroenterology departments: a multicentric study. Chirurgia (Bucur). 2013;108:535–41.
- [46] Mijac DD, Janković GL, Jorga J, Krstić MN. Nutritional status in patients with active inflammatory bowel disease: prevalence of malnutrition and methods for routine nutritional assessment. Eur J Intern Med. 2010;21:315–9.
- [47] Gong W, Chen J, Gu G, Wang G, Wu X, Ren J. Investigation of the mechanism of enteral nutrition therapy for Crohn's disease. Chin J Inflamm Bowel Dis. 2021;05:356–9.
- [48] Yu T. Effect of enteral nutrition on colitis and its mechanism. Nanjing Medical University; 2018:1–135.
- [49] Yamamoto T, Nakahigashi M, Saniabadi AR. Review article: diet and inflammatory bowel disease --epidemiology and treatment. Aliment Pharmacol Ther. 2009;30:99–112.
- [50] Ruemmele FM, Veres G, Kolho KL, et al; European Crohn's and Colitis Organisation. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J Crohns Colitis. 2014;8:1179–207.
- [51] Rai F, Ishihara H, Yada S, et al. Effectiveness of concomi-tant enteral nutrition therapy and infliximab for maintenance treatment of Crohn's disease in adults. Dig Dis Sci. 2013;58:1329–34.
- [52] Marsh A, Rindfleish S, Bennett K, Croft A, Chachay V. Outcomes of dietary management approaches in active ulcerative colitis: a systematic review. Clin Nutr. 2022;41:298–306.
- [53] Chen Y, Dong J. Clinical study of compound glutamine granules and enteral nutrition for the treatment of ulcerative colitis. Shaanxi J Med. 2020;49:115–7.
- [54] Zhang Z. Clinical effect of high parenteral nutrition in the treatment of ulcerative colitis. Health Everyone. 2020;1:48–9.
- [55] Yang H, Wang S, Jiang Z. Meta-analysis of inflixide combined with enteral nutrition for the treatment of Crohn's disease. J Gastroenterol Hepatol. 2018;27:507–12.