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HIGHLIGHTS

• Non-invasive brain simulation has shown promising results in stroke motor recovery.
• Future studies on better optimization of neuromodulation are warranted.
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ABSTRACT

Stroke is a leading global cause of death and disability, with motor impairment being one 
of the common post-stroke complications. Rehabilitation is crucial for functional recovery. 
Recently, non-invasive brain stimulation (NIBS) has emerged as a promising intervention 
that allows neuromodulation by activating or inhibiting neural activity in specific brain 
regions. This narrative review aims to examine current research on the effects of various 
NIBS techniques, including repetitive transcranial magnetic stimulation, transcranial direct 
current stimulation, vagus nerve stimulation, and transcranial focused ultrasound on post-
stroke motor function.

Keywords: Stroke; Transcranial Magnetic Stimulation; Transcranial Direct Current Stimulation; 
Vagus Nerve Stimulation

INTRODUCTION

Stroke is one of the leading causes of death and disability worldwide, and recent data suggests 
that one in 4 individuals over age 25 is expected to experience stroke in their lifetime [1]. Motor 
impairment is one of the most prevalent post-stroke complications [2]. Approximately 80% of 
affected patients experience hemiplegia, with over 40% being chronic [3]. Poststroke motor 
complications are associated with a myriad of challenges, notably impairing the capacity of 
patients to perform essential activities of daily living (ADL). These complications not only affect 
the quality of life [4] but also pose a significant socio-economic burden [5].

The clinical importance of rehabilitation for the functional motor recovery of stroke 
patients is well established. Among the various rehabilitation therapies, non-invasive 
brain stimulation (NIBS) is a relatively recent technology that is based on the concept 
of interhemispheric imbalance following a stroke [6]. In patients affected by stroke, the 
functional balance between 2 hemispheres is affected under normal circumstances, and NIBS 
can be used to inhibit or enhance cortical excitability, thereby modulating neuroplasticity to 
improve motor function after stroke.
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This literature review endeavors to explore and present recent findings of NIBS techniques 
on poststroke motor impairment, including repetitive transcranial magnetic stimulation 
(rTMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and 
transcranial focused ultrasound (tFUS). The purpose is to provide a comprehensive overview 
of the current state of NIBS research on poststroke motor function, encompassing both 
upper and lower extremities.

rTMS
First introduced in the late 20th century [7], rTMS has been widely used in stroke 
rehabilitation. rTMS uses an electromagnetic coil to generate electrical current in the brain, 
modulating cortical excitability via various protocols. Low-frequency rTMS (LF-rTMS) 
decreases cortical excitability and is clinically administered to the unaffected hemisphere, 
whereas high-frequency rTMS (HF-rTMS) increases cortical excitability and is applied to 
the affected hemisphere. The application of rTMS is grounded in the interhemispheric 
competition model, which posits that stroke can disrupt the balance of transcallosal 
inhibitory circuits between the motor areas of both hemispheres. This imbalance leads 
to increased inhibition from the unaffected hemisphere to the affected one, potentially 
impeding motor recovery. By modulating cortical excitability, rTMS aims to restore this 
balance, thereby facilitating motor recovery [6]. Various clinical trials have been conducted 
to support the evidence of rTMS on motor recovery after stroke, but due to the variabilities 
between the studies, a conclusive consensus has not been established yet.

Effects of rTMS on upper extremity impairment after stroke
A recent systematic review covering 32 studies with 1,137 participants demonstrated that rTMS 
over the M1 cortex showed positive functional improvements in upper limb motor function 
in patients with subacute and chronic stroke patients [8]. Studies examining the application 
of LF-rTMS on the unaffected hemisphere, HF-rTMS on the affected hemisphere, and 
bilateral stimulation were included in the review. Most of the included studies have shown the 
effectiveness of LF-rTMS in the functional improvement of the upper extremity. However, the 
relative effectiveness of LF-rTMS over HF-rTMS had not been proven in this study.

A 2022 meta-analysis has also reported a positive effect on fine motor recovery in stroke 
survivors [9]. Specifically, this review highlighted the efficacy of different rTMS protocols 
based on stroke phases. In the acute phase of stroke (< 1 month), bilateral hemisphere 
stimulation was more effective than unilateral stimulation, and a regimen of 20 rTMS 
sessions produced greater improvement than < 20 sessions. In the subacute phase (1–6 
months), affected hemispheric stimulation with a 40-session rTMS regimen was superior. 
Lastly, unaffected hemispheric stimulation with a 10-session rTMS regimen was the most 
effective in the chronic phase (> 6 months). This comprehensive review provided strong 
evidence of rTMS in enhancing the upper extremity function during different phases of 
stroke. However, a large randomized controlled trial found that administering 1 Hz rTMS to 
the unaffected motor cortex in patients with chronic stroke 3 to 12 months after onset did 
not show improvement in upper extremity function compared to sham stimulation [10]. This 
underscores the necessity of continued research to refine rTMS protocols and tailor them to 
specific stages of stroke recovery and the unique characteristics of each patient.

In a 2023 systematic review that classified the outcome measures according to the 
International Classification of Functioning, Disability, and Health, rTMS was associated 
with improved upper extremity muscle synergies within and beyond 3 months after stroke 
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at the level of body function, and with improved upper extremity capacity within 3 months 
after stroke at the level of activities [11]. Additionally, according to the 2022 Clinical Practice 
Guideline for Stroke Rehabilitation in Korea, the incorporation of rTMS into rehabilitation 
therapy has shown promising effects on enhancing upper limb motor function, grip 
strength, and hand function. Even though the evidence is rated as low, it seems to be 
particularly beneficial depending on the condition of the patient, leading to a conditional 
recommendation for its use [12].

Effects of rTMS on lower extremity impairment after stroke
A network meta-analysis conducted with 18 randomized controlled trials found that LF-rTMS 
outperformed sham stimulation in improving lower extremity motor function after stroke. In 
contrast, HF-rTMS was shown to increase the amplitudes of motor-evoked potentials more 
than either LF-rTMS or sham stimulation [13]. In a 2022 meta-analysis, 9 studies investigated 
the role of rTMS in improving gait, balance, and lower limb function among 212 patients with 
stroke. Post-intervention results indicated that rTMS had a modest impact with HF-rTMS over 
the affected hemisphere, producing the most substantial effect. Conversely, LF-rTMS over the 
unaffected hemisphere demonstrated no significant effect. Follow-up data revealed that bilateral 
stimulation resulted in a potent effect, and LF-rTMS showed no significant improvement [14].

Furthermore, a recent systematic review showed that one study showed a significant effect of 
intermittent theta burst stimulation on standing maintenance and transfer within 3 months 
after stroke (standardized mean difference [SMD], 1.03, 95% confidence interval [CI], 0.26 
to 1.79), whereas no significant effectiveness was found in lower limb muscle synergies [11]. 
Due to the lack of evidence from previous clinical studies, the effect of rTMS on lower limb 
function remains inconclusive [12].

tDCS
First proposed in 1998 [15], tDCS has been recognized for its potential in stroke 
rehabilitation, particularly in modulating neuronal activity by applying a 1–2 mA current to 
the brain through scalp electrodes. tDCS can either enhance or suppress cortical excitability 
through anodal or cathodal stimulation, respectively. tDCS is notable for its portability, cost-
effectiveness, and patient comfort, positioning itself as a practical adjunct therapy in stroke 
rehabilitation [16]. Various studies and systematic reviews have explored the effects of tDCS 
on activities of motor function in patients with stroke, yet highlighting the need for further 
research to establish standardized protocols.

Effects of tDCS on upper extremity impairment after stroke
A recent overview of 6 systematic reviews and meta-analyses indicated that tDCS 
demonstrates superior effects in enhancing upper limb functions and ADL in patients with 
stroke compared to control interventions [17]. Despite variabilities in stimulation parameters 
and outcomes, this study concluded that cathodal stimulation targeting the non-affected 
brain region was identified as more potent than both anodal and dual tDCS stimulation. 
The studies predominantly utilized an intensity of 2 mA and typically administered sessions 
lasting 20 minutes. The most common treatment regimen entailed 5 sessions per week, 
with the overall treatment duration extending anywhere from a single day to 8 weeks. A 
2022 network meta-analysis [18], in contrast, revealed that anodal tDCS and transcutaneous 
VNS were effective in upper limb motor function after stroke (VNS: mean difference [MD], 
5.50, 95% CI, 0.67 to 11.67; anodal tDCS: MD, 5.23, 95% CI, 2.45 to 8.01). In improving 
ADL performance after stroke, transcutaneous VNS and tDCS (anondal and cathodal) were 
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effective (VNS: SMD, 0.96, 95% CI, 0.15 to 2.06; anodal tDCS: SMD, 3.78, 95% CI, 0.0 to 
7.56; cathodal tDCS: SMD, 5.38, 95% CI, 0.22 to 10.54).

The 2022 Clinical Practice Guideline for Stroke Rehabilitation in Korea recommended 
that tDCS can be effectively utilized to enhance the recovery of upper extremity motor and 
functional deficits in patients with stroke considering individual conditions, resulting in a 
conditional recommendation for its use [12].

Effects of tDCS on lower extremity impairment after stroke
A recent systematic review encompassing 19 studies revealed that active tDCS in isolation, 
regardless of the stimulation mode, did not significantly enhance lower extremity motor 
function in patients with stroke when compared with sham tDCS [19]. However, subgroup 
analysis showed a notable difference in favor of tDCS during the acute and subacute phases 
with a low quality of evidence.

A separate meta-analysis of 10 randomized controlled trials investigated the effects of tDCS 
on balance and gait [20]. Most of the included studies implemented anodal tDCS, targeting 
either the lower-extremity motor area or the supplementary motor area on the affected 
side. This systematic review also disclosed no significant changes in outcomes, including 
the Fugl-Meyer Assessment-Lower Extremity (FMA-L), Berg Balance Scale, 10-Meter Walk 
Test, and 6-Minute Walk Test. However, the effectiveness of anodal tDCS was noted in the 
Functional Ambulation Category (MD, −2.54, 95% CI, −3.93 to −1.15) and Timed Up and Go 
Test (MD, 0.35, 95% CI, 0.11 to 0.58), suggesting that tDCS might have some positive effects 
on poststroke walking independence, gait, and ambulation.

Another systematic review also indicated that tDCS with the use of 2 mA for at least 10 
minutes, with either anodic or bihemispheric stimulation, may enhance gait parameters, 
balance, and lower limb function in patients with stroke [21]. However, long-term effects 
have not yet been demonstrated.

VNS
The use of VNS in stroke is based on the principle of modulating neurons in the motor 
cortex via the activation of noradrenergic, cholinergic, and serotonergic systems, influencing 
the release of various neurotransmitters [22,23]. VNS can be used both invasively and 
noninvasively, with invasive VNS having received approval from the US Food and Drug 
Administration to treat moderate to severe upper extremity motor deficits associated with 
chronic ischemic stroke [22]. However, due to the potential side effects related to device 
implantation surgery, such as vocal cord palsy [24], clinical trials of non-invasive VNS have 
been proposed.

Transauricular VNS (taVNS) is a non-invasive VNS technique that stimulates the afferent 
auricular branch of the vagus nerve located at the tragus in the external ear [19]. Recent 
studies have reported the modulatory effects of taVNS on motor cortex excitability, which is 
thought to be linked to GABAergic intracortical inhibition [25,26].

Building on this understanding, one randomized controlled trial focused on patients who 
had experienced a stroke within one month. This trial compared the effectiveness of taVNS 
with sham stimulation [27]. Motor impairment assessed with the Fugl-Meyer Assessment-
Upper Extremity (FMA-U), FMA-L, and Wolf Motor Function Test (WMFT) showed significant 
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improvement for at least a year after the intervention. In another study focusing on the 
subacute phase of stroke, the taVNS group showed significant improvements in FMA-U, 
WMFT, and Functional Independence Measurement scores compared to sham stimulation 
[28]. Furthermore, taVNS administered during robotic training in a chronic stroke 
population has shown increased upper limb motor control [29,30].

Recent research suggests that non-invasive VNS may have potentially beneficial effects on 
neuroplasticity after stroke, especially in upper limb function. However, further studies are 
warranted to fully understand its therapeutic potential and incorporate it into clinical practice.

tFUS
tFUS is a technique that uses ultrasonic waves to target specific regions of the brain. By 
adjusting the frequency of these waves (i.e., low-frequency range of 200–700 kHz), tFUS can 
penetrate deeper and with greater spatial specificity [31]. Although some animal studies have 
been conducted supporting the effectiveness of tFUS on neuromodulation [32-34], studies on 
motor impairment after stroke in patients are yet scarce.

One study evaluated the excitatory and inhibitory effects of tFUS on the human motor cortex 
(M1) using GABA and glutamate neurometabolic concentration. Excitatory tFUS involving 
parameters of pulse width = 200 μs, pulse repetition frequency (PRF) = 2,000 Hz, duty cycle 
(DC) = 40%, and stimulation period = 2 seconds significantly increased M1 excitability, 
whereas inhibitory tFUS with mode of pulse width = 400 μs, PRF = 50 Hz, DC = 2%, and 
stimulation period = 2 seconds significantly suppressed M1 excitability [35]. Although this 
study revealed the neurophysiologic basis of the tFUS on cortical excitability, more studies are 
needed to support the clinical use of tFUS after stroke in participants.

CONCLUSION

The use of NIBS for poststroke motor recovery has garnered significant interest. A growing 
number of studies suggest that NIBS is a promising therapeutic intervention to improve 
motor function after stroke. However, due to the heterogeneity in study designs and 
stimulation parameters, drawing a definitive conclusion about the best NIBS technique 
remains unclear. Future studies focusing on better optimization of neural plasticity and 
neuromodulation are warranted.
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