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Abstract

A new mathematical method for potential reading frameshift detection in protein-coding

sequences (cds) was developed. The algorithm is adjusted to the triplet periodicity of each ana-

lysed sequence using dynamic programming and a genetic algorithm. This does not require

any preliminary training. Using the developed method, cds from the Arabidopsis thaliana ge-

nome were analysed. In total, the algorithm found 9,930 sequences containing one or more po-

tential reading frameshift(s). This is �21% of all analysed sequences of the genome. The Type I

and Type II error rates were estimated as 11% and 30%, respectively. Similar results were

obtained for the genomes of Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens,

Rattus norvegicus and Xenopus tropicalis. Also, the developed algorithm was tested on 17 bac-

terial genomes. We compared our results with the previously obtained data on the search for

potential reading frameshifts in these genomes. This study discussed the possibility that the

reading frameshift seems like a relatively frequently encountered mutation; and this mutation

could participate in the creation of new genes and proteins.
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1. Introduction

The occurrence of reading frameshifts in a gene is a very serious mu-
tation, and it results in the creation of mutant proteins.1 This may re-
sult in various hereditary2–4 or oncological diseases.5 The occurrence
of reading frameshifts in a gene is caused by the insertion or deletion
of nucleotides, which is not a multiple of 3. Besides, in eukaryotic
genes, reading frameshifts could arise through the shift of boundaries
between exons and introns, when the splicing point is under muta-
tion.6 In the evolution of genetic sequences, it is common to observe
the insertions and deletions of small fragments.7,8 In this case, within
the translation stage there is a complete change in the amino acid

sequence beyond the frameshift position.9 Consequently, the
encoded amino acid sequence can completely lose its biological func-
tion and become a pseudogene. This sequence could either acquire
another biological function or its function may remain the same. The
study of such mutations is important for understanding the mecha-
nisms of protein sequence evolution.

Errors of genome sequencing and assembly processes could also
cause reading frameshifts in genes present in modern databases.10 For
example, in pyrosequencing methods and PacBio sequencing technol-
ogy, frameshift errors appear very frequently. In this case, the encoded
amino acid sequence beyond the frameshift position would be
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incorrect, which makes further annotation difficult. To find and cor-
rect shifts for these sequencing methods, special programs have been
developed.11,12 The identification of such errors is important for im-
proving annotation and ensuring further research of new genomes.

In the literature, cases of programmed ribosomal frameshifts have
been reported. In this case, the ribosome itself shifts within the pro-
tein synthesis process on a single base, which results in the emergence
of an alternative protein.13 However, such events are beyond the
scope of this study. The present study is focused on developing a
mathematical algorithm for the detection of potential reading frame-
shifts in protein-coding sequences (cds).

The methods currently used to find reading frameshifts can be di-
vided into two classes. The methods of the first class are based on the
comparison (alignment) of sequences. These methods use protein
database search to find sequences which are homologous to the se-
quence of interest but are devoid of the frameshift. Such methods
suggest the use of the BLAST program and analogues.8,9,14 An obvi-
ous limitation of these methods is that in the absence of a homolo-
gous sequence without a frameshift, it is impossible to determine the
presence of a frameshift. The large number of substitutions that oc-
curred after the frameshift event could also make it difficult to find
similarities. In order to search for remote similarities, while taking
the possible frameshifts into account, special programs are being
developed.15

The methods of the second class are aimed at finding the frame-
shift directly by the sequence (ab initio).16–18 There are several meth-
ods for the prediction of protein-coding regions in genome sequences
that consider the probable reading frameshifts. These methods are
used by programs: FrameD,16,19 based on the Markov models, pro-
gram for predicting genes by taking into account frameshifts and
searching for frameshifts in known genes. The FragGeneScan pro-
gram20 was created to search for coding regions in short reads taking
into account the frameshifts and based on the Hidden Markov
Models (HMMs). Also, the HMM-frame program12 uses the HMMs
to search for protein domains in the metagenomics sequences while
taking into consideration the probable reading frameshifts.

The GeneTack program is among the most widely used tools.17,21

This program can identify reading frameshifts resulting from muta-
tions and sequencing errors. The idea of the algorithm is that several
genes are located on the chromosome one after another and are rep-
resented in databases as independent genes which may have origi-
nated from a single coding sequence separated as a result of the
reading frameshift. The GeneTack algorithm is based on the HMM
and the Viterbi algorithm, and possesses several parameters that re-
quire adjustment prior to sequence processing. Unfortunately, the
methods are all limited because they require a training sample for de-
termination of the HMM parameters. In the result some statistical
properties of the gene could be averaged, which significantly reduces
the capability of the methods. In particular, the frequencies of k-
words belong to these statistical properties. Training is carried out
using another program of the authors—GeneMarkS.22 The training
sample is usually the entire sequence of the genome under study (for
prokaryotes) or a set of coding sequences of this genome (for eukar-
yotes). Besides, a prepared model from the authors’ website, having
a similar level of GC content, could also be used. The GC content of
the sequences under examination has a significant effect on the
search for reading frameshifts. The given method was designed to
search for reading frameshifts both at the genome annotation stage
(as part of the genome annotation integrated programs) and in
known sequences.

Most of the methods used for the detection of frameshifts ab initio
are based on the well-known property of the cds, i.e. the triplet peri-
odicity (TP). TP is exclusively present in the cds of virtually all organ-
isms and is considered to be a consequence of the preferred use of
synonymous codons by various organisms.23,24 This property is used
by many programs designed for cds prediction.25,26 It has been
shown that the reading frameshift in a gene resulted in TP phase shift
in the corresponding position.18 TP phase shift is the shift of TP ma-
trix columns relative to the positions of the bases in the codons. An
example is presented in Fig. 1A and B. Figure 1A shows the TP ma-
trix, which was constructed from the coding sequence ‘atcatcatc . . .’.
The first column of this matrix corresponds to the first codon base,
the second column corresponds to the second codon base, and the
third column corresponds to the third codon base. Conditionally,
this can be shown as: 1 ¼> 1, 2 ¼> 2, 3 ¼> 3. Such a relationship
can be called Phase 0, or Fa¼0. After inserting one base (G in the
middle of the sequence, Fig. 1B), the TP phase shifts to one base. In
this case, the correspondence of positions in the codons and columns
of the matrix is 1 ¼> 2, 2 ¼> 3, 3 ¼> 1. This correspondence is
called Phase 1 or Fa¼1. The value Fa¼2 is also possible. In this
case, 1 ¼> 3, 2 ¼> 1, 3 ¼> 2. Such a correspondence will be ob-
served when inserting any two DNA bases. After inserting n DNA
bases, Fa becomes n � 3int(n/3). Here, ‘int’ is the operation of com-
puting the integer part of a number.

For the determination of TP phase shifts, mathematical methods
such as the Fourier transform,27 wavelet transform,28 dynamic pro-
gramming29 or methods based on comparison of periodicity matri-
ces30 have been employed. The Fourier transform method produced
good results on artificial sequences and genes with a high level of TP.
However, the method requires a window of rather long length (the
authors recommended a window size of about 750 nt).27 Methods
based on dynamic programming or matrices comparison are charac-
terized by enhanced sensitivity, but are incapable of detecting frame-
shifts in sequences with a low level of TP.18

We developed a new approach for TP phase shift detection in cds
from prokaryotic and eukaryotic genomes. By this method, an at-
tempt was made to eliminate the disadvantages of the HMM
approaches connected to the requirement of the HMM configuration
in the sampling of genes. Such adjustment significantly averages all
the characteristics of the genes TP, because different classes of TP ex-
ist in the genome, and the combination thereof decreases the statisti-
cal significance of TP.31 In addition, the use of HMM could identify
reading frameshifts only in those cds possessing the same base corre-
lations, as the training sample. If the correlations between bases of
cds are different, then it could be impossible to detect the frameshifts.
The HMM limitations are considered in more details in the ‘3.4.
Comparison with the Genetack-GM program’ section.

We developed a method that enables determination of the best TP
matrix for each sequence while taking into account the correlation of
the adjacent DNA bases along with the possibility of nucleotides in-
sertion or deletion. The genetic algorithm and the dynamic program-
ming method32 were used in a similar way, as described in our
previous work on amino acid sequences. However, in the given case,
the algorithm was modified by introducing a matrix that considers
the correlation of neighbouring bases. After identifying such a ma-
trix, we performed the final alignment of the sequence of interest
with respect to the best matrix and found the probable reading
frameshift positions.

As a result of our research, we identified an unexpectedly large
number of probable reading frameshifts in the Arabidopsisthaliana
genome cds, which constituted 9,930 with the error level of the first

158 Frameshifts in cds



and second types being �11% and 30%. This is about 21% of all
the registered cds from this genome. We obtained similar results for
the genomes of Caenorhabditis elegans, Drosophila melanogaster,

Homo sapiens, Rattus norvegicus and Xenopus tropicalis. It was as-
sumed that the reading frameshift is a relatively frequently found mu-
tation, and this mutation could take part in the creation of new
genes and proteins.

2. Mathematical methods and algorithms

2.1. General description of the mathematical algorithm

used in this work

The task of reading frameshift detection in a protein-coding sequence
could be mathematically solved, if it becomes possible to relate the
statistical properties of the sequence with the reading frame. In this
case, one could find the reading frameshift in a sequence without us-
ing any kind of training and without involving any additional infor-
mation. Such a property could be presented by the TP of genes.33 In
this case, the reading frameshift would appear as a TP phase shift.

Let us consider a protein-coding sequence S having a length N.

The TP of a sequence is usually set in the form of the MT(3, 4) ma-
trix. Here, the columns indicate the three positions of codons (1, 2 or
3), and the rows represent four types of nucleotides.33 Figure 1A and
C presents an example of a TP matrix created for the sequences
S={atc}50 and S={atcgga}25. In the first case, only three matrix ele-
ments are filled, whereas six elements are filled in the second case.
The TP of the S sequence set in the form of the MT matrix perfectly
reflects the difference in base frequencies at each position of the co-
don from the base frequencies throughout the entire nucleotide se-
quence. However, the MT matrix does not consider the correlation
between adjacent bases, as illustrated by the following example. Let
us assume that in our sequence only four codons are equally likely to
be used: ATA, TAT, CGC and GCG, and they are arranged in a se-
quence in some random order. Then, the DNA base frequencies in
each column of the MT matrix would be equal to the frequencies of

bases in the entire sequence, and the matrix constructed according to
this sequence would show that there is no TP in the sequence.

Therefore, it is more appropriate to use another matrix M(i, n)
while searching for TP. The matrix contains 16 rows and 3 columns.
The columns of the matrix represent the pairs of positions in the co-
don: 3-1, 1-2 and 2-3. Here, the i column of the M matrix takes the
1, 2 and 3 values for pairs of positions in codon: 3-1, 1-2 and 2-3, re-
spectively. This means that the M matrix columns are numbered by
the last position out of the two. The n row number shows the fre-
quency of the base pairs in columns, and n takes values from 1 to 16.
In order to fill the M matrix, the row number is calculated as follows:
n = s(j � 1)þ4(s(j) � 1). This study utilized the a = 1, t = 2, c = 3 and
g = 4 nucleotides numerical coding. Here, s(j) is the base of the S se-
quence in the j position, which corresponds to the i position in the
codon calculated with the following equation: i = j � 3int(j/3), where
‘int’ is the integer part of the number. Then, the s(j � 1) base corre-
sponds to the previous neighbouring codon position. Thus, j ranges
from 2 to N values. For each j, M(i, n) = M(i, n) þ 1.Therefore, the
M(3, 16) matrix contains two types of statistical regularities of the
coding regions. The first one is the difference between the frequencies
of nucleotides in each position of a codon and the nucleotide fre-
quencies of the entire S sequence. The second one is the correlation
of two neighbouring nucleotides positions of the codon (3-1, 1-2 and
2-3).

Assuming we have a sequence S that is a cds. The sequence S0 is
sequence S prior to the reading frameshifts, that is, S0 is the ancestor
of sequence S. We create the matrix M(3, 16) for S and we create the
matrix M0(3, 16) for S0 as described above. If one knows the M0(3,
16), then such TP periodicity shift could be found using the align-
ment of sequence S with the position-weight matrix (PWM) W0 (see
Equation 1). This matrix was created using M0(3, 16), as it was per-
formed previously for the MT(3, 4) matrix34 and is shown below in
Equation (1). To create the W0(3, 16) matrix, each element of the
M0(3, 16) matrix was transformed to the argument of the normal
distribution, using the normal approximation for the binomial distri-
bution. Dynamic programming could be used to find the global

Figure 1. (A) The TP matrix is shown for the sequence S¼{atc}50. (B) The phase TP in a fragment of the sequence S. A base g is inserted in the middle of the se-

quence. The phase Fa¼0 was before the insertion of g, because there is an agreement between the columns of the matrix and the positions of the codons as 1

¼> 1, 2 ¼> 2, 3 ¼> 3, respectively. Fa¼1 after the insertion of g, because the following agreement is observed: 1 ¼> 2, 2 ¼> 3, 3 ¼> 1. (C) The TP matrix for the

sequence S¼{atcgga}25.
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alignment of the S sequence with respect to the W0(3, 16) matrix. This
alignment can be performed by cyclic alignment, as was done previ-
ously.35 However, the problem is that there are no stored M0(3, 16)
matrix and the corresponding W0(3, 16) matrix for the sequence S0

and sequence S is unknown. Using the sequence of an existing gene, it
is impossible to identify M0(3, 16) and W0(3, 16) matrices. The reason
why it is impossible to calculate this matrix is the uncertainty of the
reading frameshift positions in the gene.

For example, let us consider a sequence S0:{atg}50. If we delete a
single nucleotide in the middle of S0, we obtain a sequence
S={atg}25{tga}25. The matrices constructed for the sequences S0 and S
[M0(3, 16) and M(3, 16)] are shown in Table 1A and B, respectively.
Table 1B shows that for the S sequence, all available base pairs that
could be constructed from the existing reading frame would receive a
similar positive weight, when the M(3, 16) matrix is transformed
into the W(3, 16) matrix (PWM). Thus, using the global alignment
of the S sequence with respect to the W(3, 16) matrix36 (or of the
HMM37), it would be impossible to find the TP periodicity shift.
This is because the deletion in position 76 of the S sequence shall not
be created by global alignment with the W(3, 16) matrix. Such a shift
could only be found if the M0(3, 16) matrix is known, and the W0

matrix is created on its base. Therefore, the task is to develop a math-
ematical method to find the W0 matrix and perform a global align-
ment of the S sequence relative to W0.

This study partially utilized the algorithm that we developed in
our previous work.32 This algorithm employs a particular property
of the P(x>F) probability, which is calculated for the global align-
ment of the S sequence with the PWM. It was shown that the value
P(x>F) is lower for the W0(3, 16) matrix compared with the W(3,
16) matrix. Here, F is the similarity function value of the global
alignment (see Equation 2). This means that we must elaborate on a
procedure for optimizing the W(3, 16) matrix to find the W1(3, 16)
matrix that is closest to the W0(3, 16) matrix. In this case, we
obtained the maximum value of the F similarity function and the
lowest value of the P(x>F) probability, as well as the global align-
ment of the S sequence with the W1(3, 16) matrix. This global align-
ment allows us to determine the coordinates of the potential reading
frameshifts. The optimization was performed using the algorithm

shown in Fig. 2. The idea of the algorithm is to create a random ma-
trix Wr(3, 16) (or a set of random matrices), followed by optimiza-
tion with a genetic algorithm and obtaining the W1(3, 16) matrix as
a result of optimization. Matrices have 3 columns and 16 rows,
hence optimization takes place in a 48-dimensional space.
Schematically, this optimization is presented in Fig. 3. At each opti-
mization step, we move along the 48-dimensional space and obtain

Table 1. (A) Matrixes M0(3, 16) and (B) Mð3;16Þ

(A) (B)

N 1 2 3 N 1 2 3

aa 1 0 0 0 aa 1 0 0 0
ta 2 0 0 0 ta 2 0 0 0
ca 3 0 0 0 ca 3 0 0 0
ga 4 50 0 0 ga 4 25 0 25
at 5 0 50 0 at 5 25 25 0
tt 6 0 0 0 tt 6 0 0 0
ct 7 0 0 0 ct 7 0 0 0
gt 8 0 0 0 gt 8 0 0 0
ac 9 0 0 0 ac 9 0 0 0
tc 10 0 0 0 tc 10 0 0 0
cc 11 0 0 0 cc 11 0 0 0
gc 12 0 0 0 gc 12 0 0 0
ag 13 0 0 0 ag 13 0 0 0
tg 14 0 0 50 tg 14 0 25 25
cg 15 0 0 0 cg 15 0 0 0
gg 16 0 0 0 gg 16 0 0 0

Figure 2. A block diagram of the algorithm for the optimization of random

matrices Mð3; 16Þ from the MR set, used to search a matrix with the largest

mFmax.
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the intermediate matrices, which are represented by asterisks. Let us
consider the crucial points of this algorithm.

2.2. Methods for creating a W2(3, 16) random matrix

Assuming we have a DNA sequence S (cds), to create a W2(3, 16)
random matrix, we used the S2 sequence, which was obtained from
the S sequence by randomly shuffling the nucleotides. The random
shuffling algorithm has already been described in detail.32 To do
this, a sequence of RS of the same length as the S sequence was gener-
ated by a random number generator. Thereafter, we sorted the se-
quence RS in ascending order and memorized the permutations.
Thereafter, these permutations were performed in the sequence S and
the sequence S2 was obtained. Then, using the S2 sequence, we filled
the M2(3, 16) matrix. We filled the W2(3, 16) matrix according to
the equation:

W2ði; kÞ ¼
M2ði; kÞ � ðN � 1Þp2ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þp2ðkÞð1� p2ðkÞÞ

p : (1)

Here p2ðkÞ ¼ pðlÞpðmÞ, where p(l) and p(m) are the probabilities
of the l- or m-type nucleotides in the S2 sequence (l, m2{a, t, c, g});
p(l) ¼ q(l)/N, q(l) is the number of l-type nucleotides in the S2 se-
quence, and N is the S2 sequence length. This PWM calculation con-
siders two types of statistical regularities in the S2 sequence. On the
one hand, it considers heterogeneities in the nucleotide frequencies at
each codon position, because the p2 probability without specificity to
each codon position is used. On the other hand, this matrix also con-
siders the correlation of neighbouring bases, because the expected
number of each of the 16 pairs is calculated for each i position in the
codon, i2{1, 2, 3}.

2.3. Optimization of the W2(3, 16) matrix using genetic

algorithm and dynamic programming

2.3.1. Application of dynamic programming for
W2(3, 16) matrix optimization
Assuming we have a DNA sequence S, then we optimized the corre-
sponding W2(3, 16) matrix by a genetic algorithm to maximize the
similarity function F. To calculate the similarity function, the S se-
quence was aligned with respect to the W2(3, 16) matrix by an itera-
tive procedure, and the F value was calculated:

Fði; jÞ ¼ max
Fði� 1; j� 1Þ þWt

2ðaðiÞ; nÞ
Fði; j� 1Þ � d
Fði� 1; jÞ � d

8<
:

9=
;: (2)

Here, i runs from 1 to Nþh, and j runs from 2 to N. The h constant
indicates the maximum number of insertions and deletions that could
appear in the final alignment. We choose it as equal to 50, because
among the studied sequences there was no cds with the number of
insertions or deletions >50. Here, a(i) was calculated as i � 3int(i/3.0).
Therefore, a(i) takes the values 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . for i¼1, 2,
3, 4, 5, 6, 7, 8, 9, . . . . Wt

2 is the transformed W2 matrix. The trans-
formation (W2¼>Wt

2) was carried out so that all matrices Wt
2

(which are used in Equation 2) would have the same value R2 = R0

and Kd = K0. For any matrix Wt
2, the constants R and Kd can be cal-

culated using the following equations:

R2 ¼
X3

i¼1

X16

j¼1

wt
2ði; jÞ

2; (3)

Figure 3. The idea of the algorithm is to create a random matrix Wr, (or a set of random matrices), then optimize it with a genetic algorithm and get the W1 ma-

trix as a result of optimization.

161Y.M. Suvorova et al.



Kd ¼
X3

i¼1

X16

k¼1

wt
2ði; kÞpðiÞp2ðkÞ: (4)

p(i) is the probability of encountering the symbols 1, 2 and 3 in the se-
quence a(i) and it is 1/3 for any i. The probability p2(k) is defined in
Equation (1) above. For all calculations in this work, we used R0 ¼
1,050 and K0 ¼ �1.8. These values were chosen based on the follow-
ing considerations. R0 was calculated as the sum of squares of the ma-
trix W2. The matrix W2 was created for the sequence S ¼ {atg}400 with
the introduction of 2.0 random substitutions per nucleotide. The se-
quence S had a level of TP, which is average for the genes under study.
We estimated the level of TP based on the MT matrix using mutual in-
formation converted into an argument of normal distribution X. The
average level of X for the analysed genes was about 6.2. These calcula-
tions have earlier been described in detail.38

The value K0 was chosen using a Gr set of artificially created
sequences. The value of K0 reflects the accuracy of determining the
beginning and the end of the local alignment and the number of val-
ues which are greater or less than zero in the matrix Wt

2.32 The vol-
ume of the set Gr was 500 sequences. Each sequence had a length of
1,200 nt. The first 400 bases of this sequence were random. The next
400 bases correspond to some random matrix MT for which the TP
level X¼6.2 (see the previous section). Then again, follow a random
sequence of 400 bases. The matrix MT was used to calculate the
weight matrix WT according to the equation:

WTði; jÞ ¼ MTði; jÞ � Lpði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lpði; jÞð1� pði; jÞÞ

p : (5)

Here, p(i, j)¼ x(i)y(j)/L2, xðiÞ ¼
P4

j¼1 MTði; jÞ, yðjÞ ¼
P3

i¼1 MTði; jÞ
and L ¼

P3
i¼1

P4
j¼1 MTði; jÞ. Then, for each WT matrix, we con-

structed a local alignment according to Equation (6). Here we use the
sequences a(i) also, the indices i and j are the same as in Equation (2).

Eði; jÞ ¼ max

0
Eði� 1; j� 1Þ þWTðaðiÞ; jÞ
Eði; j� 1Þ � d
Eði� 1; jÞ � d

8>><
>>:

9>>=
>>;
: (6)

We found Emax, the coordinates of the maximum imax and jmax as
well as the coordinates of the beginning of the alignment i0 and j0,

for each sequence from the set Gr. We tested different values of K0

and chose K0 ¼ �1.8. In this case, the sum of differences i0 and j0
from 400, plus the sum of the differences imax and jmax from 800
were minimal and equal to 46 nt.

Let us continue to consider Equation (2). For this equation
n¼ s(k) þ 4(s(j) � 1) ranges from 1 to 16. The index k is calculated
using transitions already created in the F matrix. As the matrix
Wt

2ðaðiÞ; nÞ is calculated for pairs of bases, to calculate k, it is neces-
sary to determine the previous base of sequence S, which is included
in the alignment. The previous base can be found by calculating the
path to the cell with coordinates (i, j). If we get to the (i, j) cell from
the (i � 1, j � 1) cell and we get to the (i – 1, j – 1) cell from the (i –
2, j – 2) cell, then k¼ j – 1. This corresponds to the transitions F(i –
2, j – 2) ¼> F(i – 1, j – 1) ¼> F(i, j) in the matrix F. Such a move cor-
responds to the diagonal move, and there are no insertions or dele-
tions. If we get to the (i, j) cell from the (i � 1, j � 1) cell, to the (i �
1, j � 1) cell from the (i � 1, j � 2) cell and to the (i � 1, j � 2) cell
from the (i � 2, j � 3) cell, then k¼ j � 2. This move corresponds to
the skipping of a single base in the sequence S. Therefore, the

transitions in the matrix F are F(i � 2, j � 3) ¼> F(i � 1, j � 2) ¼> F(i
� 1, j � 1) ¼> F(i, j). The longer deletions in the sequence S (not longer
than h) are treated similarly. Assuming that there is a deletion of length q
in the sequence S; this means that k¼ j � 1 � q and the path to the cell
(i, j) is F(i � 2, j � 2 � q) ¼> F(i � 1, j � 1 � q) ¼> . . . ¼> F(i � 1,
j� 2)¼> F(i� 1, j� 1)¼> F(i, j).

Deletions can also occur in the sequence a(i). These deletions corre-
spond to a skipping of columns of the matrix Wt

2ðaðiÞ;nÞin the resulting
alignment. The path F(i � 3, j � 2) ¼> F(i � 2, j � 1) ¼> F(i � 1, j �
1)¼> F(i, j) corresponds to a skipping of a single column of the Wt

2 ma-
trix. In this case, we cannot use the matrix Wt

2 because it uses pairs of
neighbouring bases. Therefore we need a weight matrix calculated for
pairs of bases separated by one base, i.e. the pairs a(i)a(iþ2), i¼1, 2,
. . ., Nþh � 2 [Nþh is the length of the sequence a(i)]. Therefore, we
need another matrix (Wt

3) which could be obtained from the Wt
2 matrix.

The Wt
3 matrix contains weights for pairs of bases which are in codon

positions 2-1, 3-2 and 1-3 (i.e. separated by one codon position).

Wt
3ðx; iþ 4ðl � 1ÞÞ ¼ 0:25

X4

j¼1

ðWt
2ðx; iþ 4ðj� 1ÞÞ

þWt
2ðx; jþ 4ðl � 1ÞÞÞ=2:0:

(7)

i, j and l denote the bases: 1¼ a, 2¼ t, 3¼ c, 4¼ g. Equation (7) is
based on the assumption that a weight of the pair of bases (i)(l) sepa-
rated by the single base j can be calculated using the weights of two
intersecting pairs of bases (i)(j) and (j)(l). Therefore, one can use the av-
eraged weight of four possible intersecting pairs to estimate the weight
of the pair (i)(l). Here i and l are fixed, and j ranges from 1 to 4.

A deletion of two columns of the matrix Wt
2 corresponds to the

path F(i � 4, j � 2) ¼> F(i � 3, j � 1) ¼> F(i � 2, j � 1) ¼> F(i � 1,
j � 1) ¼> F(i, j). In this case, the equation for the calculation of the
matrixWt

3 is as follows:

Wt
3ðx; iþ 4ðl � 1ÞÞ ¼ 0:0625

X4

j¼1

X4

k¼1

ðWt
2ðx; iþ 4ðj� 1ÞÞ

þWt
2ðx; kþ 4ðl � 1ÞÞÞ=2:0:

(8)

Here i, j, k and l also denote the bases: 1¼ a, 2¼ t, 3¼ c, 4¼ g.
Equation (8) is based on the assumption that the weight of a pair of
bases (i)(l) separated by two bases (j and k) can be calculated based
on the weights of the neighbouring pairs (i)(j) and (k)(l). Therefore,
to estimate the weight of the pair separated by two positions, one
can use the average weight of 16 possible neighbouring pairs. Here i
and l are fixed, and j and k run from 1 to 4. If we delete three col-
umns of the matrix, we return to the matrixWt

2. This will be correct
for all deletions that are multiples of 3. Therefore, we used Equation
(7) for column deletions of length 1, 4, 7, . . . and we used Equation
(8) for column deletions of length 2, 5, 8, . . ..

The zero row and column of the F matrix were filled with negative
numbers, and the F(0, 0), F(1, 0), . . ., F(h, 0) were 0. For transition
from the zero column to the first column of the F matrix and from
the zero row to the first row of the F matrix, the W’

4 F matrix was
used. It was determined as follows:

Wt
4ðx; nÞ ¼ 0:25

X
i¼1;4

Wt
2ðx; iþ 4ðn� 1ÞÞ: (9)

Here, averaging over the four previous bases occurs and the weight
depends only on the base in position j. In this case, the W’

4 matrix
replaces the Wt

2 matrix, but n = s(j) according to Equation (2).
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The d constant (see Equation 2) plays an important role. It is intu-
itively clear that the smaller the statistical significance of TP in the S
sequence, the higher the d value should be. To select the d value, we
generated 1,000 sequences of 600 nt long for each level of the TP in
the form of the x normal distribution argument33 in the interval
from 0 to 20 and with a step of 1. Then in a random position of this
sequence, no closer than 100 nt from the beginning and end, a dele-
tion of one base was introduced. Let us call each set of such sequen-
ces MP(x). For each MP(x) set, we selected the d value in such a way
that the number of insertions or deletions that were made by the
method outside the distance (650) from the artificial deletion did not
exceed 5%. The obtained d values are presented in Fig. 4.

Simultaneously with the F matrix, the inverse transition matrix
was also filled, as is usually the case when searching for global align-
ment. Then, using the inverse transition matrix, the alignment of the
S sequence with respect to the Wt

2 matrix was constructed, and the
value of the Fmax similarity function in the cells of the matrix F(N,
N), F(N þ 1, N), . . ., F(N þ h, N) was determined.

The transformation of matrix W2 into matrix Wt
2 makes possible

the achievement of similar distributions for the values of Fmax on the
set of random sequences of S for different W2 matrices. This is the es-
sence of the transformation of matrix W2 into matrix Wt

2. The simi-
larity of distributions enables us to use Fmax as a measure of the
similarity of the matrix Wt

2 and the analysed sequence S. This allows
consideration of the Wt

2 matrix having the largest value of Fmax as
the matrix that best represents periodicity in sequence S. It is possible
to carry out all the calculations without such transformation and us-
ing Wt

2. Also, it is possible to use matrix W2 instead of matrix Wt
2 in

Equation (2). However, the comparison of Fmax for different W2 ma-
trices will have to be done by the Monte Carlo method, which con-
siderably slows down implementation of the genetic algorithm
(Section 2.3.2).

2.3.2. Application of the genetic algorithm for
W2(3, 16) matrix optimization
When implementing the genetic algorithm, we considered the Fmax

value as the target function whereas the W2(3, 16) matrix was con-
sidered as the ‘organism’. The use of the genetic algorithm for opti-
mizing the W2(3, 16) matrix was examined in detail in Ref. 32, and
the reader is hereby referred to that publication. Let us consider in

general the operating process of the genetic algorithm. First, the MR
set of the W2(3, 16) random matrices with a volume of 500 matrices
was generated. Each matrix was created as described in Section 2.1.
Thereafter, each matrix was transformed to obtain a set of matrices
with the same R2 and Kd, as described in Section 2.3.1 and in Ref.
32. Consequently, a number of MRt matrices were obtained. Each
matrix from the MRt set was subjected to the dynamic programming
procedure to align with the S sequence, and the Fmax value was calcu-
lated as described in Section 2.3.1. Fmax was considered as the target
function. Thereafter, two matrices from the MRt set were selected,
and the higher the probability of selecting these matrices, the greater
was the value of the Fmax objective function thereof. These two ma-
trices ‘intercrossed’, and a ‘descendant’ was created. A descendant is
a matrix, which possesses part of the cells from one matrix and a
part of the cells from another. Then, one matrix from the MRt set
‘perished’, and the probability of collapse was greater, the lower the
Fmax value for this matrix, and its place was taken by the descendant.
In addition, random ‘point’ mutations were introduced in 10% of
the randomly selected matrices from the MRt set. Also, the greater
the probability that the chosen matrix would be selected to introduce
random mutations, the lower was its Fmax. Mutations were intro-
duced into a random cell, and the number contained there was
changed to a random number in a uniform interval from �5 to þ5.
Let us call the entire process an iteration. Therefore, within a single
iteration, the Fmax value is calculated in 500 matrices, one matrix is
deleted, one descendant is created, and random ‘point’ mutations are
introduced into 50 matrices. Let us call mFmax the maximum value
for Fmax, which is obtained within a single iteration of the MR set.
Then, the MR set is replaced by the MRt set and the process is re-
peated from the very beginning.

In the result of the genetic algorithm operation, the mFmax was
continuously increased. The genetic algorithm operation was
stopped after the mFmax value stopped increasing during 50 itera-
tions. On average, about 9 � 103 iterations are required to reach this
point.

2.4. Developing a measure of significance for the phase

shifts of TP

After carrying out the genetic algorithm, we obtained a single
W1(3, 16) matrix (Section 2.1) which possesses the maximum similar-
ity function (mFmax) and the alignment of the S sequence with respect
to the columns of the W1(3, 16) matrix. We are not interested in the
mFmax values itself (it characterizes the TP level in the sequence), but
rather in the statistical significance of the found TP phase shifts. To
estimate it, the mFmax value was divided into three parts using the
alignment sequence S and the W1(3, 16) matrix. The first part is the
region of the S sequence, where the positions of the W1(3, 16) matrix
columns and the reading frame in the S sequence coincide. In Fig. 5,
this area is designated as V1. The second part (Fig. 5, V2) accounts
for coincidences of the following form: 1 => 2, 2 => 3, 3 => 1, and
the third part (Fig. 5, V3) falls on coincidences of the following form:
1 => 3, 2 => 1, 3 => 2. The sum of V1 þ V2 þ V3 � kd is equal to
mFmax, where k is the number of inserts or deletions, and d is the
price for insertion or deletion from Equation (2). Initially, the
W1(3, 16) matrix is unconnected with the reading frame. Therefore,
cyclic rearrangements of the W1(3, 16) matrix were carried out, so
that V1 � V2 and V1 � V3. As an indicator that could tell us about
the presence of phase shifts of TP, we assumed V2 þ V3.

For each gene we defined a threshold V0¼V2 þ V3, below which
it could be said that there were no TP phase shifts in the sequence.

Figure 4. The dependence of the d value (see Equation 2) on the TP, of the

analysed sequence. The TP was calculated using the TP matrix33 and is

expressed in the arguments of the normal distribution and is shown along

the x-axis.
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The V0 value was selected for each S sequence, using the SR sequen-
ces set. As gene sequences possess various lengths and different MT
matrixes,29 the selection has to be done for each gene. The SR set
contained 103 S sequences, where the codons were randomly shuf-
fled. Such a shuffling obviously destroys all probable TP phase shifts.
We selected the V0 value that provided no more than 20 sequences
with random insertions or deletions in the SR set. Such insertions or
deletions were considered to be significant [N(V0) � 20], where N is
the number of sequences with a random shift of TP. If V2 þ V3 = 0,
then the SR set was not created, because there were no TP phase
shifts in the sequence.

3. Results and discussion

3.1. Estimation of the first and second type error rates

of the developed method

In order to determine the number of errors of the first and the second
type, we used all the coding sequences in the A. thaliana genome,
which constitutes 48,322 cds. These sequences were downloaded
from the Ensembl website (ftp://ftp.ensemblgenomes.org/pub/release-
38/plants/fasta/arabidopsis_thaliana/cds/). We replaced all symbols
(except a, t, c and g) in these sequences with a randomly selected nu-
cleotide. Such a replacement was made for all studied cds.

Then, the RN set was created by the random shuffling of codons
of the sequences from the initial set. Sequences from the random set
should not contain TP phase shifts while having the same statistical
properties as sequences from the initial set. The RN set allows esti-
mation of the number of errors of the first type (true positive). We
applied the approach developed by us to sequences from the RN set.
In the result, we found 1,098 sequences with the TP phase shift, with
V2 þ V3 value higher than the threshold level. The total number of
TP phase shifts in these sequences was 1,549.

It is also interesting to determine the number of errors of the sec-
ond type and the power of the method. To do this, another test set
(RD) was created using coding sequences from the A. thaliana ge-
nome having a length longer than 500 nt (40,621 sequences). The
codons in these sequences were randomly shuffled. Then, a single-
base deletion was introduced in a random position of each sequence
not closer than 100 nt from the beginning or the end of the sequence.
These sequences were analysed using the developed algorithm, and
the results are presented in Table 2. This table shows that the method
identified 28,357 sequences in the RD set, where V2 þ V3 � V0,
and the predicted position is in the range of 650 from the artificial
deletion. This shows that second type errors constitute 30%, and so
the power of the method constitutes 70%. Also, the method rather
accurately predicts the location of the frameshifts, because it was
only in 1,128 sequences that frameshifts were found outside the re-
gion 650 from the deletion point. It should also be noted that the
method does not create a significant number of random frameshifts.
This is because 29,485 sequences with statistically significant frame-
shifts (28,357þ1,128) contain 29,888 shifts, i.e. 403 frameshifts are
due to purely random factors.

3.2. Searching for potential frameshift mutations in

coding sequences from the Arabidopsis thaliana

genome and several other eukaryotic genomes

All coding sequences were analysed from the A. thaliana genome. In
the result, we identified 9,930 cds with one or more TP phase shifts,
which could indicate the presence of frameshift mutations in these
sequences. A total of 14,951 TP phase shifts were found in these cds.
This indicates that in many cds we detected multiple TP phase shifts.
As the number of false positives within the RN set constitutes 1,549
TP shifts (see Section 3.1), then the first type error rate could be esti-
mated as about �11%. As we are dealing with cds derived from
mRNA, we also excluded the TP phase shifts found in the cds
obtained by the alternative splicing of the same gene. In this case,
6,624 unique cds remain in the A. thaliana genome.

For further analysis, the sequences where the TP phase shifts were
found were divided into subsequences in accordance with the TP
phase shift coordinates. Therefore, each sequence was split at least
into two subsequences. Further, subsequences longer than 60 nt were
translated into amino acid sequences in accordance with two frames
(except the one, which was already present in the original gene).
Two alternative frames must be considered, because we do not know
which of the subsequences possesses the correct frame. If we have a
single TP phase shift in the x coordinate, the reading frameshift could
be registered in the sequence from 1 to x or in the sequence from x to
the end of cds. The developed method is incapable of distinguishing
between these two cases, and we cannot exclude the possibility that
there was a frameshift at the beginning of the gene. As a result,
43,499 sequences longer than 20 amino acids were obtained. Next,
for these sequences, the blastP program was employed to search
against the Swiss-Prot database (E-value cut-off 0.1). Consequently,
a similarity was found for 824 subsequences from the 774 cds. This
means that for �774 cds, the frameshift was also confirmed by the
amino acid sequence similarity.

Let us consider an example of a cds with a TP phase shift from
the A. thaliana genome, for which a similarity was found using an al-
ternative reading frame. The sequence identifier is AT1G79920.2,
and the corresponding amino acid sequence identifier in the Swiss-
Prot is F4HQD5_ARATH. A TP phase shift was found at the 1933
position, and thereafter, the frame changes from the first to the third.
Table 3 presents the resulting Wt

2ð3; 16Þ matrix. For the third read-
ing frame, an amino acid sequence was also obtained. Table 4 shows
that the F4HQD5_ARATH sequence possesses a similarity to the
HS105_CRIGR sequence from the Cricetulus griseus (Chinese ham-
ster) genome only after 642 amino acids, which corresponds to the
coordinate of the discovered frameshift. The E-value for the similar-
ity found constitutes 4.6e�144. Beyond the 656 amino acids of the
HS105_CRIGR sequence, its similarity was observed with the amino
acid sequence created by the third reading frame, after the 1933 posi-
tion from the AT1G79920.2 cds (Table 5). The E-value for this simi-
larity constitutes 4.6e�19. This example obviously demonstrates that
simultaneously there are two similar proteins, one of which possesses
a reading frameshift, while the other does not. The first one is the

Figure 5. Scheme of division of mFmax on V1, V2 and V3 (see Section 2.4).
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heat shock protein 70 (F4HQD5_ARATH) from the A. thaliana ge-
nome, while the second one is the heat shock protein 105 kDa
(HS105_CRIGR) from the Cricetulus griseus (Chinese hamster)
genome.

In addition to the A. thaliana genome, we applied our method to
cds from five eukaryotic genomes. The cds were also obtained from
the Ensembl database (ftp://ftp.ensembl.org/pub/release-91/fasta/).
These genomes include those of C. elegans, D. melanogaster, H. sapi-

ens, R. norvegicus and X. tropicalis. Table 6 presents data on the
number of potential reading frameshifts. The level of errors of the
first and second type corresponds to those estimated for the A. thali-

ana genome, with accuracy of 65%. From Table 6, it can be seen
that these genomes contain on average from �1.5 to 3 frameshifts in
one cds.

3.3. Searching for potential frameshift mutations in

coding sequences from prokaryotic genomes

We also studied the presence of TP phase shifts in cds from 17 bacte-
rial genomes. For example, using the A. deehalogenans genome, we
studied the RN and RD sets (see Section 3.1) created from the cds set
of this genome. The results of examining the RN set (codon-shuffled
sequences) demonstrate that only 61 TP shifts could be identified.
Thus, the number of errors of the first type (false positives) for this
genome is about 8% of the number of cds found with the TP phase
shift (Table 7, Column 3). In the remaining 16 genomes, fluctuations
in first type error rates ranged from 6% to 14%.

Table 2 presents the results obtained from studying the RD set.
This table shows that from 3,460 codon-shuffled cds with an artifi-
cial frameshift, in 2,975 sequences, TP phase shifts were found
within the 650 nt interval. In 68 cases, TP phase shifts were pre-
dicted outside the 650 nt region from the artificially created deletion.
This implies that the number of errors of the second type constitutes
�14%, and the power of the method is �86%. The results of analy-
sis of the TP phase shifts in the remaining 16 genomes are presented
in Table 7, Column 2. The total number of TP phase shifts is shown
in Table 7, Column 3. The table shows that the number of TP phase
shifts in bacterial genes ranges from several dozens to hundreds per
single genome.

3.4. Comparison with the Genetack-GM program

It would be interesting to compare the obtained results with the
results obtained previously while searching for reading frameshifts. It
has been recorded that the Genetack-GM program showed the best
results among other frameshift prediction methods, hence our results
were compared with this program.17 For this purpose, the complete
sequences of the 17 prokaryotic genomes were downloaded from the
Ensembl database39 and submitted to the GeneTack-GM software
program. GeneTack-GM is a combination of the GeneMark pro-
gram designed to indicate coding sequences in a genome, and the
Genetack designed to search for potential frameshifts.37 In the case
of prokaryotic sequences, the Genetack software program searches
for cases of potential frameshifts that resulted in the splitting of a sin-
gle coding sequence into two independent ones (the author claimed
that, in modern databases they are usually represented by two sepa-
rate genes). The result of the GeneTack-GM software is the predicted
coordinates of a gene (usually a hypothetical gene) and the coordi-
nate of a frameshift within the gene.

We compared the coordinates of frameshifts obtained by
Genetack for the 17 bacterial genomes with the boundaries of known
genes indicated in the annotation to the corresponding genomes in
the Ensembl database. Frameshifts found by the GeneTack-GM were
divided into three categories according to their position in the known
genes. The results are presented in Table 7. The first category
includes frameshifts found within the known genes (not closer than
50 nt to the start/end of the gene) (Table 7, Column 4). The second
category includes frameshifts that occur at the edges of the known
genes (not more than 50 nt from the start/end of the gene). For this
category, it is also indicated in parentheses whether this frameshift
leads to uniting a gene with the neighbouring one (i.e. to predicting a
hypothetical gene), if the coordinate of the end of a hypothetical
gene predicted by the software program captures the following gene
by more than 100 nt (Table 7, Column 5). The third category
includes frameshifts occurring in the area between the known genes
(Table 7, Column 6). It is evident that most of the frameshifts found
by GeneTack are pertaining to the second and third categories. This
implies that the presence of these frameshifts is connected to the fact

Table 2. Search for phase shifts in the set RD

Name of organism The total number of
sequences in
the RD set

Number of sequences
which have
V2 þ V3 6¼ 0

Number of sequences which have V2 þ V3 � V0 Total number
of shifts

Within 650 Out 6 50

1. Arabidopsis thaliana 40,612 31,203 28,357 1,128 29,888
2. Anaeromyxobacter dehalogenans 3,460 3,458 2,975 68 3,668

Table 3. The matrix W t
2ðaðiÞ;nÞ (see Equation 2) that was used for

the construction of the final global alignment of cds AT1G79920.2

(point 2.4)

A T C G

1 A �1.4 1.6 0.3 5.3
1 T �7.9 3.5 2.4 1.7
1 C �0.8 7.1 �0.5 �3.4
1 G �6.3 �2.0 �1.6 �4.5
2 A �3.5 �4.6 �4.7 0.9
2 T �2.4 �1.9 0.7 11.3
2 C 1.3 �0.3 �0.3 �1.4
2 G 0.1 �3.7 �0.3 1.8
3 A 2.7 0.4 �0.3 �2.9
3 T �6.8 0.2 �0.3 �5.4
3 C �1.7 �1.1 0.4 �3.7
3 G 6.4 1.5 4.3 �0.9

n¼ s(k)þ4(s(i) � 1), and a(i) was calculated as i – 3int(i/3) for i¼ 1,. . ., N.
The index k is calculated using the already created transitions in the matrix F

(see the text under Equation 2). Columns 3 through 6 correspond to the bases
s(i), the second column corresponds to the bases s(k), and the first column
shows the positions a(i).
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that the two adjacent genes that are indicated in the Ensembl data-
base are combined by the GeneTack-GM software program into a
single gene or into one gene that captures parts of these genes.

However, this study evaluated the presence of reading frameshifts
in known genes (cds). At a distance no closer than 50 nt from the
boundaries, our method found more than 70% of the frameshifts.

This 70% relate to the first category of frameshifts (70% of the data
in Table 7, Column 3). A comparison of 70% of Columns 3 and 4
shows that our approach found a significantly large number of read-
ing frameshifts within the already known genes, compared with the
GeneTack-GM software program, with a lower false positive rate
(8–14% for our program versus 32% for the GeneTack software
program).

Similar results were obtained when comparing the results
obtained in the present study for the A. thaliana genome with the
data presented in the GeneTack database for the genome. A total of
2,067 potential reading frameshifts were found in the A. thaliana ge-
nome by the authors of GeneTack, whereas we were able to detect
14,951 TP shift cases (see Table 6). It should be noted that we ana-
lysed only the cds, whereas the GeneTack database contains data for
mRNA sequences, which also includes the non-coding sequences (50

and 30 untranslated regions). Therefore, we also divided the 2,067
reading frameshifts into three groups, as shown in Table 7. The first
group includes frameshifts which are located inside the cds not closer
than 50 nt from the beginning and end of the coding section. The sec-
ond group includes frameshifts that are located at a distance not
more than 50 nt from the ends of cds, and in the third group the
frameshift corresponds to the mRNA non-coding regions. The first
group includes 485, the second group includes 710, and the third
group includes 872 reading frameshifts.

A more detailed study of the distribution of frameshifts by posi-
tion in genes from the A. thaliana genome is shown in Fig. 6. The in-
crease in the number of frameshifts at the end of cds may be due to
the fact that the sequences at the end of the gene do not greatly affect
the structure of the encoded protein. However, it is surprising that
such an increase is also found at the beginning of the gene. It is diffi-
cult to imagine that such mutations will not change the biological
function of the encoded protein. Rather, it can be assumed that the
observed frameshifts are compensating, which return the reading
frame to its original position. The initial frameshift could be at the
very beginning of the gene and we were unable to see it using this
method. Our approach may not find a frameshift due to a large pen-
alty for insertion or deletion (d in Equation 2) if it occurs at a dis-
tance <20–30 bases from the start of the gene. However, the second,
already found frameshift, just compensates it. In this case, the dis-
tance to the frameshift revealed at the beginning of the gene should
be similar to the distance between the pairwise compensating frame-
shifts that we find in cds. We constructed a distribution between the

Table 4. Alignment of the amino acid sequence F4HQD5_ARATH,

which is encoded by cds AT1G79920.2 from the Arabidopsis

thaliana genome with the amino acid sequence HS105_CRIGR

from the genome Cricetulus griseus (Chinese hamster)

MSVVGFDFGNENCLVAVARQRGIDVVLNDESNRETPAIVCFGDKQRFIGTAGAASTMMNP  

MSVVG D G+++C +AVAR  GI+ + N+ S+R TP+++ FG K R IG A     + +  

MSVVGLDVGSQSCYIAVARAGGIETIANEFSDRCTPSVISFGPKNRTIGVAAKNQQITHA

KNSISQIKRLIGRQFSDPELQRDIKSLPFSVTEGPDGYPLIHANYLGEIRAFTPTQVMGM  

N++S  KR  GR FSDP +Q++ +SL + +    +G   I   Y+ E   F+  Q+  M 

NNTVSSFKRFHGRAFSDPFIQKEKESLSYDLVPMKNGGVGIKVMYMDEEHLFSVEQITAM  

MLSNLKGIAEKNLNTAVVDCCIGIPVYFTDLQRRAVLDAATIAGLHPLHLIHETTATALA  

+L+ LK  AE NL   V DC I +P +FTD +RR+VLDAA I GL+ L L+++ TA AL  

LLTKLKETAENNLKKPVTDCVISVPSFFTDAERRSVLDAAQIVGLNCLRLMNDMTAVALN  

YGIYKTDLPENDQLNVAFIDIGH--ASMQVCIAGFKKGQLKILSHAFDRSLGGRDFDEVL  

YGIYK DLP  D+        GH  +S QV    F KG+LK+L  AFD  LGG++FDE L 

YGIYKQDLPNADEKPQGSGVCGHGPSSFQVSACAFNKGKLKVLGTAFDPFLGGKNFDEKL  

FNHFAAKFKDEYKIDVSQNAKASLRLRATCEKLKKVLSANPM-APLNIECLMAEKDVRGV  

  HF A+FK +YK+D     +A LRL   CEKLKK++S+N    PLNIEC M +KDV 

VEHFCAEFKTKYKLDAKSKIRALLRLHQECEKLKKLMSSNSTDLPLNIECFMNDKDVSAK  

IKREEFEEISIPILERVKRPLEKALSDAGLTVEDVHMVEVVGSGSRVPAMIKILTEFFGK  

+ R +FEE+   +L++++ PL   +    L  EDV  +E+VG  +R+PA+ + + +FFGK 

MNRSQFEELCAELLQKIEVPLHSLMEQTHLKTEDVSAIEIVGGATRIPAVKERIAKFFGK 

EPRRTMNASECVSRGCALQCAILSPTFKVREFQVHESFPFSISLAWKGAATDAQNGGTEN  

+   T+NA E V+RGCALQCAILSP FKVREF V ++ PF ISL W        +   E  

DVSTTLNADEAVARGCALQCAILSPAFKVREFSVTDAVPFPISLVW-------NHDSEET  

QQSTIVFPKGNPIPSVKALTFYRSGTFSIDVQYSDVNDLQAP-PKISTYTIGPFQSSK-G  

+    VF + +  P  K LTF R G F ++  YSD   +  P  KI  + +    + K G 

EGVHEVFSRNHAAPFSKVLTFLRRGPFELEAFYSDPQGVPYPEAKIGRFVVQNVSAQKDG  

ERAKLKVKVRLNLHGIVSVESATLLEE--------EEVEVSVTKDQSEETAKMDTDKASA  

E++K+KVKVR+N HGI ++ +A+++E+          VE  +     +     D DK S  

EKSKVKVKVRVNTHGIFTISTASMVEKVPTEEDDGSSVEADMECPNQKPAESSDVDKNSQ  

EAAPASGDSDVNMQDAKDTS------DATGTDNGVPESAEKPVQMETDSKAKAPKKKVKK  

+    +G       D + TS      +    +N +P+ A+K  + + D   +A K K+K  

QDNSEAGTQPQVQTDGQQTSQSPPSPELPSEENKIPD-ADKANEKKVDQPPEAKKPKIKV  

TNV--PLSELVYGALKTVEVEKAVEKEFEMALQDRVMEETKDRKNAVESYVYDMRNKLSD  

 NV  P+   +   L    +   +E E +M +QD++ +E  D KNAVE  VY+ R+KL   

VNVELPVEANLVWQLGRDLLNMYIETEGKMIMQDKLEKERNDAKNAVEECVYEFRDKLCG  

KYQ  

 Y+ 

PYE  

This alignment can be found from 1 to 642 amino acids for
F4HQD5_ARATH and from 1 to 655 amino acids for HS105_CRIGR.

Table 5. Alignment of the amino acid sequence obtained by the

third reading frame of the cds AT1G79920.2 from the position

1933 to the end of the sequence from the Arabidopsis thaliana

genome, with the amino acid sequence HS105_CRIGR from the

genome Cricetulus griseus (Chinese hamster)

ITDSEREAFLANLQEVEDWLYEDGEDETKGVYVAKLEELKKVGDPVEVRYKESLERGS  

I   E E FL  L E EDWLYE+GED+ K  Y+ KLEEL K+G+PV+VR++E+ ER   

ICQQEHEKFLRLLTETEDWLYEEGEDQAKQAYIDKLEELMKMGNPVKVRFQEAEERPK 

VIDQLGYCINSYREAAV---SNDPKFDHIELAEKQKV 

V+++LG  +  Y + A    S D K++HI+ +E +KV 

VLEELGQRLQHYAKIAADFRSKDEKYNHIDESEMKKV 

This alignment was found from 656 to 752 amino acids for the sequence
HS105_CRIGR.
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pair compensating frameshifts. This distribution is shown in Fig. 7. It
can be seen from the figure that the average distance between the
compensating frameshifts is <0.1 of the corresponding gene size.
This result supports our hypothesis that paired compensating frame-
shifts often occur at the beginning of a gene. This hypothesis explains
the surprisingly large number of TP phase shifts, which was revealed
at the beginning of the genes in Fig. 6.

As we have identified 14,951 potential reading frameshifts in cds
from the genome, our algorithm is about seven times more efficient
than the GeneTack-GM software program. If we compare the results
in relation to the first group, then this difference will be greater, be-
cause more than 70% of the frameshifts detected are related to the

first group (Fig. 6). Similar results were also obtained for all other eu-
karyotic genomes (Table 6). The result could be explained by the fact
that if the HMM is trained on a set of selected mRNAs,21 statistical
properties, such as k-mer frequencies, are averaged over the set. In
the result of the averaging, the HMM parameters are changed so
that the number of errors of the first and the second type could be in-
creased. Consequently, some frameshifts could be missed by the
HMM-based method. Let us illustrate this statement for brevity and
simplicity using the classical Markov models. Consider two sequen-
ces, seq1 ¼ ‘ttgccagagcagattgcccagattgccagatt’ and seq2 ¼ ‘aactcgg-
taacggtctaaactcggtacggtcta’. The conditional probabilities of the
nucleotide pairs of these sequences are presented in N1 and N2

Table 6. The number of cds with potential frameshift mutations in the six eukaryotic genomes examined, disregarding and taking into

account alternative splicing

Organism name Number of potential
frameshift
mutations

Number of cds with the
potential frameshift
mutations

Number of cds with
potential frameshift mutations
take into account an
alternative splicing

Number of cds with
potential frameshift
mutations from
the work21

Arabidopsis thaliana 14,954 9,930 6,624 2,067
Caenorhabditis elegans 11,103 6,370 3,788 611
Drosophila melanogaster 31,873 8,833 3,649 2,616
Homo sapiens 33,336 21,363 9,456 7,395
Rattus norvegicus 9,752 5,689 4,608 703
Xenopus tropicalis 6,348 4,014 3,401 529

The data obtained in the work37 are also shown.

Table 7. The number of potential frameshifts in cds from the 17 bacterial genomes (Column 2) obtained in the present study

This work GeneTack-GM program

1. Name of bacteria 2. Number of cds
with frameshifts

3. Number of
frameshifts

4. Inside the gene, no
closer than 50 nt to
the border

5. The beginning or
end of the gene
is not more than 50 nt
(the number of cases with
the addition of a
neighbouring gene)

6. Between
genes

7. Total

Anaeromyxobacter dehalogenans 425 768 49 101 (62) 32 182
Archaeoglobus fulgidus 77 174 44 299 (251) 53 396
Bacillus subtilis 126 434 35 79 (57) 27 141
Campylobacter jejuni 48 86 8 104 (92) 16 128
Caulobacter crescentus 306 651 43 57 (30) 3 103
Clavibacter michiganensis 357 736 35 65 (40) 63 163
Methanopyrus kandleri 150 436 76 96 (68) 38 210
Methanosphaera stadtmanae 111 272 5 37 (27) 13 55
Pasteurella multocida 46 146 9 56 (48) 4 69
Picrophilus torridus 15 62 7 154 (130) 9 170
Pyrobaculum aerophilum 71 249 65 235 (163) 48 348
Ralstonia solanacearum 330 607 38 66 (41) 19 123
Salmonella enterica, 115 457 52 162 (112) 38 252
Staphylococcus aureus 130 381 4 52 (43) 16 72
Streptococcus pyogenes 60 209 17 52 (39) 6 75
Thermococcus kodakarensis 85 172 43 57 (38) 4 104
Thermotoga maritima 37 127 10 76 (64) 5 91

Columns 4–7 show the data obtained in the work.37 Column 3 shows the shifts found within known genes (no closer than 50 nt before the start/end of the se-
quence). Column 4 shows the shifts that occur on the edges of known genes (no more than 50 nt from the beginning or end of a known gene). In parentheses, the
number of shifts is indicated, when the association with the adjacent gene occurs. The number of shifts occurring in the area between known genes is shown in
Column 5.
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(Table 8A and B). The matrix represents the probability P(Xnþ1 ¼
inþ1jXn ¼ i n), where Xnþ1 corresponds to the rows of the matrix,
and Xn corresponds to the columns. A Markov model was built us-
ing the conditional probability matrix N1 or the N2. The matrices
N1 and N2 can be used to search for sequences with similar nucleo-
tide correlations as the sequences seq1 and seq2. Let the probabilities
P11 and P22 be the probabilities that the sequences seq1 and seq2
are generated by the N1 and N2 matrices, respectively [P11 ¼
(0.5)22 and P22 ¼ (0.5)22]. The probability P12 that the sequence
seq1 was generated using the matrix N2 is equal to zero [P12 ¼ (0)22

¼ 0] as well as the probability P21 (that the sequence seq2 was gen-
erated using the matrix N1). However, the probability that a ran-
domly shuffled sequence was generated using the matrix N1 PR1¼0
is zero, PR2¼0 because in the randomly shuffled sequence there will
be pairs of nucleotides, for which P(Xnþ1 ¼ i nþ1jXn ¼ in) ¼ 0 both
in the matrix N1 and in the matrix N2. Therefore, one can find
sequences similar to seq1 or seq2 surrounded by random sequences
using the Markov model at a statistically significant level.

But if a Markov model is trained using both sequences seq1 and
seq2, the matrix N3 would be constructed (Table 8C). In this case,
the probabilities of generating seq1 and seq2 are (0.25)22 and the
same probability will be obtained for any other sequence of the same
length, including the randomly shuffled sequence. So, the identifica-
tion of seq1 and seq2 using the Markov model is impossible at a sta-
tistically significant level. We can say that the statistical properties of
these sequences are averaged.

The same phenomenon can be observed in the case of real genes,
when a training sample is created for HMM from many genes. This
effect was employed on the Genetack-GM program. We created two
sets of artificial genes (Q1 and Q2) with different types of triplet fre-
quency using different synonymous codons and used the sets to train
HMM. Each artificial gene had a length of 1,500 bases and con-
tained a start codon as well as a stop codon. Each set has a volume
of 1,000 sequences. Also, we created a set Q3 of 1,000 sequences,
half of which were of type Q1, while the other half were of type Q2.
Additionally we created two sets D1 and D2, which had the same TP
as the sets Q1 and Q2, respectively. But each sequence contained
one deletion in a random position, but not closer than 100 bases
from the beginning or the end. In order to exclude the effect of the
stop codons resulting from the frameshifts, we replaced them with
randomly selected coding codons. The volume of sets D1 and D2
was 100 sequences each.

First, we trained the Genetack-GM program on sets Q1 and Q2
and searched for frameshifts in sets D1 and D2, respectively. The
program found shifts in 75 sequences from set D1 and 17 from set
D2. Trained Q3 Genetack-GM was applied to sets D1 or D2. In the
result, the program found 8 and 0 sequences with frameshifts, re-
spectively. This example shows that combining different genes into
one training set can significantly degrade the capabilities of the
HMM. In our method, such averaging does not occur because we an-
alyse each cds without using a training set; the method is adjusted to
the TP that exists in each considered cds. This means that the mathe-
matical method finds an optimal correlation matrix considering the
possibility of insertions or deletions for each analysed cds. The final
alignment of the studied sequence against the obtained matrix pro-
vides an alignment and coordinates of the potential reading frame-
shifts. It is also important to note that to search for potential
frameshifts using our method, one needs only cds without any other
information or training set. This is the main improvement of the
method in comparison with HMM to determine the reading
frameshifts.

Figure 6. Distribution of shifts position in the sequence of a gene. The x-axis

shows the distance as a percentage of the beginning of the gene (with step

equals to 5%), the y-axis shows the percentage of shifts per interval of 5%.

The black bars—the data from the work,21 the white—the data of our work.

The leftmost and rightmost bars show the number of frameshifts found out-

side the cds from the work.21

Figure 7. Distribution of the distance between paired compensating shifts of

the TP phase in the Arabidopsis thaliana genome.

Table 8. The matrices of conditional probabilities

P(Xnþ1¼i nþ1jXn¼i n), created by the sequences
seq1¼ ttgccagagcagattgcccagattgccagatt (A),
seq2¼ aactcggtaacggtctaaactcggtacggtcta (B) and unification of
these sequences (C)

(A) (B) (C)

a t c g a t c g a t c g

a 0 0.5 0 0.5 a 0.5 0 0.5 0 a 0.25 0.25 0.25 0.25
t 0 0.5 0 0.5 t 0.5 0 0.5 0 t 0.25 0.25 0.25 0.25
c 0.5 0 0.5 0 c 0 0.5 0 0.5 c 0.25 0.25 0.25 0.25
g 0.5 0 0.5 0 g 0 0.5 0 0.5 g 0.25 0.25 0.25 0.25

Xnþ1 corresponds to the rows of the matrix, and Xn corresponds to the col-
umns of the matrix.
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Genetack performance was also tested on a set of cds without ad-
ditional non-coding regions. We randomly selected 1,000 cds from
the A. thaliana genome. In each of these cds, we deleted a single nu-
cleotide in a random position (but no closer than 100 nt from the be-
ginning or end of the sequence). Then, we inserted a random
nucleotide just before the stop-codon to keep the sequence length.
Genetack and the method developed here were applied to this set. In
the result, Genetack predicted frameshift in 615 sequences and our
method in 676 sequences (inside 6 50 nt from the actual deletion po-
sition). The HMM for Genetack was trained by GeneMark on a set
of 100,000 cds from A. thaliana. Then in each cds with deletion, we
changed the stop and start codons that occurred after the deletion in
the first frame to a randomly chosen coding codon. Then, we again
applied both programs to this set. In the result, Genetack correctly
predicts frameshift only in 277 sequences and our method in 624.
The reduced number of frameshifts found by our method could be
explained by the decreasing TP quality after the codon changes. The
result demonstrates that Genetack is more suitable for the detection
of frameshift that separates a single coding sequence into two (or
more) independent genes as it was pointed by the authors.17 But
Genetack weakly predicts frameshifts if they do not lead to the for-
mation of the premature stop-codon or if we have only cds without
surrounding non-coding regions.

We identified TP phase shifts in 660 genes, which constituted
83% of the first group, out of 1,183 genes discovered by the
GeneTack software program in cds (2,080 genes found in cds and
non-coding regions in the work21). Besides, more than 70% of the
frameshifts found in our earlier publications for prokaryotic genes
were identified using the developed algorithm.30,40 At the same time,
for prokaryotic genes, a higher number of potential frameshift muta-
tions was discovered using this method. This is because the devel-
oped method works much better with sequences having a low level
of TP.

3.5. Discussion of the possibility of creating new genes

through frameshift mutations

For many years, a study of the evolution of genes has attracted the at-
tention of researchers. After determining the sequences of many pro-
karyotic and eukaryotic genes, the research in this area has
significantly expanded. It is now believed that new genes are created
by duplicating already existing genes.41 Therefore, a large number of
genes are grouped in families based on the similarity of the amino acid
or nucleotide sequences.42 Processes such as gene fusion,43 exon shuf-
fling,44 alternative splicing45 and lateral gene transfer46 are considered
to be the principal mechanisms of the creation of a variety of genes in
a genome and the corresponding proteins. However, using such mech-
anisms, it is difficult to create a fundamentally new sequence, but a
frameshift mutation could do this efficiently. It has previously been
suggested that frameshift mutations could play a significant role in the
process of creating new genes.8,9 The authors of the presented works
have proposed that if a protein for some reasons is not under the selec-
tion pressure, frameshift mutation could persist and eventually lead to
functional divergence. It is mainly this phenomenon that we observed
in the present work. More than 20% of the studied eukaryotic cds
contain potential frameshift mutations. The question that remains is,
how does a protein sequence bear any biological sense after the read-
ing frameshift? It could be assumed that the genetic code could be per-
fectly adapted to such changes, and it allows the frameshift mutations
to obtain biologically meaningful sequences.

Search for frameshifts in genes by the developed method can be
done online at: http://victoria.biengi.ac.ru/fsfinder.
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