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Abdominal aortic aneurysm (AAA) is a common and serious disease with a
high mortality rate, but its genetic determinants have not been fully ident-
ified. In this feasibility study, we aimed to elucidate the transcriptome
profile of AAA and further reveal its molecular mechanisms through the
Oxford Nanopore Technologies (ONT) MinION platform. Overall, 9574
novel transcripts and 781 genes were identified by comparing and analysing
the redundant-removed transcripts of all samples with known reference
genome annotations. We characterized the alternative splicing, alternative
polyadenylation events and simple sequence repeat (SSR) loci information
based on full-length transcriptome data, which would help us further under-
stand the genome annotation and gene structure of AAA. Moreover, we
proved that ONT methods were suitable for the identification of lncRNAs
via identifying the comprehensive expression profile of lncRNAs in AAA.
The results of differentially expressed transcript (DET) analysis showed
that a total of 7044 transcripts were differentially expressed, of which 4278
were upregulated and 2766 were downregulated among two groups. In
the KEGG analysis, 4071 annotated DETs were involved in human diseases,
organismal systems and environmental information processing. These pilot
findings might provide novel insights into the pathogenesis of AAA and
provide new ideas for the optimization of personalized treatment of AAA,
which is worthy of further study in subsequent studies.
1. Introduction
Abdominal aortic aneurysm (AAA), as a common and severe disease associated
with high mortality, is characterized by a progressive segmental abdominal
aortic dilation [1]. Usually, the non-ruptured aneurysms are asymptomatic
unless clinical complications occur, which often induces acute rupture or throm-
boembolism and result in a lethal rate of up to 85%; therefore, its clinical
assessment is challenging [2,3]. However, there is still no effective pharmaco-
logical treatment to control its progression or the risk of rupture. Clinically,
surgical intervention, including open or endovascular aortic repair of the
dilated aorta, remains the only reliable treatment option [4–6]. Therefore, it is
important to better understand the mediators and mechanism networks of
AAA pathogenesis to identify novel therapeutic targets.

Over the past decade, a large number of discoveries in human genetics
related to complex diseases have been made through genome-wide association
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Figure 1. Study design illustration.
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studies (GWAS) [7]. In addition, emerging evidence has
shown that genetic variants are strongly associated with a
number of cardiovascular diseases through GWAS studies,
including AAA, coronary artery disease, myocardial
infarction, as well as vascular remodelling, blood pressure,
triglyceride cholesterol and LDL metabolism [8,9]. Previous
studies have shown that genetic components account for
approximately 70% of total AAA susceptibility [10],
suggesting genetic factors play a vital role in aetiology. How-
ever, the genetic determinants of AAA have not yet been fully
determined.

In the present paper, the transcriptome characterization of
AAA was identified by the Oxford Nanopore Technologies
(ONT) MinION platform, and its possible molecular mechan-
ism was further revealed. By analysing transcriptome data,
we attempted to reveal the vital transcripts and pathways
implicated in AAA. The study design is presented in
figure 1. These results will help to provide critical insights
into the pathogenesis of AAA for future searches of the
therapeutic targets.
2. Material and methods
2.1. Specimen gathering
AAA samples were obtained from five patients undergoing
open surgical treatment, and another five peripheral blood
samples of healthy subjects were gathered as the control
group (t group) in the affiliated hospital of Qingdao
University from between January 2019 and January 2020.

2.2. RNA extraction, cDNA library preparation and
nanopore sequencing

Total RNA was isolated from the samples using Trizol
reagents (Invitrogen, Carlsbad, CA, USA). One microgram
of total RNAwas prepared for the cDNA library construction
by the cDNA-PCR sequencing kit (SQK-PCS109, Oxford
Nanopore Technologies, Oxford, UK). Finally, the cDNA
libraries within the FLO-MIN109 flow cells were worked on
the PromethION platform (Biomarker Technology Company,
Beijing, China). These testing processes were conducted
according to the protocol of the manufacturer.

2.3. Remove redundant and find fusion transcript
Minimap2 program was employed to match the consensus
sequences to the reference genome. Then, using the
cDNA Cupcake package with min-coverage = 85% and min-
identity = 90%, the mapped reads were collapsed. When
collapsing redundant transcripts, the 50 difference was not
taken into account.

The criteria for fusion candidate genes were the single
transcript, with (i) minimum distance of 10 kb between the
loci, (ii) total coverage of≥ 95%, (iii) minimum coverage
rate of per loci was 5% and minimum coverage (bp)≥ 1 bp,
and (iv) at least map to 2 or more loci.
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2.4. Structural analysis of transcripts
Gffcompare was used to verify transcripts to the annotated
transcripts of known reference. AStalavista and TransDecoder
tools were employed to identify the alternative splicing (AS),
such as intron retention (IR), exon-skipping (ES), AD, AA
and MEE, and alternative polyadenylation (APA) events,
respectively. CDSs and simple sequence repeat (SSR) analysis
of transcriptome was performed by TransDecoder and MISA
program, respectively.

2.5. LncRNA analysis
In the transcripts, the criteria of the minimum length greater
than or equal to 200 nucleotides and at least 2 exon count
thresholds were applied to screen the lncRNA candidates.
Then, lncRNAs were further distinguished by four compu-
tational methods combined, including coding potential
assessment tool (CPAT), protein family (Pfam), coding-non-
coding index (CNCI) and coding potential calculator (CPC).

2.6. Annotation of functionality and enrichment
analysis

Gene function was annotated based on the following databases:
NR (NCBI non-redundant protein sequences, ftp://ftp.ncbi.-
nih.gov/blast/db/), Pfam (Protein family, http://pfam.xfam.
org/), KOG (http://www.ncbi.nlm.nih.gov/KOG/), COG
(http://www.ncbi.nlm.nih.gov/COG/), eggNOG (http://egg-
nogdb.embl.de/), KEGG (Kyoto Encyclopedia of Genes and
Genomes, http://www.genome.jp/kegg/) and GO (Gene
Ontology, http://www.geneontology.org/). The KOBAS
software was used to test the statistical enrichment of differential
expression genes in KEGG pathways.

2.7. Quantification and differential expression analysis
of gene/transcript expression

The full-length sequencing transcriptome and publicized
genomic transcripts of reference were used for sequence
alignment. The match quality of reads greater than 5 was
further quantified. The expression level was evaluated via
reads per gene/transcript mapped per 10 000 reads.

The DESeq R package (1.18.0) was used to conduct differ-
ential expression analysis of two conditions/groups for the
specimens with biological replicates. For controlling the
false discovery rate, Benjamini and Hochberg’s approach
was employed to adjust the resulting p-values. Genes
screened by DESeq with FDR < 0.05 and fold change≥ 2
were specified as differentially expressed.

To specimens with no biological duplicates, read counts
for each sequenced library were adjusted via edgeR program
package prior to differential gene expression analysis. The
EBSeq R package (1.6.0) was used for differential expression
analysis of two samples and the PPDE (posterior probability
of being DE) for the resulting FDR (false discovery rate)
adjustment. Threshold with FDR < 0.05 and foldchange≥ 2
was considered to be significantly differential expression.

2.8. Protein–protein interaction
Based on the results of differential expression analysis, the
predicted PPI of these differentially expressed transcripts
(DETs) were obtained by the blast the sequences of the
DETs with the genome of a related species (the protein inter-
action of which exists in the STRING database: http://string-
db.org/). Then, the Cytoscape program was used to visualize
the PPI of these DEGs.
3. Results
3.1. ONT sequencing overview
Overall, we constructed 10 transcriptome libraries in total
(b1–b5 of the AAA group and t1–t5 of the control group),
and 2.71 GB of clean data was output in each sample. After
discarding the low-quality and short reads, 19 680 639 and
16 012 762 clean reads were obtained from the AAA and con-
trol group, with a mean N50 of 768 and 1241.8 bp, and the
average read length of 820.8 and 1125 bp, respectively (elec-
tronic supplementary material, table S1 and figure S1).
Additionally, the quality (Q) score distribution of the above
10 groups of raw reads was distributed between Q6 and
Q18, with Q12 and Q13 accounting for the highest percentage
(electronic supplementary material, figure S2). 13 977 197 and
10 088 571 clean reads were generated after removing rRNA,
among which 88.07% and 84.18% were identified to be full
length, respectively (electronic supplementary material table
S2 and figure S3). Then, 1 to 24 fusion transcripts were
obtained from each sample (electronic supplementary
material, file S1). In total, 9574 novel transcripts and 781
genes were identified through comparing and analysing the
redundant-removed transcripts of all samples with known
reference genome annotation (electronic supplementary
material, files S2 and S3).

3.2. Characterization of alternative splicing, alternative
polyadenylation and SSR

Within the ONT data, a total of 13 427 AS events were
detected and grouped into five classes, including 7339 ES
events, 1976 alternative 30 sites (Alt. 30), 1827 IR events,
1730 alternative 50 sites (Alt. 50) and 555 mutually exclusive
exon events (figure 2a,b). DETs with different AS events
were of further concern (figure 2c). The identified APA of
each sample is shown in the electronic supplementary
material, figure S4, and the motif analysis of 50 bp sequences
upstream of the polyA site of all transcripts is shown in
electronic supplementary material, figure S5. In addition,
transcripts longer than 500 bp were selected for SSR analysis
by MISA. The result showed that a total of 38 844 SSRs were
detected from ONT data (electronic supplementary material,
file S4). SSR loci repeat units were 1 to 6 bases, of which the
most frequent SSRs identified were p1 (21 458), followed by
p3 (7700), p2 (4981), p4 (731) and p5 (182); few P6 (69)
were discovered. Additionally, compound SSR and com-
pound SSR with overlapping positions were 3558 and 165,
respectively (figure 2d ).

3.3. Coding sequence of novel genes, transcription
factor and lncRNAs prediction

Seven thousand and seven hundred ORFs were detected in
the ONT data by TransDecoder (v.3.0.0), of which 4509
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were complete ORFs. The CDS length distribution of the
complete ORFs is shown in figure 3a, mostly ranged from
100 to 1400 aa. Additionally, the transcription factors were
predicted for the new transcripts. The result revealed that
1772 transcription factors were obtained in total, and the
different types of transcription factors are shown in
figure 3b. Using CPC, CNCI and CPAT analysis, there were
219 lncRNAs at the intersections which were visualized by
the Venn diagram (figure 3c), and the classification of
lncRNAs are mapped in figure 3d.
3.4. Dynamic expression of transcripts in abdominal
aortic aneurysm

To get the annotation information of the transcripts, the
obtained novel transcript sequences were aligned to the data-
bases, such as NR, COG, KOG, Swissprot, GO, Pfam and
KEGG. Functional annotation was conducted on the novel
transcripts (electronic supplementary material, file S5), and
the quantity of transcripts annotated in each database is
listed in electronic supplementary material, table S3. The
full-length sequencing transcriptome and known transcrip-
tome of genome were used as a reference for sequence
alignment and subsequent analysis. A matching profile
between the transcriptome and the reference transcriptome
was obtained using minimap2 to align full-length reads with
the reference transcriptome. The count reads were aligned to
the reference transcriptome, and the alignment statistics are
shown in electronic supplementary material, table S4. The
overall distribution of the expression level of sample tran-
scripts is shown in figure 4a. To further examine the
dispersion degree of expression level distribution of transcripts
in a sample, and visually compare the overall transcripts
expression level of different samples, counts per million
(CPM) distribution was displayed by boxplot (figure 4b).
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In general, the expression of transcripts is temporal and
spatially specific. DETs were defined as those with significantly
different expression levels under two different conditions. DET
analysis was carried out and results showed 7044 transcripts in
total were differentially expressed, of which 4278 were upregu-
lated and 2766 were downregulated. The volcano plot of
differential expression is shown in figure 5a. The overall distri-
bution of expression level and fold change of transcripts of the
two groups of transcripts can be clearly seen through MA plot
(figure 5b). Additionally, hierarchical clustering analysis was
used to screen DETs and significant differences were found in
their expression profiles (figure 5c).
3.5. Functional annotation of differentially expressed
transcripts in abdominal aortic aneurysm

The database function annotation for DETs was further exe-
cuted, and the statistics of annotated transcripts number is
listed in electronic supplementary material, table S5. The
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GO enrichment analysis on DETs was introduced (figure 6a),
which revealed a number of highly enriched biological pro-
cesses, such as the single-organism process, cellular process,
metabolic process and biological regulation. Enrichment for
the cellular components of cell, cell part, organelle and
membrane were also observed. The target genes were
mainly involved in the regulation of binding, catalytic
activity, molecular function regulator and signal transducer
activity in molecular function. In the KEGG analysis, organis-
mal systems, human diseases and environmental information
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processing were the top three categories that account for the
highest proportions (figure 6b). Generally, a total of 4071
annotated DETs were associated with some pathways associ-
ated with human disease, in which infectious disease was
significantly identified, such as Staphylococcus aureus infec-
tion, tuberculosis, Epstein–Barr virus infection and Herpes
simplex infection. A total of 1684 DETs might participate in
organismal systems-related pathways, in which the Fc
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gamma R-mediated phagocytosis, natural killer cell-
mediated cytotoxicity and intestinal immune network for
IgA production were the top three pathways. A total of
1381 DETs were classified as belonging to environmental
information processing, in which the PI3 K-Akt, NF-kappa
B and calcium signalling pathways were the top three.
Then, to further clarify the molecular function of DETs
from AAA, they were allocated to COG classification and
separated into 26 specified categories (figure 7a). The results
revealed that the top hits include ‘protein turnover, posttran-
slational modification and chaperones’, ‘signal transduction
mechanisms’, and ‘ribosomal structure, translation and
biogenesis’ in both groups. Additionally, the Cytoscape
visualization of the DETs protein interaction network is
shown in figure 7b.
4. Discussion
AAA is one of the most common causes of death and disabil-
ity in cardiovascular disease, particularly in the elderly
population, which imposes an exorbitantly high financial
burden on society. Except for a small percentage of incidental
findings through an ultrasound-based screening programme,
clinical diagnosis is usually at an advanced stage [11,12]. The
risk of developing AAA is now considered to be a combi-
nation of personal lifestyle, environmental factors, genetic
factors, and some physiological parameters or disease con-
ditions, such as tobacco smoking history, increased age,
male sex, cholesterol level, obesity, trauma, acute or chronic
infection, connective tissue or inflammatory diseases, and
family history [2,13–16]. Importantly, genetic components
account for approximately 70% of the total susceptibility to
AAA according to some estimates, suggesting that genetic
factors may play a key part in aetiology. Interestingly, sev-
eral studies have also reported that the strong linkage of
aneurysm rupture to family history of AAA [17,18]. There-
fore, identifying the genetic foundations of AAA will
provide insights into the pathogenesis of the disease, and
ultimately guide early surveillance, diagnosis, intervention
and clinical decision-making.

Recently, a great quantity of evidence has shown an
association between AAA and several microorganism infec-
tions, and there is a growing interest in this line of
aetiologic investigation [19,20]. In this study, we identified
9574 novel transcripts and 781 genes by third-generation
nanopore-based RNA sequencing combined with emerging
genomic technologies from 10 libraries, detected the dynamic
expression of transcripts, and further performed function
annotation and GO enrichment analysis for DETs. In
addition, using KEGG analysis, infection-related pathways
related to human diseases (such as Staphylococcus aureus,
tuberculosis and Epstein–Barr virus infection) were found
to be highly expressed in annotated DETs of AAA samples.
Matsui & Hatta [21] have reported a case of AAA in a patient
with dialysis-related methicillin-resistant Staphylococcus
aureus bacteraemia. Pathologically, Staphylococcus aureus
may attach to the damaged intima by producing dextran,
thereby invading the highly calcified arterial wall and caus-
ing mycotic aneurysm during bacteraemia. Previous studies
have shown that tubercle bacillus could infect aortic wall
causing AAA. Although this is a particularly rare
complication of tuberculosis, it usually ruptures easily
and causes serious clinical events [22,23]. The infection or
reactivation of Epstein–Barr virus could lead to a variety
of lymphoproliferative diseases and other less frequent clini-
cal complications, including haematologic malignancies,
haematologic malignancies, coronary artery aneurysm, etc.
[24]. Several case-report studies suggest that Epstein–Barr
virus infection may be related to coronary artery aneurysm
and abdominal aortic lesions [25–27]. Unfortunately, the
pathophysiologic mechanisms are still unclear and need
further exploration.

AS and APA of RNAs are two conventional approaches
for producing isoform diversity, leading to the production
of different proteins necessary to maintain biological traits
and function [28,29]. It is reported that more than 90% of
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human multi-exon genes undergo AS and almost 20% of
genes have APA sites loci in introns [30,31]. In a previous
aortic aneurysm study, mRNA expression and AS analysis
of the identified proteins revealed different fingerprints
between the bicuspid and tricuspid groups in dilated and
non-dilated aortic tissue, implying AS may play a key role
in the formation of aortic aneurysm in patients with bicuspid
and tricuspid aortic valves [32]. Additionally, Martin et al.
[33] have demonstrated that decreased soluble guanylyl
cyclase (sGC) activity in aortic aneurysms was associated
with increased expression of abnormal sGC splicing variants,
suggesting that AS contributes to diminished sGC function in
vascular dysfunction. Similarly, APA is a ubiquitous mechan-
ism in eukaryotic cells and is crucial for diverse cellular
processes, such as mRNA metabolism, cell proliferation and
differentiation, protein localization and diversification, and
more commonly in gene regulation [34]. Importantly, some
studies have revealed that it plays a fundamental role in the
establishment of human diseases. For example, in the failing
heart, the 30-end formation of numerous mRNAs is changed,
corresponding to the decrease of poly(A)-binding protein
nuclear-1 expression [35]. APA contributes to cardiomyocyte
hypertrophy via changing the expression of hypertrophy
genes [36]. This evidence suggests that specific APA events
may participate in the development of cardiovascular dis-
ease. Regrettably, there is almost no relevant research on
APA in AAA. In our study, AS, APA and SSR events were
initially identified in two groups, and future studies that
address the pathophysiological consequences of these
events are needed to evaluate their role in the pathogenesis
of AAA and whether manipulation of these changes can be
considered a therapeutic option for AAA.
LncRNAs are considered to be engaged in numerous vital
biological processes as a crucial regulator of gene expression
[37]. The third generation of nanopore RNA sequencing is
helpful to identify the genetic structure of lncRNAs. Previous
studies have shown that several essential lncRNAs may be
involved in regulating the progression of AAA [38]. In the
current study, we determined the comprehensive expression
profile of lncRNAs in the two groups and proved ONT
methods were suitable for the identification of lncRNAs.

In summary, third-generation nanopore-based RNA
sequencing was introduced to explore the regulatory mech-
anisms of AAA. Especially, the study represented the initial
comprehensive analysis of AS, APA and SSR events in
AAA. These findings may provide novel insights into the
pathogenesis of AAA, and future research should address
the pathophysiological consequences of these changes in
order to assess their role in the pathogenesis of AAA, and
whether manipulation of these changes can be considered
as a treatment option for AAA.
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