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Abstract

The increase in antimicrobial resistance in developed and developing countries is a global

public health challenge. In this context β-lactamase production is a major contributing factor

to resistance globally. The aim of this study was to determine the prevalence of phenotypic

and genotypic extended spectrum β-lactamases (ESBLs) in 296 E. coli isolates recovered

from diarrhoeic children younger than five years in Kano whose susceptibility profile against

7 antimicrobials had been determined. The E. coli isolates were subjected to double disc

synergy test for phenotypic ESBLs detection and ESBL associated genes (blaCTX-M, blaTEM

and blaSHV) were detected using conventional PCR. Phenotypically, 12.8% (38/296) E. coli

isolates presented a ESBLs phenotype, with a significantly higher proportion in isolates from

females compared with males (P-value = 0.024). blaCTX-M 73.3% and blaTEM 73.3% were

the predominant resistance genes in the ESBLs positive E. coli (each detected in 22/30 iso-

lates, of which 14 harboured both). In addition, 1/30 harboured blaCTX-M + blaTEM + blaSHV

genes simultaneously. This study demonstrates the presence of ESBLs E. coli isolates in

clinically affected children in Kano, and demonstrates the circulation of blaCTX-M and blaTEM

associated with those phenotypes. Enactment of laws on prudent antibiotic use is urgently

needed in Kano.

Introduction

Hospital-based surveillance systems have reported an increase in the distribution of antibiotic

resistant microorganisms in both developed and developing countries worldwide [1]. The abil-

ity to control infectious diseases, which includes diarrhoea caused by Escherichia coli, is cur-

rently endangered by this phenomenon, which has been declared as a global threat to public

health [2]. Infections caused by resistant microorganisms often fail to respond to conventional

antibiotics resulting in prolonged morbidity and higher mortality [2]. Even though antibiotics
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are not recommended for treatment of diarrhoea caused by E. coli, diarrhoeagenic E. coli
(DEC) [3, 4] can carry antimicrobial resistance genes that may be acquired through horizontal

transfer from other resistant isolates within the same or other genus [5]. β-lactamase produc-

tion in Gram negative bacteria is the most important contributing factor to β-lactam resistance

[6], and has undergone evolution over time since its first appearance [7]. Newer β-lactamase-

producing enterobacteriaceae have been isolated from clinical settings in different parts of the

world [5] carrying factors such as plasmid-mediated cephamycinases, extended spectrum β-

lactamases (ESBLs), and carbapenemases [8], and thus demonstrating the variability in the

potential mechanisms behind this phenotype. ESBLs have the ability to hydrolyse penicillins,

cephalosporins and monobactams, but not cephamycins and carbapenems [9]. They are inhib-

ited by classical and newly developed β- lactamase inhibitors such as clavulanic acid, sulbac-

tam, tazobactam, avibactam, relebactam or nacubactam, among others [5, 7, 10].

ESBLs producing E. coli are a frequent cause of community and hospital acquired infec-

tions, thus creating an increasing public health challenge [5], and are one of the leading causes

of infections worldwide [11]. Acquired ESBLs emerged in the 1980s as derivatives of blaTEM

(named after the patient Temoneira) and blaSHV (sulfhydryl reagent variable) enzyme types [5,

12]. The genes encoding these enzymes are plasmid mediated and therefore easily transmissi-

ble between bacteria of the same or different species. This phenomenon may be favoured by

the extensive use of β-lactam antibiotics in human medicine [7]. The ESBLs genotype has been

associated with hospital and community outbreaks in a pandemic manner [12].

Diarrhoeal disease is a major cause of morbidity and the second most important cause of

mortality in children less than 5 years of age [13]. Diagnosis of the causative agents is very

important for proper management and surveillance purposes. There is however limited epide-

miological information on the presence and distribution of ESBLs producing E. coli from diar-

rheic children in Nigeria. Detection of ESBLs phenotypes and genotypes in a paediatric

population within a geographic area is very important as emergence of ESBLs producing E.

coli leads to carbapenems reliance as the alternative treatment option. Since there are no previ-

ous reports on molecular detection of ESBL associated genes among diarrhoeic children in

Kano, here we aimed at investigating the prevalence of ESBLs phenotypes and the associated

resistance genes in E. coli isolates from diarrhoeic children in this state in Nigeria.

Materials and methods

Study population

The study was conducted in Kano state, Nigeria. Specimens were collected from outpatient

diarrhoeic children under five years attending three major hospital: Bichi General Hospital

(BGH), Murtala Muhammad Specialist Hospital (MMSH) and Wudil General Hospital

(WGH). Additional information of the sampled population is provided elsewhere [14]. Diar-

rhoea is defined as the passage of three or more loose or watery stool in 24 hours.

Ethical consideration

Rectal swab specimens were obtained after obtaining informed consent from the parent and

legal guardian of the children. Earlier on, ethical approval was granted by the Kano State Min-

istry of Health with Ref: MOH/Off/797/T.I/186.

Sample collection, bacterial isolation and antimicrobial susceptibility

Two hundred and ninety six E. coli isolates recovered from swabs from children with diarrhoea

were obtained as described elsewhere [14]. Results from the antimicrobial susceptibility tests
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against Cefuroxime (CXM) 30 μg, Ceftazidime (CAZ) 30 μg, Cefotaxime (CTX) 30 μg, Amoxi-

cillin-clavullanic acid (AMC) 30 μg, Gentamicin (CN) 10 μg, trimethoprim-sulfamethoxazole

(SXT) 25 μg, and ciprofloxacin (CIP) 5 μg in all isolates has been previously reported [14]. Phe-

notypic ESBLs screening and confirmation was carried out on all 296 E. coli as recommended

by CLSI [15]. The screening was carried out using Ceftazidime 30 μg disc (Oxoid, UK): a zone

of inhibition� 22mm was considered suggestive of ESBLs production and positive isolates

were further investigated using the double disc synergy test with a combination of three antibi-

otic discs (ceftriaxone, amoxicillin-clavulanic acid and ceftazidime). A� 5 mm increase in the

inhibition zone for either antibiotic towards the amoxicillin-clavulanic acid with a dumbbell

shape was considered indicative of an ESBLs phenotype. In addition, Tetracycline (TET) 30 μg

and Imipenem 10 μg antibiotics (Oxoid UK) were tested on the ESBLs positive E. coli. Results

were recorded as susceptible, intermediate and resistant according to the reference zone of

inhibition of each antibiotic according to CLSI [15]. Isolates expressing ESBLs phenotype were

preserved in Tryptic soy broth (TSB) (Biomerieux France) supplemented with 20% glycerol at

-80˚C until further testing.

DNA extraction

All E. coli isolates that were previously preserved in TSB+20% glycerol were cultured onto Eosin

Methylene Blue (EMB) agar at 37˚C for 18–24 hours. One loop full of E. coli from the EMB

plates was suspended in about 2 ml of sterile distilled water in an eppendorf tube; the bacterial

suspension was boiled at 100˚C in a water bath for 10 minutes and centrifuged at 13,000 rpm

for 1minute as previously described [16]. The supernatant was used as DNA template for PCR.

Detection of ESBLs associated genes by PCR

The molecular detection of ESBLs associated genes (blaSHV, blaTEM and blaCTX-M) was carried

out using conventional multiplex PCRs in the majority of the ESBL presumptive E. coli isolates.

Primers used were previously described by Monstein et al. [17]. The primer mix for the detec-

tion of ESBLs associated genes was prepared in an eppendorf tube by adding 210 μl of ultrapure

water, 5μl uidA- Forward primer + 5μl uidA–Reverse primer, 5μl SHV—Forward primer + 5μl

SHV–Reverse primer, 5μl CTX-M–Forward primer + 5μl CTX-M–Reverse primer, 5μl TEM–

Forward primer + 5μl TEM–Reverse primer. Eppendorf tubes containing 22 μl of the reaction

mixture were used for the PCRs (8 μl of water (Biorad) + 10 μl Mastermix (Bio-Rad) + 2μl of the

mix primer + 2 μl of DNA). The ultrapure PCR cycling conditions were as follows: initial dena-

turation for 15 seconds at 95˚C, 30 cycles of denaturation at 95˚C for 30 seconds, annealing at

60˚C for 1 minute 30 seconds, elongation at 72˚C for 2 minutes and final elongation at 72˚C for

10 minutes. Biorad MyCycler PCR thermal cycler was used to run the PCR cycles. The post

amplification products were analysed using 2% agarose gel electrophoresis. Gel Doc XR+ Imag-

ing system (Bio-Rad) was used in viewing the gel after exposure to UV light.

Isolates positive in the PCR for detection of blaTEM genes were subjected to another PCR

for amplification and sequencing of the complete gene in order to identify the subtypes pres-

ent. In this case the primer mix consisted of 5μl TEMSEQ forward primer + 5μl TEMSEQ

reverse primer [18] + 240μl ultrapure water, and the remaining steps as described above. PCR

cycling conditions consisted of initial denaturation for 15 seconds at 95˚C, 40 cycles of dena-

turation at 95˚C for 30 seconds, annealing at 50˚C for 1 minute 30 seconds, elongation at 72˚C

for 1 minute and final elongation at 72˚C for 10 minutes. Successfully amplified PCR products

were purified using Illustra ExoProStar 1-Step, and sequenced. Sequences were analyzed using

Bioedit [19] and MEGA X [20] and identified by comparing them with the NCBI database

using BLAST [21].
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Results

An ESBL phenotype was detected in 38 (12.84%) of the collection of 296 E. coli retrieved from

the rectal swab specimens. ESBLs phenotype was significantly (chi-square test, P-

value = 0.024) more common among E. coli recovered from female patients (17.83%, 23/129)

compared with samples from males (8.98%, 15/167). Thirty out of the 38 phenotypic ESBLs

positive E. coli (due to inability to recover eight isolates) were screened for ESBLs associated

genes (blaSHV, blaTEM and blaCTX-M): all 30 isolates tested positive for at least one of the three

resistance associated gene targets; blaCTX-M and blaTEM were detected in 73.3% (22/30), and

blaSHV was detected in 6.66% (2/30) of the E. coli screened. The blaTEM sequences of 16/22 iso-

lates carrying this gene were obtained, revealing two variants: 13 sequences matched perfectly

with a previously published blaTEM-1 sequence (genbank NG050145.1), and the other three

had just one single nucleotide polymorphism in position 396).

The susceptibility patterns of the ESBLs producing E. coli and the resistance pattern of E.

coli based on the presence of the ESBLs associated genes are presented in Tables 1 and 2. All

the ESBLs positive E. coli were resistant to tetracycline (except for only 2 isolates in the pheno-

typic group with intermediate resistance) and susceptible to imipenem, while intermediate lev-

els of resistance were found for the rest of the antimicrobials. Proportion of resistance to all

antimicrobials in isolates harbouring ESBL genes was very similar or identical to that found in

the phenotypic-positive ESBLs isolates, although the percentage of isolates harbouring a MDR

resistance profile (simultaneous resistance to three or more antimicrobial families) was higher

among genotypically confirmed isolates (90.0%) compared with total ESBL presumptive iso-

lates (78.9%) (Table 1). When comparing isolates with either blaCTX-M or blaTEM (n = 7 in

both cases), a higher proportion of resistant isolates for all antimicrobials except AMC and

SXT were found for those harbouring the former (Table 1). Interestingly, the simultaneous

presence of both blaCTX-M and blaTEM led to higher proportion of resistance compared with

the presence of either of the genes in several cases (Table 2).

Discussion

The spread of plasmid-encoded extended-spectrum β-lactamase (ESBLs) genes [5], conferring

resistance to third-generation cephalosporins including aztreonams [9] is considered a major

contributor to the ongoing emergence of antimicrobial resistance. The proportion of E. coli

Table 1. Antibiotic susceptibility pattern of ESBLs producing E. coli.

ESBLs Phenotypic (N = 38) ESBLs Genotypic (N = 30)

Antibiotics S I R MDR S I R MDR

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Cefuroxime 2 (5.3) 9 (23.7) 27 (71.1) 1 (3.3) 7 (23.3) 22 (73.3)

Cefotaxime 3 (7.9) 7 (18.4) 28 (73.7) 3 (10.0) 5 (16.7) 22 (73.3)

Amox-Clav 3 (7.9) 7 (18.4) 28 (73.7) 1 (3.3) 5 (16.7) 24 (80.0)

Ceftazidime 4 (10.5) 8 (21.1) 26 (68.4) 3 (10.0) 5 (16.7) 22 (73.3)

Ciprofloxacin 20(52.6) 5 (13.2) 13 (34.2) 30(78.9) 14(46.7) 5 (16.7) 11 (36.7) 27(90.0)

Gentamycin 29(76.3) 0 (0.0) 9 (23.7) 22(73.3) 0 (0.0) 8 (26.7)

Cotrimoxazole 3 (7.9) 0 (0.0) 35 (92.1) 3 (10.0) 0 (0.0) 27 (90.0)

Tetracycline 0 (0.0) 2 (6.7) 36 (94.7) 0 (0.0) 0 (0.0) 30(100.0)

Imipenem 38 (100) 0 (0.0) 0 (0.0) 30 (100) 0 (0.0) 0 (0.0)

S-Susceptible, I-Intermediate, R-Resistant, MDR- Multi-Drug Resistant, Amox-Clav- Amoxicillin-clavulanic acid.

https://doi.org/10.1371/journal.pone.0243130.t001
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isolates displaying an ESBL-phenotype among those recovered from diarrhoeic children in

Kano found here was 12.8%, which is in the range of values found in diarrhoeic children in

other African countries like Kenya 12% [22] and Libya 13.4% [23]. Interestingly, very different

values were found in isolates also retrieved from diarrhoeic children in Iran [24] (25.9%),

China [5] (5.6%) or USA [25] (7%). In developing countries, patients often receive antibiotics

treatment without antibiotic susceptibility testing or prescription which will exert a selective

pressure on the existing E. coli, whereas in developed countries strategies for reducing antimi-

crobial use have been put in place [24]. E. coli recovered from female subjects had a signifi-

cantly higher probability of ESBLs production, although the reason for this difference could

not be established in this study. However, this result is in agreement with previous reports by

Vatopoulos et al. [26] that found that E. coli bearing transferable Resistance plasmids was

more often associated with antibiotic resistance among female than male. ESBLs positive

strains from our study were highly resistant to trimethoprim/sulphamethoxazole, which is

similar to the reports of Miao et al. [27] and Valenza et al. [28]. All phenotypic ESBLs produc-

ing strains were susceptible to imipenem in agreement with reports from Tanzania [29], Libya

[23], China [5, 27], and in contrast with the study of Hamprecht et al. [30] in Germany. The

full susceptibility of isolates to imipenem may be attributable to the relatively low or non-

usage of carbapenem drugs among the population. All the ESBLs positive isolates (genotypic)

were resistant to tetracycline, similar to the report from Egypt [31] and Libya [23] (88.9% resis-

tance), what could be due to an extensive use of this drug among human and animals.

blaCTX-M was very prevalent among the ESBL-positive isolates, in agreement with previous

studies suggesting this gene is widespread worldwide [5, 7, 23, 27, 32–35], although blaTEM-1

was also found in approximately three quarter of all ESBL isolates tested. No data on the pres-

ence of ESBL associated genes was available for clinical isolates in Nigeria; however blaCTX-M

and blaTEM were also the predominant ESBLs associated genes in E. coli recovered from 200

cattle and 150 pigs in Nigeria [36]. Our detection rate is in the range of values reported from

Egypt [31] (73.7% blaCTX-M), Turkey [37] (73.43% blaTEM) and USA [25] (74% blaCTX-M). This

study also shows that the carriage of multiple bla genes complicates the phenotypic interpreta-

tion of the resistance phenotypes, which is related to complex antimicrobial resistance [38].

Isolates with multiple combinations of bla genes and especially those carrying blaCTX-M+bla-

TEM and blaCTX-M+blaTEM+blaSHV were resistant to a larger number of β-lactams (>92% resis-

tance). blaCTX-M in combination with blaTEM gene was found in 46.7% of the isolates, similar

to the findings of Harada et al. [39], which reported 48.8% of E. coli carried blaCTX-M+blaTEM

in clinical isolates from Japanese tertiary hospital, but higher than the result of Tawfick et al.
[31] who found only 21.7% of E. coli isolates from diarrhoeic stool in Egypt carrying both

blaCTX-M and blaTEM.

Table 2. Antibiotics resistance pattern according to detected associated ESBLs genes.

Antibiotics CXM CTX CAZ AMC CIP CN SXT MDR

Associated Gene N(%) n(%) n(%) n(%) n(%) n(%) n(%) n(%) n(%)

blaCTX-M Only 7(23.33) 5(71.4) 5(71.4) 5(71.4) 5(71.4) 4(57.1) 2(28.6) 6(85.7) 5(71.4)

blaTEM Only 7(23.33) 2(28.6) 3(42.9) 3(42.9) 6(85.7) 0(0.0) 2(28.6) 6(85.7) 6(85.7)

blaSHV Only 1(3.33) 1(100.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 1(100.0) 1(100.0)

blaCTX-M+blaTEM 14(46.67) 13(92.9) 13(92.9) 13(92.9) 12(85.7) 7(50.0) 4(28.6) 13(92.9) 13(92.9)

blaCTX-M+blaTEM+blaSHV 1(3.33) 1(100.0) 1(100.0) 1(100.0) 1(100.0) 0(0.0) 0(0.0) 1(100.0) 1(100)

Key: CXM-Cefuroxime, CAZ-Ceftazidime, AMC- Amoxicillin-clavulanic acid, CIP-Ciprofloxacin, CN- Gentamycin, SXT-Trimethoprim-sulfamethoxazole, N-Total

sample screened, n-Number obtained.

https://doi.org/10.1371/journal.pone.0243130.t002
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In summary, our study demonstrates the presence of both phenotypically and genotypically

ESBLs E. coli positive isolates in diarrheic children in Kano. This is a matter of concern since

their presence was associated with high levels of phenotypic resistance. Performing antibiotic

susceptibility testing on clinical isolates before antibiotic prescription could help to mitigate

the emergence of antimicrobial resistance, and therefore regulations helping to control the sale

of antibiotics by patent medicine stores and prudent antibiotic usage by clinicians is urgently

needed in Nigeria.
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