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Abstract

Understanding human mobility in outdoor environments is critical for many applications

including traffic modeling, urban planning, and epidemic modeling. Using data collected

from mobile devices, researchers have studied human mobility in outdoor environments

and found that human mobility is highly regular and predictable. In this study, we focus on

human mobility in private homes. Understanding this type of human mobility is essential as

smart-homes and their assistive applications become ubiquitous. We model the movement

of a resident using ambient motion sensor data and construct a chronological symbol

sequence that represents the resident’s movement trajectory. Entropy rate is used to quan-

tify the regularity of the resident’s mobility patterns, and an upper bound of predictability is

estimated. However, the presence of visitors and malfunctioning sensors result in data that

is not representative of the resident’s mobility patterns. We apply a change-point detection

algorithm based on penalized contrast function to detect these changes, and to identify the

time periods when the data do not completely reflect the resident’s activities. Experimental

results using the data collected from 10 private homes over periods of 178 to 713 days show

that human mobility at home is also highly predictable in the range of 70% independent of

variations in floor plans and individual daily routines.

Introduction

Human mobility is the movement of human beings in space and time and may pertain to an

individual or a population [1]. Human mobility occurs in varying distance scales ranging from

movement by foot within an indoor environment such as homes or buildings to long-distance

travel by different modes of transport using cars, buses, and trains in outdoor environments.

In recent decades, the pervasion of mobile devices has enabled the collection of large-scale geo-

location information related to outdoor human movement facilitating research aimed at
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gaining a deeper understanding of human mobility. Studies based on ubiquitous data such as

call detail records (CDRs) [2,3], GPS logs [4–7], WLAN logs [8], and transportation smart

card records [9,10] have shown that human mobility is not completely random but potentially

regular and predictable. Understanding human mobility benefits applications including but

not limited to urban planning [11,12], epidemic models [13,14], and disaster response [15,16].

In indoor environments, a growing number of context-aware smart home applications

including automation [17,18], energy management [19–22], abnormal situation diagnoses [23–

26], reminder assistance [27,28] and healthy lifestyle promotion [29] characterized by their abil-

ity to be sensitive to occupants’ location, movement, and activity are emerging. Smart homes

are increasingly seen as facilitating innovative and supportive environments that provide intelli-

gent services to enable the healthy, safe, and independent aging plan desired by older adults

[30,31]. Domestically, programs such as the MAVHome at the University of Texas Arlington

[18], the Aware Home at the Georgia Institute of Technology [32], and the Gator Tech Smart

House at the University of Florida [33] have historically served as single-home-test-bed style

environments. Internationally, the U-Health smart home project at POSTECH [34–36] inte-

grates information from small-sized medical body sensors [37] with other ambient sensors to

assist older adults in their homes. Other programs including the Place Lab at the Massachusetts

Institute of Technology [38], the Tiger Place project at the University of Missouri-Columbia

[39], the CASAS Smart Homes project at Washington State University [40], the ORCATECH

project of the Oregon Health and Science University [41], and HomeSense project at the Uni-

versity of South Florida [42] represent multi-unit smart home projects that are testing a variety

of devices as a means to impact health and well-being across varying program targets.

The study of human mobility in indoor environments based on ambient sensor data differs

from the study of outdoor mobility based on geolocation information in the following five dis-

tinct ways.

1. Data collection infrastructure: In outdoor environments, mobility information is collected

through common infrastructures such as mobile communication networks, GPS satellites,

Wi-Fi access points, etc. While in indoor environments such as smart homes, the sensor

layouts used to collect information differ from house to house due to different floor plans,

sensor density and types, and occupant’s preferences. Furthermore, ambient sensors are

more prone to temporary outages due to power and usage-related issues resulting in inter-

mittent loss of data.

2. Data generating frequency: In outdoor environments, data are collected when mobile devices

are activated (making a call, accessing some location-related services, or connecting to a Wi-

Fi access point), and therefore data generation frequency is sparser than that of ambient sen-

sor networks where sensors are triggered passively without any intent by humans.

3. Data ambiguity: Mobile devices have unique identifiers linking them to a distinct moving

object. On the other hand, data from simple ambient sensors cannot identify one distinct

moving object from another. Therefore, visitors and residents in the home would generate

a different mobility pattern than only the residents of the home.

4. Distinct location limits: In outdoor environments, distinct locations humans can visit are

essentially unconstrained. However, in smart home environments, the number of distinct

locations is fixed and determined by the installed motion sensors.

5. The time period for trajectory construction: In outdoor environments, an individual’s move-

ment over multiple days is modeled as a stationary stochastic process. Typically months of

data are needed to capture all visited locations and a single sequence of movements is
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constructed for each individual in a large population. On the other hand, in smart home

environments, a resident repeats routine behaviors on a daily basis. The data collected by

ambient sensors facilitates the construction of multiple trajectories for different time peri-

ods and enables the study of the changes in human mobility over time.

The design and evaluation of context-aware smart home applications providing adaptive

intelligent services for its residents must consider the regularity and predictability of human

mobility and behavior at home. The only work we have come across which studies the regular-

ity and predictability of human mobility at home is [43]. In this work, mobility is defined as the

number of times an individual moves between different rooms in their home within a specified

period of time without explicitly considering location information. The results indicate that

while a common model across individuals is absent, a high degree of regularity and predictabil-

ity of human mobility exists when contextual information e.g. walking speed, age, weather,

socioeconomic status, etc. about individuals is taken into consideration. The authors conclude

that in-home mobility is also highly stereotyped, albeit in a different way than outdoor mobil-

ity, and may have applications in predicting individual human health and functional status by

detecting adverse events or trends, and in conducting more meaningful clinical trials.

In this paper, we study human mobility in homes outfitted with ambient sensors. Our

objective is to quantify the regularity and predictability of human mobility in private homes.

We model an individual’s mobility as a stationary stochastic process and construct trajectories

of the occupant using sequences of chronologically visited locations in the home based on the

data from ambient motion sensors. The entropy rate of the mobility is estimated from the

sequences and represents a quantitative measure of the regularity and the limit of predictability

of mobility is estimated using the estimated entropy rate.

The ambiguity associated with the mobility data collected from private homes and the unre-

liability in the data collection infrastructure introduce significant intermittent deviations to

the assumed stationary stochastic process. To capture this unknown number of deviations, we

model the time series of daily entropy rate as piecewise constant and estimate these change-

points using a change-point detection algorithm. [44,45] provide comprehensive reviews of

methods for change-point estimation in sequential data considering variations in model

assumptions. A penalized least-square change-point estimator based on the Schwarz’s criterion

[46] is introduced in [47] to estimate the unknown number of change-points. In this method,

the unknown number of change-points is estimated by minimizing the sum of squares of the

residuals combined with a penalty on the number of change-points. It is shown that this least-

square estimator is a consistent estimator of the number of change-points under the assump-

tion that the random variables are independent and normally distributed. [48,49] expanded

this work to a general context where the variables are not necessarily independent. [50] pro-

posed to estimate the unknown change-points by minimizing a penalized contrast function

which converges to the true values with probability. The latter has been used widely in differ-

ent applications including but not limited to animal trajectory segmentation [51], EEG seg-

mentation [50], CGH data analysis [52], and offset detection in GPS data [53]. In this study,

we apply this method to segment the sequence of daily entropy rates to determine unknown

changes in the data collection environments.

Materials and methods

The theoretical fundamentals of human mobility and the background associated with the

study of regularity and predictability of human mobility are introduced below. The notations,

definitions, and formulas follow those presented in [54] and [2] where entropy rate has been

used to quantify the extent to which an individual’s travel patterns are regular and predictable.
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Human mobility model

Human mobility is modeled as a stationary stochastic process X = {Xi}, where Xi 2 X repre-

sents the random variable of the location at time ti, i = 1, 2, . . ., n. In this study, X is the set of

all motion sensors installed in a house, and Xi is a unique motion sensor in this set.

A trajectory is a sample path of X and typically represented as a sequence of time-indexed

locations. Let li represent the location update at time ti, a trajectory is then defined as a time

series of locations l1, l2, . . ., ln with t1 < t2 < . . .< tn. The duration at location li is the time dif-

ference between ti and ti+1. In this mobility model, the set of locations refer to the viewing areas

of the motion sensors, and the model captures transitions between the viewing areas of the

motion sensors and not the motion within the viewing area of an individual motion sensor.

Entropy rate

In the study of human mobility, random entropy, denoted by Srand, measures the uncertainty

of an individual’s next location assuming that this individual’s movement is completely ran-

dom among N possible locations, and is calculated as

Srand ¼ log
2
N ð1Þ

If the individual’s movement among N possible locations follows a probability distribution

p(i), i = 1, 2, . . ., N, the entropy rate of this process is then defined as

Sunc ¼ �
XN

i¼1
pðiÞlog

2
pðiÞ ð2Þ

and is referred to as the temporal-uncorrelated entropy. The third entropy rate is the real
entropy and is denoted by Sreal. It considers the frequency of the visited locations and the order

in which these locations are visited. It is calculated as

Sreal ¼ �
X

T0 2T
PðT 0Þlog

2
½PðT 0Þ� ð3Þ

where T represents the sequence of the visited locations and T0 represents a subsequence of T.

Theoretically Sreal� Sunc� Srand. It is important to emphasize that when the process is

completely random, Srand = Sunc = Sreal, and when the process is not completely random but

includes inherent repetitive patterns, Sreal is the smallest among the three entropy rate

measures.

Given a sequence of length n with N distinct symbols in the sequence, the value of Srand is

calculated using (1). To calculate Sunc using (2), we need to estimate the probability distribu-

tion from the sequence. The probability of xi, i = 1, 2, . . ., N is estimated as p̂ðxiÞ ¼ Ni=n,

where Ni is the total number of xi in the sequence. The real entropy Sreal cannot be obtained

directly using (3) but can be estimated by entropy rate estimators. We estimate the value of

Sreal based on the Burrows-Wheeler transform (BWT) estimator which is easy to implement

and is shown to be almost-sure convergent for stationary, ergodic random processes [55] char-

acteristic of movement trajectories considered in this work.

The limit of predictability of human mobility

Let hn−1 = {X1, X2, . . ., Xn−1} be an individual’s locations at times t1 through tn−1 and P(hn−1) be

the probability of observing hn−1. Let π(hn−1) be the probability that an individual will be at

his/her most likely location at time tn. The predictability of the n th location given the historical
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trajectory hn−1, denoted as P(n), is defined as

PðnÞ �
X

hn� 1

Pðhn� 1Þpðhn� 1Þ ð4Þ

P(n) can be viewed as the highest accuracy to predict an individual’s n th location given the

historical trajectory hn−1.

Taking the limit, the overall predictability is defined as the averaged predictability over

time:

P � limn!1
1

n

Xn

i
PðiÞ ð5Þ

The upper bound of predictability P, denoted as Pmax, is obtained by solving

S ¼ � Пmaxlog
2
ðПmaxÞ � ð1 � ПmaxÞlog

2
ð1 � ПmaxÞ þ ð1 � ПmaxÞlog

2
ðN � 1Þ ð6Þ

where S is the entropy rate and N is the number of distinct symbols in the process. Pmax can

be treated as the theoretical highest accuracy that a best designed predictive algorithm can

achieve for the next location prediction problem [2].

Data collection

The data used in this study are collected from HomeSense [42], a smart home project at the

University of South Florida that aims to apply ambient intelligence technologies in real living

environments to help older adults age in place. All participants of HomeSense live alone with-

out pets in their own homes and are recruited from a 55+ active retirement community. The

participants are initially contacted by phone about the potential study. During this call, study

aims and requirements are explained to participants, eligibility/enrollment criteria are tenta-

tively verified (for example, the participants are asked to be available for bi-weekly phone

interviews designed to collect self-reported information regarding major health and life events,

travel, and visitors), and an appointment is set for an in-home visit. During the in-home visit,

study goals and needs are recapped and written informed consent is obtained. This study is

approved by the University of South Florida Human Research Protection Program. Further

details regarding participant recruitment, consent, and participation are outlined in IRB Pro-

tocol PRO 00020982.

The sensor array deployed in the homes includes Passive Infrared (PIR) motion sensors,

contact sensors, power sensors, water sensors, and environmental sensors that report changes

in temperature, luminance, and humidity. PIRs are installed in every room such that their field

of vision covers the majority of the space in the room where the occupant is active. In this

study of human mobility, only the data from PIR motion sensors are used. Further details

regarding the data collection environments can be found in [42].

The dataset includes all participants who were enrolled in HomeSense for at least five

months between January 1, 2017 and December 31, 2018, who did not disclose family or

friends staying with them long-term, and who did not report significant mental or physical

impairments in the bi-weekly assessment. In total 10 homes representing 3812 days of data

are initially included in this study. A limitation of this study is that the dataset is collected from

participants who are all older adults (age 55+). Further investigation is required to validate the

results of the study across other age groups and in increased number of installations.

Subsequently, 21 more days were excluded from the dataset when the participants reported

as being on vacation in bi-weekly interviews, and the days which were not reported by the par-

ticipants but had fewer than 12 motion sensor events in a given day. This threshold was deter-

mined using the sensor data from the days where the participants reported as being on
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vacation. These events correspond to sensor errors and visitors who may have come to check

on the house and are not representative of the participants’ typical activities.

Data preparation

Daily motion trajectories are constructed based on the ON events from PIRs that observe a res-

ident’s movement within the house. An ON event is reported by a motion sensor when a

movement is detected in the field of the motion sensor’s view, and a sequence of chronological

ON events represents the movement history. The sequence of ON events is transferred to a

symbol sequence by replacing each of them by the symbol representation, for example, the

sensor identity, to uniquely represent the motion sensor that reports an ON event, and thus

we construct a symbol sequence representation of movement trajectory of the resident.

Using the daily motion trajectories and the BWT entropy estimator, we estimate the true

daily entropy rate defined in Eq (3) and construct a sequence of daily entropy rates for each

home to describe the resident’s mobility over time. Similarly, we also calculate the limit of

predictability for each day using (6).

We define outliers as data points for which the estimated daily entropy rates are outside of

the [Q1 − 1.5 � IQR, Q3 + 1.5 � IQR] range where Q1 and Q3 are the lower and upper quantile

of the dataset respectively, and IQR = Q3 − Q1. Only outliers that do not have another outlier

within (±3 days) are removed from the dataset to ensure that temporary shifts are not removed

from the dataset. Using this method, we exclude 19 data points reducing the dataset size to

3772 for all houses.

Table 1 summarizes the resulting dataset size for each house, the minimum and the maxi-

mum number of unique symbols in the daily trajectories, the minimum, the maximum, and

the average length of the daily trajectories. The value of the maximum number of unique sym-

bols denoted as Nmax, varies between 8 and 12 as a consequence of the different sensor layouts

in private homes. For houses with the same Nmax, the average length of daily trajectories also

varies from house to house. For example, the average length of the daily trajectory of House 13

(203) is almost twice as that of House 8 (112) while both of them have Nmax = 10, implying that

the average movement level of the participant in House 13 is higher than the participant in

House 8.

Change-point detection algorithm

As discussed in the Introduction section, changes in the data collection infrastructure such as

addition or removal of sensors, temporary sensor malfunction which may last days or even

Table 1. Summary of the datasets for each house.

House Size of dataset Nmin Nmax Minimum trajectory length Maximum trajectory length Averaged trajectory length

8 687 4 10 21 395 112

13 713 4 10 23 545 203

14 178 3 8 28 181 82

27 674 3 8 19 264 96

28 495 6 11 17 542 192

51 178 5 10 15 286 131

53 210 5 9 31 197 92

54 220 6 12 50 492 212

55 208 4 10 37 368 168

56 209 5 10 38 529 173

https://doi.org/10.1371/journal.pone.0243503.t001
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weeks, and the presence of long-term visitors significantly alter the patterns in the motion sen-

sor data from the residence and the regularity and predictability of the resident’s mobility esti-

mated based on it. While such events are unavoidable during longitudinal data collection in

private homes, identification and exclusion of such periods of time when the collected data is

not truly representative of the resident’s normal daily activities will result in a more accurate

and representative estimation of the regularity and predictability of the resident’s mobility. To

accomplish this, we apply a change-point detection algorithm on the sequence of daily entropy

rates to identify segments of time where the sensor data may not be representative of the resi-

dent’s normal activity patterns.

Denoting the sequence of daily entropy rate as s = (s1, s2, . . ., sn) where n is the number of

days, we model this sequence of daily entropy as piecewise constant [56]

sj ¼ mk þ εj; 0 < tk� 1 < j � tk < n; 1 � k < K ð7Þ

where K is the total number of segments, τ = (τ1, τ2, . . ., τK−1) with 0< τ1 < τ2 < . . .< τK−1 <

n is the sequence of change-points, μk represents the mean of daily entropy in segment k which

is different for consecutive segments, and εj is the error item with a zero mean and a constant

variance σ2.

Estimating change-points where the true number of change-points is unknown can be

treated as a model selection problem where the optimal segmentation solution is obtained by

minimizing a penalized contrast function.

Jðτ; sÞ þ b � penðτÞ ð8Þ

where J(τ, s) is the contrast function used to measure the contrast between the segmentation

marked by τ and the sequence s, pen(τ) is the penalty term which increases as the number of

change-points increases, and β is the penalization parameter or tune parameter that adjusts the

minimization of J(τ, s) and the minimization of pen(τ).

As suggested in [50], we use

J τ; sð Þ ¼
1

n

XK

k¼1

Xtk

i¼tk� 1þ1
ðsi � �stk� 1þ1:tk

Þ
2

ð9Þ

as the contrast function for the detection of abrupt changes in the mean of the sequential data

where �stk� 1þ1:tk
¼ 1

n

Ptk
i¼tk� 1þ1

si, i.e., the estimate of the mean of data in segment k, 1� k� K;

for the penalty function, we use pen(τ) = K, the number of segments.

When the number of true segments K is known, the best estimate of τ denoted as τ̂K is the

sequence of change-points that minimizes the contrast function J(τ, s). When K is unknown,

given an upper bound of K denoted as Kmax, we can calculate τ̂K that minimizes the contrast

function for all K, K = 1 . . . Kmax. By definition, the best choice of K, denoted K̂ among these

Kmax choices is the one that minimizes the summation of the contrast function and the penalty

terms β � pen(τ). We determine the best choice of K using the automatic procedure described

in [50].

After determining the number of change-points K̂ and its corresponding segmentation

t̂1; . . . ; t̂K̂ � 1, we estimate the mean and variance of the daily entropy in each segment using

m̂k ¼
1

t̂k � t̂k� 1

Xt̂k

j¼t̂k� 1þ1
sj; t̂k� 1 < j � t̂k; 1 � k � K̂ ð10Þ

ε̂ j ¼ sj � m̂k; t̂k� 1 < j � t̂k; 1 � k � K̂ ð11Þ
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Parameter setting in the change-point detection algorithm

Two parameters are required for the change-point detection algorithm; the minimum number

of points in a segment Lmin, and an upper bound of the number of segments Kmax. In our

experiment, we use Lmin = 1 to ensure the detection of all possible change-points. For Kmax, a

value of two to four times the expected number of segments is suggested to give the algorithm

some room to work but to avoid overestimating the number of segments [51,57,58]. In this

study, the number of changes in the data collection environment and the sensor system, e.g.

visitors, sensor system failures, tends to increase as the data collection time period increases.

Therefore, longer time periods are more likely to have more change-points. In our experi-

ments, we use the number of weeks contained in the sequential data as the value of Kmax.

Validation of change-points

We validate the results of the change-point detection algorithm by checking whether the date

of a change-point can be corroborated with the information from three sources; namely the

bi-weekly assessments, the maintenance logs, and device battery information collected from

the sensor network. We only consider information dated within two days of a change-point as

corroborating evidence.

Bi-weekly assessments include information regarding long-term visitors from the partici-

pants. In most cases, this information pertains only to visitors who stay with the participant

multiple days/weeks, and in many cases the start and end dates of the visit are approximations.

Maintenance logs are used to record the team’s maintenance work on the sensor network.

Logged maintenance activities include replacement of malfunctioning sensors, repositioning sen-

sors, adding and removing sensors, and replacing batteries all of which impact the observed data.

In most cases, to minimize the interruptions to the participants’ daily lives, multiple maintenance

operations, such as adjusting sensors and replacing batteries, are completed during the same visit.

The third source of information is the data collected from individual devices regarding

their battery levels. We use this information to schedule maintenance visits to replace batteries

before they are completely drained. If battery replacement is not completed in time and the

batteries are completely drained, the device stops reporting data. In such cases, the observed

data from the residence, and subsequently the estimates of entropy rates, are not representative

of the resident’s normal activity patterns.

The validation process entails using the corroborating information from the three sources

for the start date of each segment to classify it into one of five categories: (1) Single-occupant
when the sensor network is completely functional and system is observing only the partici-

pant’s activities; (2) System-change when additional motion sensors are added to the system

creating a new mode of ‘Single-occupant’; (3) System-malfunction when one or more motion

sensors malfunction and fail to report data including drained batteries; (4) Multiple-occupant
when long-term visitors are present, and (5) Unknown when we were unable to find corrobo-

rating information from bi-weekly assessments or maintenance logs to describe the segment.

The segments categorized as Single-occupant and System-change, denoted as ‘Single-occupant

(1)’ and ‘Single-occupant (2)’ respectively, are considered to contain data that is representative

of the resident’s normal daily activities and used for further data analysis.

Illustrative example

We use House 55 as an example to illustrate the application of the change-point-detection algo-

rithm on the sequence of daily entropy rates, and the validation of the detected change-points.

The dataset for House 55 has 30 weeks of data. Thus we set the algorithm parameters as Kmax =

30, Lmin = 1. Fig 1 shows the value of the contrast function JK for 1� K� 30. Using the procedure
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in [50], the optimal number of segments is determined as K = 5. Table 2 shows the segments and

the results of the change-point validation process used to categorize each of the segments.

The first segment in Table 2 which covers the dates between June 5, 2018 and July 6, 2018

is categorized as ‘Single-occupant (1)’ based on our best judgment of the system state at that

date using the totality of information from bi-weekly assessments and maintenance logs.

This categorization is not based on the change-point detection algorithm as the starting

point for this segment is the starting date of the dataset. For the second segment, there is no

corroborating information for the change-point found at its start date, and thus it is catego-

rized as ‘Unknown’. The start date of the third segment August 8, 2018 coincides with a

maintenance visit where corrections were made to sensors that were not reporting data and

therefore this segment is categorized as ‘Single-occupant (2)’. The start date of the fourth

segment coincides with visitor arrival and the segment is categorized as ‘Multiple-occupant’.

The start date of the fifth segment could not be corroborated with any record in the mainte-

nance logs and bi-weekly assessments and therefore this segment is categorized as

‘Unknown’. Fig 2 illustrates the five segments of the sequence of daily entropy rates.

This systematic approach to categorizing segments revealed interesting points of change,

where the start of a number of ‘Unknown’ segments related to changes in the resident’s life

Fig 1. The value of the contrast function JK for 1� K� Kmax = 30 for House 55. Circles indicate the convex hull

points of (K, JK).

https://doi.org/10.1371/journal.pone.0243503.g001

Table 2. Five segments obtained by the change-point detection algorithm in House 55.

Segment Number of data points Date start �Sreal (SD) �Πreal (SD) Interpretation of the start date Segment type

1 31 2018-06-05 1.48 (0.16) 0.74 (0.036) Not applicable Single-occupant (1)

2 33 2018-07-06 1.18 (0.14) 0.80 (0.026) Unknown Unknown

3 102 2018-08-08 1.46 (0.15) 0.75 (0.032) Replace a malfunction sensor Single-occupant (2)

4 29 2018-11-19 1.82 (0.20) 0.67 (0.047) Visitor activity Multiple-occupant

5 13 2018-12-19 1.45 (0.10) 0.74 (0.030) Unknown Unknown

https://doi.org/10.1371/journal.pone.0243503.t002
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patterns and marked behavioral changes. For example, compared with the fourth segment,

sensor events reported by the motion sensors installed in the master bedroom and master

bathroom were absent in early mornings starting on December 18, 2018. While this change

in the motion sensor events could not be captured by the bi-weekly phone interviews or the

maintenance logs, it is caused by the changes in the occupant’s behaviors which explain the

change characterizing the fifth segment.

We observe in Table 2 that the mean of the entropy rate and the mean of the limit of

predictability changes in successive segments. The p-values of the Welch’s t-test [59] for pair-

wise comparisons of the segments in Table 2 are shown in Table 3. The pairwise comparisons

between the mean daily entropy rates and predictability of ‘Single-occupant’ segments are sig-

nificantly different at the 0.01 level than those of ‘System-malfunction’ and ‘Multiple-occu-

pant’ categories, and the results are mixed in the comparisons with the ‘Unknown’ category.

Results

Overall entropy rate and limit of predictability

Table 4 shows the sample mean, the range of the random, temporal-uncorrelated, and true

daily entropy rates over days, and the corresponding limits of predictability for each house.

Fig 2. The daily entropy rates in five segments for House 55. The black horizontal lines in the graph show the sample means of the daily entropy rate

for each segment, and the vertical dashed lines indicate the location of four change-points.

https://doi.org/10.1371/journal.pone.0243503.g002
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For the entropy measures, the sample mean of the real entropy �Sreal is lower than the mean of

the temporal-uncorrelated entropy �Sunc and the mean of the random entropy �Srand, providing

evidence that there are inherent repetitive patterns in the daily trajectories of the residents.

Similar observations are made for the limit of predictability but with a reverse relationship

where the mean of the limit of predictability for the real entropy �Preal is the highest. Overall,

the sample mean of the real entropy is between 0.48 and 2.36 with a mean of 1.60, and the cor-

responding limit of predictability is between 54% and 92% with a mean of 72%.

Results from the change-point detection algorithm

The real entropy rate measures the extent to which movement patterns are regular. Changes in

the regular movement patterns that are caused by changes in sensor system configuration or

the visitors’ activities could introduce changes in the value of the real entropy rate. The results

in this subsection pertain to the analysis of the sequence of daily real entropy rate for each

house and use the change-point detection algorithm to examine how it changes over time.

Table 5 shows the segments determined by the change-point detection algorithm, and the

segment categorizations using the validation process except for House 55 which is previously

shown in Table 2. 37 change-points are detected over 10 houses, and 22 out of them are vali-

dated by the records of bi-weekly assessment and the maintenance log.

Table 6 summarizes aggregate statistics by segment type from all homes. Note that around

50% of the segments containing 75% of the days correspond to normal behavior. ‘Multiple-

occupant’ and ‘System-malfunction’ type segments correspond to around 20% of the segments

and less than 10% of the days. ‘Single-occupant’ type segments are clearly longer containing a

significantly higher number of days than those that correspond to visitors and system malfunc-

tion. 30% of segments that contain 20% of the days were categorized as ‘Unknown’.

Table 3. The p-values of the t-tests of the daily entropy rate (predictability) for pairs of different types of segments in House 55.

Segment 2 (Unknown) Segment 3 (Single-occupant (2)) Segment (Multiple-occupant) Segment 5 (Unknown)

Segment 1 (Single-occupant (1)) 7.96e-11 (1.73e-08) 0.63 (0.57) 1.51e-09 (1.00e-08) 0.53 (0.42)

Segment 2 (Unknown) 3.23e-14 (1.85e-12) 1.81e-19 (3.17e-16) 2.26e-08 (3.54e-06)

Segment 3 (Single-occupant (2)) 6.75e-11 (5.38e-10) 0.75 (0.17)

Segment 4 (Multiple-occupant) 9.65e-10 (5.34e-06)

https://doi.org/10.1371/journal.pone.0243503.t003

Table 4. The sample means and range of entropy rate and the limit of probability.

House �Srand½Sramd
min ; Sramd

max �
�Sunc½Suncmin; Suncmax�

�Sreal½Srealmin; Srealmax�
�Qrand½

Qrand
min ;

Qrand
max �

�Qunc½
Qunc

min;
Qunc

max�
�Qreal½

Qreal
min;
Qreal

max�

8 2.91 [2.00, 3.32] 2.45 [1.86, 2.84] 1.57 [1.14, 2.29] 0.14 [0.10, 0.25] 0.46 [0.33, 0.60] 0.73 [0.54, 0.83]

13 2.92 [2.00, 3.32] 2.65 [1.86, 3.15] 1.82 [1.20, 2.36] 0.14 [0.10, 0.25] 0.37 [0.20, 0.55] 0.67 [0.56, 0.75]

14 2.41 [1.58, 3.00] 2.01 [1.19, 2.64] 1.31 [0.48, 2.01] 0.20 [0.13, 0.33] 0.52 [0.34, 0.73] 0.76 [0.63, 0.92]

27 2.55 [1.58, 3.00] 2.24 [1.28, 2.70] 1.53 [0.70, 2.14] 0.18 [0.13, 0.33] 0.45 [0.26, 0.72] 0.71 [0.59, 0.89]

28 3.15 [2.58, 3.46] 2.59 [2.10, 3.03] 1.71 [1.23, 2.34] 0.12 [0.092, 0.17] 0.46 [0.32, 0.61] 0.71 [0.57, 0.80]

51 3.09 [2.32, 3.32] 2.35 [1.64, 2.73] 1.58 [1.17, 2.00] 0.12 [0.10, 0.20] 0.53 [0.35, 0.70] 0.74 [0.66, 0.82]

53 2.81 [2.32, 3.17] 2.41 [2.05, 2.76] 1.47 [1.14, 1.88] 0.15 [0.11, 0.20] 0.45 [0.31, 0.58] 0.75 [0.67, 0.82]

54 3.18 [2.58, 3.58] 2.40 [1.44, 2.89] 1.66 [1.00, 2.14] 0.11 [0.084, 0.17] 0.53 [0.29, 0.75] 0.73 [0.61, 0.85]

55 2.78 [2.00, 3.32] 2.33 [1.72, 2.76] 1.47 [0.91, 2.11] 0.15 [0.10, 0.25] 0.48 [0.28, 0.62] 0.74 [0.60, 0.84]

56 2.61 [2.32, 3.32] 2.11 [1.68, 2.53] 1.42 [1.05, 2.12] 0.17 [0.10, 0.20] 0.52 [0.38, 0.67] 0.74 [0.62, 0.82]

Overall 2.85 [1.58, 3.58] 2.41 [1.19, 3.15] 1.60 [0.48, 2.36] 0.14 [0.084, 0.33] 0.45 [0.20, 0.75] 0.72 [0.54, 0.92]

https://doi.org/10.1371/journal.pone.0243503.t004
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Another observation related to the results in Table 6 is that the range of daily entropy rate

of ‘Single-occupant’ segments [0.81, 2.22] is much narrower than the range of all segments

[0.48, 2.36] indicating that those days with uncharacteristically small and large daily entropy

rates were not representative of the residents’ normal routines, but were associated with dis-

ruptions which involved the presence of visitors or problems with the ambient sensor system.

Table 5. Segments of the sequence of daily entropy rates over nine houses and the validation results.

House Segment Number of data points Start Date �Sreal (SD) Interpretation of start date Segment type

8 1 22 2017-01-01 1.42 (0.14) Not applicable Single-occupant (1)

2 36 2017-01-24 1.89 (0.15) Visitors arrived Multiple-occupant

3 233 2017-03-01 1.55 (0.14) Visitors left Single-occupant (1)

4 11 2017-11-03 1.82 (0.10) Visitors arrived Multiple-occupant

5 358 2017-11-14 1.54 (0.13) Visitors left Single-occupant (1)

6 27 2018-12-05 1.68 (0.15) Unknown Unknown

13 1 222 2017-01-01 1.66 (0.13) Not applicable Single-occupant (1)

2 180 2017-08-15 1.88 (0.12) Add a new sensor Single-occupant (2)

3 13 2018-02-11 2.22 (0.11) Visitors arrived Multiple-occupant

4 298 2018-02-25 1.89 (0.12) Visitors left Single-occupant (2)

14 1 38 2017-01-01 1.23 (0.19) Not applicable Single-occupant (1)

2 54 2017-02-08 0.93 (0.18) Unknown Unknown

3 86 2017-04-03 1.59 (0.15) Adjust sensors Single-occupant (2)

27 1 21 2017-01-01 1.09 (0.20) Not applicable System-malfunction

2 66 2017-01-25 1.29 (0.16) Replace battery Single-occupant (1)

3 126 2017-04-01 1.44 (0.16) Unknown Unknown

4 126 2017-08-15 1.62 (0.16) Add two sensors Single-occupant (2)

5 57 2017-12-21 1.40 (0.16) Unknown Unknown

6 192 2018-03-13 1.69 (0.14) Replace battery Single-occupant (2)

7 86 2018-09-30 1.58 (0.17) Unknown Unknown

28 1 38 2017-07-07 1.56 (0.14) Not applicable Single-occupant (1)

2 114 2017-08-15 1.72 (0.12) Add a new sensor Single-occupant (2)

3 8 2017-12-16 2.01 (0.16) Visitors Arrival Multiple-occupant

4 175 2017-12-30 1.76 (0.13) Visitors left Single-occupant (2)

5 64 2018-07-12 1.62 (0.12) Unknown Unknown

6 6 2018-09-27 2.09 (0.16) Unknown Unknown

7 90 2018-10-03 1.70 (0.12) Unknown Unknown

51 1 21 2018-05-14 1.32 (0.11) Not applicable System-malfunction

2 157 2018-06-11 1.62 (0.14) Replace Sensor Single-occupant (1)

53 1 60 2018-05-23 1.43 (0.17) Not applicable Single-occupant (1)

2 53 2018-07-23 1.53 (0.12) Unknown Unknown

3 28 2018-09-26 1.33 (0.12) Drained batteries System-malfunction

4 69 2018-10-24 1.51 (0.14) Replaced batteries Single-occupant (1)

54 1 37 2018-05-21 1.61 (0.18) Not applicable Single-occupant (1)

2 30 2018-06-27 1.42 (0.17) Unknown Unknown

3 41 2018-07-27 1.64 (0.13) Unknown Unknown

4 16 2018-09-11 1.94 (0.13) Network Problem System-malfunction

5 96 2018-09-27 1.72 (0.13) Reinstall Sensor Single-occupant (1)

56 1 66 2018-06-04 1.53 (0.10) Not applicable Single-occupant (1)

2 5 2018-08-10 1.96 (0.12) Unknown Unknown

3 22 2018-08-15 1.51 (0.11) Unknown Unknown

4 116 2018-09-07 1.32 (0.11) Drained battery System-malfunction

https://doi.org/10.1371/journal.pone.0243503.t005
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Comparison of entropy rates between segment types

We compare the mean of daily entropy rate of different types of segments within each house to

see if there are statistically significant differences between entropy rates of these segments. The

results of the 99 pairs of comparisons using Welch’s t-test are summarized in Table 7. All ‘Mul-

tiple-occupant’ segments have significantly different means from the ‘Single-occupant’ seg-

ments, and all nine ‘System-malfunction’ segments have significantly different means from the

‘Single-occupant’ ones. As expected, the comparison of means with ‘Unknown’ segments has

mixed results.

Analysis of normal days’ entropy rates

After isolating the ‘Single-occupant’ segment types that capture the routine behavior of the res-

idents, we proceeded to compare entropy rates of these days within and across homes to deter-

mine if there are meaningful subgroups or trends. We first compared entropy rates of

weekdays with weekends using Welch’s t-test. The sample means of daily entropy rates for

weekdays and weekends were 1.64 and 1.63 respectively, showing no significant difference

between the means (p-value = 0.26). For this cohort, we did not expect to see a difference as

only one participant has a routine work schedule. This participant works 10 hours each day on

Wednesday, Thursday, and Friday. Comparison of the entropy rates of the three working days

with the non-working days also did not show any significant differences between the means of

daily entropy rates (p-value = 0.51).

When we studied the daily entropy rates of the participants stratified by age group, we

obtained very interesting results. Of the 10 participants, two are below age 70, two are between

the ages of 70 and 75, and six are older than 75. The box plots of the entropy rates for these

three age groups are shown in Fig 3. The sample means are 1.48, 1.55, and 1.67 respectively

and show statistically significant differences (p-value < 0.001) in the daily entropy rates

among different age cohorts.

Table 6. Aggregate statistics (mean, (standard deviation) [minimum, maximum]) of daily entropy rate and limit of probability of different types of segments over

10 houses.

Type Single-occupant

(1)

Single-occupant

(2)

Single-occupant (1)

& (2)

Multiple-occupant System-

malfunction

Unknown Overall

Num. of

segments

15 7 22 5 5 15 47

Num. of days 1595 1171 2766 97 202 707 3772

�Sreal (SD) [min,

max]

1.55 (0.17) [0.81,

2.10]

1.77 (0.17) [1.16,

2.22]

1.64 (0.20) [0.81,

2.22]

1.92 (0.20) [1.24,

2.36]

1.35 (0.22) [0.70,

2.14]

1.49 (0.26) [0.48,

2.34]

1.60 (0.24) [0.48,

2.36]

�Πreal (SD) [min,

max]

0.73 (0.040) [0.56,

0.86]

0.69 (0.039) [0.57,

0.82]

0.71 (0.044) [0.56,

0.86]

0.65 (0.045) [0.54,

0.80]

0.76 (0.044) [0.61,

0.89]

0.73 (0.052) [0.57,

0.92]

0.72 (0.048) [0.54,

0.92]

https://doi.org/10.1371/journal.pone.0243503.t006

Table 7. The number of t-test with p-value< 0.01 versus the number of t-test with p-value> = 0.01 for comparing the means of entropy rate in two different types

of segments.

Single-occupant (2) Multiple-occupant System-malfunction Unknown

Single-occupant (1) 7 vs. 0 10 vs. 0 7 vs. 0 16 vs. 6

Single-occupant (2) 4 vs. 0 2 vs. 0 11 vs. 2

Multiple-occupant 6 vs. 1

System-malfunction 8 vs. 0

https://doi.org/10.1371/journal.pone.0243503.t007

PLOS ONE Study of human mobility and behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0243503 December 10, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0243503.t006
https://doi.org/10.1371/journal.pone.0243503.t007
https://doi.org/10.1371/journal.pone.0243503


Discussion

In this paper, we studied human mobility in private homes using data from ambient sensors

that observe residents’ movements. We construct daily movement trajectories based on the

collected sensor data and use the entropy rate to measure the regularity and predictability of

these trajectories. Our analysis shows that the movements of these residents at home are not

completely random, but inherently regular and are predictable. The average real entropy for

daily trajectories range between 0.81 and 2.22, and their corresponding limit of predictability

is between 0.56 and 0.86 (Table 6). On average, about 70% of the time the resident’s next loca-

tion can be correctly predicted by a theoretically best designed predictive algorithm. The regu-

larity and predictability of the resident’s movements under conditions representative of

normal life routines, across different homes with varying floor plans, and for individuals with

different lifestyles remained within a very narrow range over long periods of time. This is a

very important finding and a unique contribution of this research. To our knowledge, it is the

only work of this kind to quantify the predictability of human mobility in private homes and

demonstrate its consistency across 10 installations and 3772 days of data.

The data collected from wireless ambient sensor systems in private homes over extended

periods of time contains temporary shifts predominantly due to the presence of visitors in the

homes and malfunctions in the sensor systems. These factors skew the data collected from the

home in the form of missing sensor data in the case of system malfunctions, and additional

sensor data not representative of the resident’s movements in the case of visitors. A change-

point detection algorithm is used to identify such segments of time and study their influence

on the entropy rates of daily trajectories. Results of the change-point detection algorithm

shown in Tables 5 and 6 present clear differences between the entropy rates of days that belong

to different types of segments.

Using the bi-weekly phone interviews with the participants and maintenance logs to cor-

roborate the change-points from the algorithm, the segments were classified into five catego-

ries as ‘Single-occupant’, ‘System-change’, ‘Multiple-occupant’, ‘System-malfunction’, and

‘Unknown’. 75% of the study days corresponded to the normal behavior of the participant

Fig 3. Box plots of the real entropy rates for three age cohorts.

https://doi.org/10.1371/journal.pone.0243503.g003
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without the effects of known artifacts such as visitors and sensor system malfunctions. ‘Multi-

ple-occupant’ and ‘System-malfunction’ type segments corresponded to less than 10% of the

days, and 20% of the days were categorized as ‘Unknown’ as the starting change-points could

not be validated by the interviews and logs. However, we were able to anecdotally observe

behaviors from the rest of the sensor data which could have caused changes in daily entropy

rate associated with the behavior of the participant such as changes in sleeping habits which

coincided with the start of an unknown period. We note the detection of participants’ behav-

ioral changes using entropy rate as an important future research direction.

‘Single-occupant’ type segments were much longer in duration and contained a signifi-

cantly higher number of days than those that correspond to visitors and system malfunction.

While the average daily entropy rate of the normal days was comparable to the overall average

daily entropy rate (1.64 vs 1.60, Table 6), the range of observed daily entropy values of the nor-

mal days was significantly narrower. We also observed consistent and statistically significant

differences in the means of daily entropies for days categorized as ‘Single-occupant’ vs. ‘Sys-

tem-malfunction’ and ‘Multiple-occupant’ as shown in Table 7. The mean daily entropy rate

of visitor days was on average higher than days categorized as ‘Single-occupant’ and ‘System-

malfunction’. This is somewhat intuitive as during these days the presence of visitors in the

house increased the amount of entropy rate. On the other hand, days during which there were

sensor malfunctions where one or more sensors failed to send data, the average daily entropy

rate was lower.

After isolating the effect of known causes on the daily entropy rate and focusing on days

categorized as ‘Single-occupant’ segments, we proceeded to analyze the data across homes to

identify potential patterns. Since our participants are retired older adults, we did not observe

any significant differences in daily entropies between weekdays and weekends. Analysis of the

daily entropies of the days of the week for one of our participants who works a regular schedule

three days a week also did not show significant differences in daily entropy. While this is a very

small dataset, it does provide additional evidence that an entropy-based approach is robust to

varying lifestyles and routines.

The most interesting results were obtained when analyzing daily entropy rate stratified by

age group. We observed statistically significant increases in average daily entropy rate for older

cohorts as shown in Fig 3. While our dataset is small based on 10 participants, this is a novel

and interesting finding which motivates further study of entropy-based metrics that measure

the amount of disorder in stochastic processes as part of an ambient home monitoring system

to identify aging-related behavior changes.

Overall, 60% of the change-points detected by the algorithm are validated by the informa-

tion in the bi-weekly phone interviews with the participants and maintenance and system logs.

Since the information from the logs are incomplete, and there were other potential sources

of change in the data collected from the private homes such as the changes in the resident’s

behavior, we believe this percentage of validation is in fact very promising in terms of further

investigating entropy-based metrics as part of a comprehensive activity and overall health

monitoring system in more structured and closely monitored experimental designs.

Identification of periods of time which are skewed by factors other than participants’ behav-

iors is essential for effective monitoring of health and wellness using ambient sensor systems

in private homes. In this initial phase we isolated time periods which are not representative of

the participant’s behavior, and prepared the data set to detect finer changes in behavior such as

sleeping and hygiene habits that could be linked to changes in health and wellness. Detecting

and validating these arguably more subtle changes is challenging. From a methodology per-

spective, [7] introduces an information-theoretic metric “instantaneous entropy” which allows

a per time slot view of the entropy rate. This metric is used to quantify changes in the
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unpredictability of individual mobility and is shown to outperform a single summary entropy

rate in detecting abnormal deviations of mobility routines. Information-theoretic metrics are

model-free, provide an informative understanding of human mobility, and present great

potential to be considered as features to detect behavior changes to facilitate health and well-

ness monitoring at home.

Another significant research challenge lies in the validation of these methodologies. Tradi-

tional approaches such as activity logs and cameras have well-known limitations [42] to docu-

ment even the most well-defined activities of daily living. Subtle behavior changes that are

signs of worsening chronic conditions and other changes in health and wellness are much

more difficult to establish and require rethinking traditional validation methods aimed at iden-

tifying these changes.
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