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Enterovirus infection continues to be a global health problem. The lack of specific drugs
and broad-spectrum vaccines means an urgent need to develop effective strategies
against enteroviruses. Host restrictive factors are a class of intrinsic host antiviral factors
that have been broadly defined and investigated during HIV infections and have great
significance for drug development and treatment design. In recent years, the essential role
of host restrictive factors in regulating enteroviral infections has been gradually recognized
and investigated. An increasing number of studies have shown that host-restrictive factors
regulate multiple steps in the life cycle of enteroviruses. This mini-review discusses the
restrictive factors against enteroviruses, their antiviral mechanism, and the arms race
between them and enteroviruses. We also summarise the pathways that enteroviruses
use to impair host antiviral signals. This mini-review characterizes the essential role of host
restriction factors in enterovirus infections, which provides ideas and potential targets for
antiviral drug design by regulating host restrictive factors. It also reveals potential future
research on the interplay between host restrictive factors and enteroviruses.
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INTRODUCTION

There are more than 100 subtypes of enteroviruses that infect humans, including the well-known
enterovirus 71 (EV71), enterovirus D68 (EVD68), coxsackieviruses A and B, and poliovirus (PV)
(1), and several subtypes of these induce hand-foot-and-mouth disease (HFMD) epidemics every
year (2–5). Moreover, EVD68 has been the cause of an unprecedented epidemic of respiratory
disease, whose symptoms are unlike its common symptoms and have been temporally associated
with acute flaccid myelitis (AFM) (6–8). However, the lack of effective drugs and broad-spectrum
vaccines has exacerbated severe health problems.

A series of studies have investigated the interactions between host innate immunity and
enteroviruses. Host restriction factors are expressed and/or induced in response to virus infection
and include proteins from interferon-stimulated genes (ISGs) (9–19). APOBEC3G (A3G),
SAMHD1, and BST2 have been extensively investigated in HIV infection (13). Since the antiviral
effects of restrictive factors tend to have a broad spectrum, the regulatory function of host restriction
factors during enterovirus infection has been investigated in recent years and has become a rising
org May 2022 | Volume 13 | Article 9107801
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focus of enterovirus research. For example, we identified A3G
and SAMHD1 restricted multiple enteroviruses and revealed a
novel antiviral mechanism (20–23). IFNs and NF-kB signals are
activated by viral infection (24–30), which induces the
expression of downstream host-restrictive factors to fight
against viruses via their pathways. However, viruses can impair
restriction through multiple strategies. Here, we discuss the host
restriction factors that play essential roles in regulating
enteroviruses, the underlying mechanism they suppress, and
how enteroviruses break host restrictions. This mini-review
provides new information that can be used to select potential
drug targets against enteroviruses and enlighten the direction of
future studies in antivirus research.
HOST RESTRICTIVE FACTORS PLAY
ANTIVIRAL ROLES DURING
ENTEROVIRUSES INFECTION

Many in-depth studies on the interaction between enteroviruses
and host factors have shown that host-restrictive factors play
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regulatory roles in different stages of the viral life cycle. We have
summarised these studies based on the lifecycles of enterovirus
infections (Figure 1 and Table 1).
VIRAL ENTRY

Enteroviruses invade host cells by first interacting with specific
receptors on the cell surface, where virions are endocytosed, or
viral nucleic acids are released into the cells. For instance,
scavenger receptor class B member 2 (SCARB2) was identified
as a receptor for EV71 by Yamayoshi et al. (41). On this basis,
Nakata et al. reported that acid beta-glucosidase 1 (GAB1)
restricts EV71 infections by interacting with SCARB2 and
reducing the expression of SCARB2 on the cell surface which
interferes with the interactions between EV71 and SCARB2
(42). Further investigations showed that recombinant human
GBA1, a molecular drug originally used to treat Gaucher’s
disease (33, 40, 43), protected against EV71 infection (42),
hinting that researchers could design anti-enterovirus drugs
based on host restrictive factors.
FIGURE 1 | Overview of the interplay between host factors and enterovirus replication. Various host-restrictive factors have been shown to play regulatory roles
at different stages of the virus life cycle. During the invasion phase, GBA1 interacts with SCARB2, a receptor of enteroviruses, and interferes with the binding of
enteroviruses to SCARB2. After uncoating, A3G, FUS, AUF1, and SIRT1 interact with viral RNAs and reduce the replication and translation of viral RNAs. During
the viral RNA replication phase, TRIM7 induces the degradation of 2C, and SIRT1 triggers the deacetylation of 3Dpol, which is required for viral RNA replication.
During the assembly phase, SAMHD1 interacts with VP1 and disrupts viral capsid assembly by interfering with the interactions between the viral capsid proteins
VP1 and VP2. To break through the restriction from the host, viral proteins, such as 2Apro and 3Cpro, cleave FUS, other IFNs and NF-kB signal-associated
proteins, and 3Cpro cleaves AUF1. Furthermore, 2C induces the degradation of A3G. TRIM21, which is upregulated by enteroviruses, triggers polyubiquitination
and the degradation of SAMHD1.
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VIRAL RNA REPLICATION AND THE
PROTEIN TRANSLATION PHASES

After entering host cells, RNAs from enteroviruses are replicated
and translated into viral proteins under the regulation of host
factors (22, 34–36, 39, 44) and viral proteins, including 2BC,
3AB, and 3D (31, 32, 45–49). During this phase, many restrictive
factors are involved in inhibiting virus replication. TRIM7, an E3
ligase, has been reported to restrict the replication of multiple
enteroviruses by triggering polyubiquitination of their 2BC
proteins and inducing the degradation of 2BC proteins via the
proteasomal pathway (50).

AU-rich element degradation factor 1 (AUF1) binds to the
internal ribosome entry site (IRES) of viral RNA and restricts the
replication of poliovirus and CVB3 (51–53). However, the 3Cpro

component of enteroviruses can cleave AUF1 to break through
the restriction (53).

Like AUF1, fused sarcoma/translocated in liposarcoma (FUS/
TLS) is a novel host antiviral factor that restricts CVB3
replication by directly inhibiting viral RNA transcription and
protein translation. Moreover, FUS, which binds to viral RNA,
triggers the formation of stress granules and regulates the activity
of host antiviral innate immunity (54). CVB3 infection induces
cytoplasmic mislocalization and cleavage of FUS through the
enzymatic activity of viral proteases to evade the FUS-mediated
antiviral response and innate immunity (54). In addition, as a
class III NAD+-dependent histone, the deacetylase (HDAC),
SIRT1, suppresses EV71 replication by repressing viral RNA
transcription and attenuating viral RNA translation (55).
Mechanistically, Han et al. identified the interactions between
SIRT1 and viral 3Dpol, and revealed that SIRT1 inhibits 3Dpol

activity by reducing the acetylation of 3Dpol. They also found that
SIRT1 was able to interact with the viral 5’-UTR and interfere
with viral RNA transcription and translation. Additionally, the
expression of SIRT1 is upregulated by EV71 infection (55).
However, Li et al. observed that EV71 infections could reduce
the expression of SIRT1, and administration of the ROS inhibitor
N-acetyl-L-cysteine (NAC) reduced apoptosis levels and
inflammation, downregulated EV71 propagation, and increased
SIRT1 expression in EV71-infected cells (56). Nevertheless, the
mechanism underlying the regulation of SIRT1 expression
induced by EV71 infection remains unclear.
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A3G has been identified as a host-restrictive factor that
suppresses HIV replication via cytosine deaminase activity
(37, 38). In recent years, A3G has been shown to restrict the
replication of enteroviruses, such as EV71, CA16, and EVD68,
but not CA6 (20, 22, 57). These reports propose novel antiviral
mechanisms independent of the cytosine deaminase activity
shown by A3G. Li et al. suggested that while suppressing
multiple enteroviruses, A3G competitively binds to the viral
5’UTR together with PCBP1, which is required for the
transcription and translation of viral RNAs (22, 57). Further
investigation showed that PCBP2, but not PCBP1, was required
for CA6 replication, which would explain why A3G failed to
restrict CA6 replication (22). In addition, Wang et al. suggested
that A3G interacts with the 3Dpol of EV71 and packages it into
progeny virions to reduce its infectivity (20). They also found
that an inhibitor named IMB-Z inhibited EV71 replication by
upregulating the expression of A3G (20). These studies
confirmed that A3G inhibits enterovirus and that the
mechanism was independent of its cytosine deaminase activity.
In addition, other members of the APOBEC3 family, including
A3A, A3D, and A3F, were found to possess antiviral activity
against EV71 (57).

In contrast, Li et al. reported that A3G is degraded by the 2C
proteins in enteroviruses, including EV71, CA6, CA16, CVB3,
and EVD68 (57). In their study, viral 2C proteins triggered the
polyubiquitination of A3G. Then the polyubiquitinated A3G was
recognized by P62 and degraded by autolysosomes.
VIRAL ASSEMBLY PHASE

Like A3G, SAMHD1, another anti-HIV-restrictive factor, has
been extensively investigated (14, 58, 59). SAMHD1 inhibits
multiple retroviruses and DNA viruses (60–62), but its antiviral
mechanism is unclear. Several studies have suggested that
SAMHD1 restricts viruses through its dNTPase activity
(14, 60, 63–65), and other studies have argued that its nuclease
activity also contributes to its antiviral activity (66–68). For
enteroviruses, Li et al. reported that SAMHD1 restricted EV71
replication independently of the dNTPase and nuclease activity
of SAMHD1 (21). Furthermore, Zhao et al. reported that
SAMHD1 restricted the replication of enteroviruses, including
TABLE 1 | Host restrictive factors identified in this review.

Gene names Viral type Antiviral mechanism References

A3G EV71, CA16, EVD68 1. Competitively binds to 5’UTR along with PCBP1.
2. Interacts with 3Dpol and is packaged into progeny virions.

(26, 31) (32)

AUF1 PV, CVB3 1. Interacts with viral IRES. (33–35)
FUS/TLS CVB3 1. Interacts with viral RNA.

2. Formation of stress granules and regulates innate immunity.
(36)

GBA1 EV71 1. Reduces the expression of SCARB2 on the cell surface.
2. Interferes with EV71 binding to SCARB2.

(17)

SAMHD1 EV71, CA16, EVD68 1. Interferes with the interactions between VP1 and VP2. (37, 38)
SIRT1 EV71 1. Interacts with viral 5’UTR.

2. Reduces the acetylation of 3Dpol.
(39)

TRIM7 EV71, CVB3, E11, EVD68, PV 1. Degrades viral 2BC protein. (40)
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EV71, EVD68, and CA16, but not CA6, by interfering with the
interactions between the viral capsid proteins VP1 and VP2 (23).
Zhao et al. showed that SAMHD1 interacts with the EV71-VP1
domain, which is essential for the interaction between EV71-VP1
and EV71-VP2 and attenuates the interaction between EV71
VP1 and VP2. However, the interaction between SAMHD1 and
CA6-VP1 did not disrupt the interaction between VP1 and VP2
of CA6, which may explain why SAMHD1 failed to inhibit
CA6 (23).

In response to the inhibition of SAMHD1, EV71 has evolved
a strategy to overcome this restriction and ensure the survival of
its progeny. In a study by Li et al., EV71 infection induced
proteasome-associated degradation of SAMHD1 by upregulating
the expression of E3 ligase TRIM21, which triggers the
polyubiquitination SAMHD1. TRIM21 upregulation is
interferon receptor-dependent (21). Li et al. also identified the
interaction domains between SAMHD1 and TRIM21 and the
ubiquitination site on SAMHD1, which may provide clues for
further drug target screening and design.

Several host restrictive factors play essential regulatory roles
in various stages of the enterovirus life cycle, and exploring the
mechanism underlying the interplay between host restrictive
factors and enteroviruses will provide an important scientific
basis for strategies against strategies for enterovirus infection.
ENTEROVIRUSES BREAK OUT OF HOST
RESTRICTION BY BLOCKING
ANTIVIRAL PATHWAYS

During the long-term arms race, viruses evolve strategies to
impair restriction from the host. In addition to the antagonistic
strategies against the host restrictive factors mentioned above,
enteroviruses also can disrupt other antiviral pathways to ensure
their life cycle within the host (Figure 1). EV71 3Cpro has been
reported to cleave multiple innate immune pathway-related
proteins, including TRIF (26, 69), TRIM25 (70), TAK1, TAB1,
TAB2, TAB3 (71), NLRP3 (72), IRF3 (73), IRF7 (74), IRF9 (75)
and PMLIII and IV (76), and reduce IFN and NF-kB signals (77).
As this type of research expands, the 3Cpro in EVD68 has also
been reported to cleave IRF7 and affect IFN signaling (78, 79).
Furthermore, the 2Apro in EV71 has been reported to cleave
MAVS, MDA5, and NLPR3 (72, 80, 81) and downregulate IFN
and NF-kB signaling. In addition to these viral proteases, the 2C
proteins in multiple enteroviruses have been reported to
suppress NF-kB and IFN signals by binding to IKKb, P65, and
MDA5 (82–86). After that, reducing the antiviral signal levels
will decrease the expression of antiviral factors, which contain
many host restrictive factors and are beneficial to the
unscrupulous replication of viruses.
DISCUSSION

Enterovirus infections are prevalent worldwide. However, the
lack of specific drugs and broad-spectrum multivalent vaccines
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poses an urgent health threat. So, considerable studies on drug
design targeting viral proteins have been conducted but
unsuccessful (87). The high mutagenicity of RNA viruses and
the similarity between the virus enzyme active domain and the
host protein present considerable obstacles to selecting drug
targets (88–92). The discovery of host restriction factors against
enteroviruses and their interactions with viruses has attracted
attention as a new antiviral strategy. Under this strategy, we
could regulate the expression of host restrictive factors and
effectively inhibit viral infections. Furthermore, we have
identified the ‘Achilles heel’ of enteroviruses based on studies
of hosting restrictive factors against enteroviruses. For instance,
Zhao et al. reported that 119-223aa in VP1 were essential for the
interactions between VP1 and VP2 (23). Based on this
assumption, the inhibitors targeting 119-223aa in VP1 would
possess a space-occupying effect and restrict the replication of
enteroviruses, which may be a promising drug against
EV71 infection.

On the other hand, viruses have evolved various methods to
overcome the restriction of host restrictive factors, and treatment
design against enteroviruses from this perspective will kill two
birds with one stone. As reported by Li et al., the 2C protein of
enteroviruses interacts with A3G and triggers the degradation of
A3G (22, 57). Thus, inhibitors targeting the 2C domain that
binds A3G can interfere with the interaction between the 2C
protein and A3G and prevent the escape of the enteroviruses
from A3G. At the same time, even if the target domain of the 2C
protein mutates and causes the effects of inhibitors to be off-
target, the mutant 2C protein will fail to bind to A3G and break
out the restriction from A3G, indicating that A3G could exert its
antiviral activity and that the inhibitors targeting this domain
will stably inhibit enteroviruses by inducing virus mutation to a
greater extent.

Third, as the endogenous component of host cells, it is
important to note that antiviral strategies that regulate the
expression of host restrictive factors will greatly reduce any
side effects, which will be milder and safer than those
experienced after using drugs. As Wang et al. showed in their
study, IMB-Z inhibits EV71 replication by upregulating the
expression of A3G (20). Moreover, 80 µM IMB-Z induced
adequate A3G expression and greatly inhibited the replication
of EV71 in a variety of cells. At the same time, 200 µM IMB-Z did
not affect cell activity in cell lines, including Vero, HeLa, HCT-8,
HEK293T, and SK-N-SH. Therefore, these findings have
implications for the safety of antiviral strategies against
enteroviruses by regulating the expression of host-
restrictive factors.

In recent years, antimicrobial peptides (93) and mRNA drugs
(94) have attracted increased interest among scientists, health
professionals, and pharmaceutical companies because of their
therapeutic potential. With the development of polypeptide and
mRNA drugs, the functional domains of host restrictive factors
will rapidly develop into antiviral drugs and become the
mainstay of novel antiviral therapies. Therefore, identifying
human host restrictive factors and exploring the interaction
mechanism between a virus and host restrictive factors will
May 2022 | Volume 13 | Article 910780
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become the premise and basis for us to master important
antivirus strategies in the future.

In conclusion, studies on the interactions between host
restrictive factors and enteroviruses will deepen understanding
of virus-host interactions, provide a theoretical basis, and reveal
potential targets that are not prone to off-target effects. This
information can then be used to develop anti-enterovirus drugs.
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