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The clinical need for effective osteoporotic fracture therapy and prevention remains urgent.
The occurrence and healing of osteoporotic fracture are closely associated with the
continuous processes of bone modeling, remodeling, and regeneration. Accumulating
evidence has indicated a prominent role of exosomes in mediating multiple
pathophysiological processes, which are essential for information and materials
exchange and exerting pleiotropic effects on neighboring or distant bone-related cells.
Therefore, the exosomes are considered as important candidates both in the occurrence
and healing of osteoporotic fracture by accelerating or suppressing related processes. In
this review, we collectively focused on recent findings on the diagnostic and therapeutic
applications of exosomes in osteoporotic fracture by regulating osteoblastogenesis,
osteoclastogenesis, and angiogenesis, providing us with novel therapeutic strategies
for osteoporotic fracture in clinical practice.
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INTRODUCTION

Bone is an essential component of the musculoskeletal system, providing structural support for
tendons and ligaments as well as protection to vital internal organs. Bone fracture is a worldwide
public health problem and often leads to dire consequences, exerting a strong threat on life quality
and even mortality (1). It results from injury, or a mild stress under certain pathological conditions
that weakens the bones, like osteoporosis (OP), bone cancer, or osteogenesis imperfecta (2). In
particular, OP is a major systemic musculoskeletal disorder characterized by deterioration of micro-
architecture and bone loss, with an inclination to high risks of bone fragility and even fracture (3).
As a matter of fact, osteoporotic fracture accounts for a large proportion of all fractures.
Osteoporotic fracture-related impaired healing, especially non-union, is another critical problem,
resulting in prolonged treatment and aggravated socio-economic burden.

Exosomes were first identified in 1981 as exfoliated membranes by Trams (4). At present,
exosomes are defined as cell-derived spherical lipid bilayer vesicles (EVs) with a diameter around
40-160nm (5). Exosomes can be secreted by nearly all sorts of cells and are found in various
biological fluids, such as plasma, serum, and cerebral spinal fluid (6). Previous studies have
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demonstrated that the constituents of exosomes are
macromolecules including DNAs, RNAs (mRNA, microRNA,
and other non-coding RNA), proteins, lipids, and cytokines (7,
8). Size and content are two major manifestations of the
heterogeneity for exosomes, which vary with cellular origin,
metabolic status, and environment of cells (5). Size
heterogeneity is beneficial to distinguish exosomes and other
EV subtypes. This property is also highly relevant to exosome
isolation. Nowadays, some researchers usually use differential
centrifugation to purify exosomes, but these exosome pellet
fractions contain more than just exosomes. Hence, we require
modified novel techniques for exosome purification, which is
directly associated with the results of many exosomes-related
experiments. Content heterogeneity determines the functions of
exosomes since exosomes can convey their contains into
recipient cells via endocytosis, receptor- ligand interaction, or
fusion of membranes (9), thus mediating lots of responses of
these recipient cells. Moreover, numerous studies have
demonstrated that exosomes were obviously related to immune
responses (10), pregnancy (11), and the occurrence and
development of many disease, such as cardiovascular disease
(12), central nervous system-associated diseases (13), and cancer
(9). For example, exosomes secreted by apoptotic vascular
endothelial cells were rich in miR-126, which could suppress
the apoptosis of endothelial cells by activating chemokine ligand
12 (CCL12). Moreover, miR-126 containing exosomes inhibited
the penetration of macrophages into the blood vessel wall,
thereby stabilizing the hardened plaque and exerting the anti-
atherosclerosis effect (14). Exosomes derived from prostate
cancer cells could induce neoplastic reprogramming and tumor
formation of adipose stem cells via transferring their cargos,
like miR-125b, miR-130, miR-155, HRas, and Kras mRNAs
(15). Apoptotic glioblastoma cells could secret spliceosomal
proteins such as RBM11 and small nuclear RNAs (snRNAs)
containing exosomes to modify mRNA splicing (MDM4,
CCND1) of recipient cells, resulting in tumor aggressiveness
and drug resistance (16). Significantly, translation of more
comprehensive understanding of exosomes in various diseases
into diagnosis and therapeutic applications has already occurred.
First, the intrinsic properties of exosomes have exhibited their
great potential in diagnosis of multiple diseases. Lewis et al.
presented a simple method which integrated and analyzed
exosomes as well as other extracellular vesicles directly from
whole blood, plasma, or serum onto an AC electrokinetic
microarray chip. They detected the samples from pancreatic
ductal adenocarcinoma (PDAC) patients as well as healthy
objects, finding that glypican-1 and CD63 were useful
biomarkers to predict the occurrence of PDAC. These
researchers also developed a bivariate model to detect PDAC
with 99% sensitivity and 82% specificity (17). In addition,
exosomes have been implicated as therapeutic targets in many
fields, with potential utility in delivering therapeutic payloads
directly to the desired place (18). Exosomal microRNA (miRNA)
could target mRNA and modify related gene expression in the
recipient cells, and some laboratories have attempted to use
exosomes for the delivery of miRNA or small interfering RNA
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(siRNA) to treat mammary carcinoma (19), glioma (20), and
pancreatic cancer (21). Moreover, clinical-grade MSC-derived
exosomes with KrasG12D siRNA payload (iExosomes) have been
applied to the treatment of pancreatic cancer in various animal
models (22). Taken together, exosomes play an important role in
mediating a variety of physiological and pathological processes
through the special intracellular communication, which provides
us a promising avenue to conquer numerous disorders, including
osteoporotic fractures (23).

In this review, we aimed to illustrate the relationship between
the exosomes and osteoporotic fracture, while referring to the
complicated occurrence and healing processes. Moreover, we
summarized the applications of exosomes in preventing and
treating osteoporotic fracture, which may be an invaluable tool
for the intervention of osteoporotic fracture and other related
musculoskeletal disorders.
BONE PHYSIOLOGY AND EXOSOMES

Bone consists of minerals and organic material. The minerals
include crystals of hydroxyapatite Ca10(PO4)6(OH)2 and other
ions, while the organic material comprises osteogenic cells and
extracellular matrixes like collagen fibers (24). Osteogenic cells
mainly include three types of cells: the osteoblasts, osteoclasts,
and osteocytes (25). In fact, exosomes exerted a dominant effect
on bone turnover and remodeling by mediating these important
elements of bone. On the one hand, exosomes played a key role
in the process of production of bone extracellular matrixes. For
instance, the exosomes membrane rich in phosphatidylserine
(PS) participated in the formation of hydroxyapatite crystal
during osteogenesis, a process that was also accelerated by the
calcium stored in exosomal annexins and the phosphate
generated by exosomal ATPases, nucleotidases, phosphatases,
pyrophosphatases, and membrane transporters (24). On the
other hand, exosomes acted as messengers to mediate signals
transmitting in the same cluster (autocrine) or different cluster
(paracrine) of osteogenic cells, thus participating in their
differentiations and activations. Wei et al. found let-7 was
contained in both osteoblast precursors and differentiated
osteoblasts-derived exosomes, which could promote
osteogenesis through mediating high-mobility group AT-hook
2 (HMGA2) and Axin 2 (26). Another study by Li et al. showed
osteoclasts-derived exosomal miR-214-3p suppressed
osteoblastic bone formation (27). Further, bone modeling and
remodeling were tightly correlated with the endocrine system.
And parathyroid hormone (PTH), estrogen hormone, and
glucocorticoid were important factors in mediating the bone
microenvironment for osteoanabolism (28). However, the
specific relationships between exosomes and steroid or protein
hormones in bone physiology is still not fully understood and
needs further exploration. Overall, exosomes exert an
indispensable role in these processes and future research
analyzing their properties and functions may help to build a
multi-targeted system to maintain the balance of bone resorption
and formation.
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RELATIONSHIPS BETWEEN EXOSOMES
AND THE OCCURRENCE OF
OSTEOPOROTIC FRACTURE

Bone loss and a fall bias lead to great susceptibility to fractures
for the aging and menopausal population (29). Clinically,
osteoporotic fractures are common, have become a serious
public health issue worldwide, and cause an ever-increasing
burden to the healthcare system. OP has an obvious clinical
and public health impact which is estimated to affect 75 million
people worldwide (30). Moreover, the number of annual incident
fragility fractures is about 9 million (31).

Mechanically, OP is a result of excessive bone resorption and
inadequate formation of new bone upon aberrant activities of
osteoclasts and osteoblasts (32). Under normal circumstances,
bone metabolism follows the strict control of various factors.
And among them, receptor activator of NF-kB (RANK)/receptor
activator of NF-kB ligand (RANKL), Wnt/b-catenin, and
Jagged1/Notch1 are the three best studied pathways which
exert a strong influence on bone mass density (33). Strikingly,
exosomes have been widely studied for their roles in OP, which
Frontiers in Endocrinology | www.frontiersin.org 3
make great contributions to the imbalance of osteoblasts and
osteoclasts, hence promoting the prevalence of fragility fracture.
Therefore, we comprehensively reviewed the role of exosomes in
OP initiating bone fracture and presented their potential in
retarding the occurrence and progress of osteoporotic fracture.

The Functions of Exosomes in OP
As mentioned above, exosomes functioned as “the carrier pigeons
of the cell” in intercellular communication and materials
exchange to mediate a series of responses of adjacent or distant
recipient cells (34, 35). Multiple studies have shown that bone-
related exosomes were tightly associated with bone modeling and
remodeling (27, 36) by transferring biologically essential
molecules to interfere with the activities of osteoblasts and
osteoclasts (Figure 1). Besides, the circulatory exosomes
possessed pathophysiological functions in the development of
senile OP and thus would be helpful for its diagnosis and therapy.

Circulatory Exosomes in OP
A large number of reports detected the main differences of
serum-derived exosomes (SDEs) between OP or osteopenia
FIGURE 1 | The diplex functions of bone-related cells-derived exosomes in OP. Exosomes secreted by osteoblasts, osteoblasts and mesenchymal stem cells have
bilateral effects in promoting and suppressing OP; Exosomes derived from myocytes and vascular endothelial cells mainly inhibit the process of OP.
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and normal bone mass by related techniques to get a more
comprehensive understanding of the functions of exosomes in
OP (Table 1). Xie et al. identified 1371 proteins from SDEs,
especially, 585 differentially expressed proteins (DEPs) of OP.
These DEPs not only participated in inhibiting integrin-related
activation and function of osteoblasts, but also strengthened the
capacity of osteoclasts. Notably, the integrin b1 (ITGb1), integrin
b3 (ITGb3), and hematopoietic progenitor cell antigen CD34
(CD34) were three representatives of downregulated proteins,
which acted as hubs in suppressing bone mineralization of
osteoblasts (37). Chen et al. utilized the PLAGH Hip Fracture
Database, finding a total of 45 significant DEPs and verifying
four exosomal proteins, namely PSMB9, PCBP2, VSIR, and
AARS, with an AUC of 0.805 in the classification of OP (38).
Zhang et al. investigated the functions of transfer RNA‐derived
fragments (tRFs), a novel type of small non‐coding RNAs
derived from tRNAs contained in plasma exosomes in OP.
They found 29 differentially expressed tRFs, which played an
active role in some important pathways related to OP, including
Wnt, PI3K‐Akt, MAPK, TGF‐b, and calcium signaling pathway.
More importantly, plasma exosomal tRF‐25‐R9ODMJ6B26
(tRF‐25), tRF‐38‐QB1MK8YUBS68BFD2 (tRF‐38), and tRF‐
18‐BS68BFD2 (tRF‐18) were at highly-expressed levels in OP
patients compared to normal controls and were utilized to
develop a more accurate model for OP diagnosis with an
average AUC of 0.815 (39). Furthermore, a study by Teng
et al. detected 393 differentially expressed lncRNAs and found
co-located mRNAs were highly enriched in OP-associated
processes, such as MAPK pathway, insulin secretion, cellular
response to metal ions, fucosylation, and proteolysis (40). More
importantly, Shao et al. isolated serum exosomes from
menopausal females with or without OP and detected 191
aberrant miRNAs, which were related to Wnt, MAPK, and
Hippo pathways (41). All of these findings offered forceful
evidence to illustrate exosomes from the circulation could be
potential biomarkers of evaluating bone status for OP diagnosis
and analyzing the results of therapy.
Frontiers in Endocrinology | www.frontiersin.org 4
Bone-Related Cell-Derived Exosomes in OP
Bone-related cells like osteoblasts, osteoclasts, and endothelial
cells, could achieve mutual interaction through exosomes, the
cell-cell communicators (Table 2). Over the past few years, many
researchers have drawn attention to the relationship between
bone-related cells-derived exosomes and OP. First, some
laboratories have extensively investigated exosomes derived
from bone-related cells by using techniques including
Nanoparticle Tracking Analysis (NTA) (69), Transmission
electron microscopy (TEM) (50), western blotting (WB),
immuno-EM, or bead-based fluorescence-activated cell sorting
(FACS) (63). More significantly, these scientists not only
identified the classical bone-related cell-derived exosomal
markers of OP, but also revealed the ability of exosomes to
mediate osteogenic cells differentiation and activity as well as
matrix formation in OP. Overall, this evidence indicated the
essential role of bone-related cell-derived exosomes in OP and
provided us serviceable tools in the treatment of OP.

MSCs-Derived Exosomes in OP
MSCs are pluripotent stem cells with the capability to proliferate
extensively and maintain the potential to differentiate into various
types of cells (70). In 2010, MSCs-derived exosome was first isolated
from conditioned medium of human embryonic-derived MSCs
(hESC-MSCs) (71). Nowadays, MSCs have been identified as the
most ferocious producer of exosomes (72). Moreover, Chen et al.
detected more than 850 gene products and 150 miRNAs in MSCs-
derived exosomes (73, 74), indicating their potential clinical efficacy
for a variety of diseases, including OP. In fact, a considerable
amount of research has confirmed that BM-MSCs-derived
exosomes could improve OP by triggering osteoblasts
proliferation, differentiation, and activation as well as inhibiting
cell apoptosis (42, 43) through miR-196a (44), miR-150-3p (45),
miR‐181a (46), miR‐218 (47), lncRNA MALAT1 (48), and let‐7
(26). In addition, miR-29a loaded in BM-MSCs-derived exosomes
could not only promote angiogenesis and osteogenesis but also
restrain osteoclastogenesis, which was down-regulated in the aged
TABLE 1 | Exosomes from circulation in OP.

Origin of exosomes Detected
technique

Exosomes
contains

Main difference Reference

SDEs of patients with 31 osteoporosis, 46
osteopenia, and 62 normal volunteers.

TMT-based
quantitative
MS

Proteins 1,371 proteins were identified with an overlap of 1,160 Gene IDs among
the ExoCarta proteins. 585 osteoporosis differentially expressed proteins
were detected (255 upregulated and 360 downregulated).

(37)

Plasma exosome of patients with 30
osteoporosis, 10 osteopenia, and 20 normal
controls

MS Proteins 2351 proteins were identified in all groups, and 45 differentially expressed
proteins were identified in the discovery dataset

(38)

Plasma exosome of patients with 40
osteoporosis, and 40 healthy controls

Small RNA
sequence

tRFs Found 288 total tRFs and 29 differentially expressed tRFs (11
upregulated and 18 downregulated)

(39)

SDEs of 9 elderly patients with fracture and 9
age-matched patients without fracture at the age
between 60 and 90 years old

RNA-Seq
experiments

LncRNAs Detected 393 differentially expressed lncRNAs (296 upregulated and 97
downregulated)

(40)

SDEs of 6 menopausal females without
osteoporosis and 12 menopausal females with
osteoporosis

miRNA high-
throughput
sequencing

MiRNA 191 aberrant miRNAs were found in the group of menopausal females
with osteoporosis (72 upregulated and 121 downregulated)

(41)
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populations, providing us a novel way to improve therapeutic
strategy for OP (49). BM-MSCs-derived exosomes also have been
identified as inducers to motivate undifferentiated MSCs toward
osteogenic differentiation both in vivo and in vitro (50–52), showing
its potential as a bone regenerative drug for OP.Moreover, Zuo et al.
expounded that BM-MSCs-derived exosomes could promote bone
formation by banishing reactive oxygen species (ROS), assisting in
DNA repair, rescuing cell (mainly osteoblasts) proliferation and
differentiation ability, suppressing the senescence-related protein
and adipogenic gene expression, and accelerating osteogenic
expression, thus ameliorating OP (53).
Frontiers in Endocrinology | www.frontiersin.org 5
However, some studies also showed that BM-MSCs-derived
exosomes could be helpful to OP with the function of promoting
maturation and activity of osteoclasts. Previous studies have proven
that miR‐31a‐5p was over-expressed in aged BM-MSCs- derived
exosomes, which could reduce osteoblastogenesis by the SATB2 and
E2F2 pathways and promote osteoclastogenesis by the RhoA
pathway (54). Hence miR‐31a‐5p contained in BM-MSCs
exosomes would lead to osteoporotic bone loss in aging bone
tissue. Cheng et al. also detected that miR‐148a from BM-MSCs-
derived exosomes could stimulate osteoclasts differentiation via
targeting V‐maf musculoaponeurotic fibrosarcoma oncogene
TABLE 2 | Bone-related cells derived exosomes in OP.

Origin of
exosomes

Exosomes
contains

Recipient cell Involved pathway Function Reference

BM- MSCs Not referred Osteoblasts Not referred Promoted osteoblasts proliferation and inhibited
cell apoptosis

(42)

BM- MSCs Not referred Osteoblasts MAPK pathway Promoted osteoblasts differentiation (43)
BM- MSCs MiR-196a Osteoblasts ALP, OCN, OPN and Runx2 Promoted osteoblasts differentiation, activation and

proliferation
(44)

BM- MSCs MiR-150-3p Osteoblasts Not referred Promoted osteoblasts proliferation and
differentiation

(45)

BM- MSCs MiR‐181a Osteoblasts TGF- and Wnt signaling pathways Promoted osteoblastic differentiation (46)
BM- MSCs MiR‐218 Osteoblasts Wnt signaling pathways Accelerated osteoblasts differentiation and

mineralization
(47)

BM- MSCs LncRNA
MALAT1

Osteoblasts MiR-34c/SATB2 axis Alleviated osteoporosis (48)

BM- MSCs Let‐7 Osteoblasts HMGA2 Increased osteogenesis and bone formation (26)
BM- MSCs MiR-29a HUVECs, osteoblasts,

osteoclasts
PCAF-mediated RANKL and CXCL12 or
Frizzled 4

Promoted angiogenesis and osteogenesis and
inhibited osteoclastogenesis.

(49)

BM- MSCs Not referred BM- MSCs Not referred Promoted the proliferation and osteogenic
differentiation of BM-MSCs

(50)

hiPSC-MSCs Not referred BM- MSCs Not referred Enhanced angiogenesis and osteogenesis (51)
BM- MSCs MiR-186 BM- MSCs Hippo signaling pathway Promoted osteogenesis (52)
BM- MSCs Not referred BM-MSCs,

osteoblasts
Wnt/b-catenin signaling Restored the function of BM-MSCs (53)

BM- MSCs MiR‐31a‐5p Osteoblasts,
osteoclasts

SATB2 and E2F2 pathways; RhoA
pathway

Reduced osteoblastogenesis and promote
osteoclastogenesis

(54)

BM- MSCs MiR‐148a Osteoclasts V‐maf musculoaponeurotic fibrosarcoma
oncogene homolog B

Promoted osteoclasts differentiation (55)

BM- MSCs MiR-21 BM- MSCs Targeted SMAD7 Inhibited osteogenesis (56)
Osteoblasts MiR-677-3p BM- MSCs Increase AXIN1 Enhanced BM-MSCs differentiation (57)
Osteoblasts MiR-378 BM- MSCs PI3K/Akt signaling pathway Activated the glucose-mediated osteogenic

differentiation
(58)

Osteoblasts RANKL Osteoclasts RANKL-RANK Led to osteoclasts information (59)
Osteoblasts MiR-30d-5p Osteoblasts RUNX2 Suppressed osteoblasts differentiation (57)
Osteoblasts MiR-133-3p Osteoblasts RUNX2 Suppressed osteoblasts differentiation (57)
Osteoblasts MiR-140-5p Osteoblasts BMP-2 Diminished osteoblast activity (60)
Osteoblasts Not referred BM- MSCs Not referred Inhibit BM-MSCs differentiation (61)
Osteoclast
precursors

Not referred Osteoclasts Vitamin D-dependent pathway Promote osteoclasts formation (62)

Osteoclasts RANK Osteoclasts RANKL-RANK Inhibited osteoclastogenesis (63)
Osteoclasts MiR-214 Osteoblasts,

osteoclasts
EphrinA2/EphA2, ATF4; PI3K/Akt pathway Inhibited osteoblastogenesis, promoted

osteoclastogenesis
(27, 64)

Osteocytes MiR-218 Osteoblasts Not referred Promoted osteoblastic differentiation (65)
Muscle MiR-34a-5p BM- MSCs Sirt1 Induced BM-MSCs senescence (66)
Endothelial
cells

MiR-155 Osteoclasts Spi1, Mitf, Socs1 Suppressed osteoclasts differentiation and
activation

(67)

Endothelial
cells

Not referred Osteoblasts ferroptosis Rescued the glucocorticoid-induced osteogenic
inhibition of osteoblasts

(68)
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homolog B (55). Besides, a recent study by Jiang and colleagues
demonstrated miR-21 was at a high level in BM-MSCs derived
exosomes from OP patients, which inhibited osteogenesis by
targeting SMAD7 (56).

Therefore, exosomes secreted by BM-MSCs are capable of
mediating proliferation and differentiation of osteoblasts and
osteoclasts, suggesting a novel method to improve therapeutic
strategy for OP. For instance, researchers have successfully used
exosomes from processed BM-MSCs, like miR-935-modified
BM-MSCs and circ-Rtn4-modified BM-MSCs, to treat OP
(75, 76).

Osteoblasts-Derived Exosomes in OP
Paracrine/autocrine in communication between osteoblasts and
other bone-related cells in the field of OP has provided us with
new knowledge and evoked further detection in this area. Ge et al.
isolated osteoblasts-derived exosomes and analyzed their cargos,
finding they were tightly combined with osteogenesis (57).
Consistently, accumulating studies indicated that the contents of
osteoblasts-derived exosomes, like miR-677-3p (59) or miR-378
(58), could accelerate osteogenesis, while RANKL (61), miR-30d-5p,
miR-133-3p (59), and miR-140-5p (60) from osteoblast-derived
exosomes possessed the ability to suppress this progress. Niedermair
et al. recently revealed osteoblasts-derived exosomes from OP
patients could also hamper osteogenic differentiation of BM-
MSCs (77). Therefore, it remains a mystery for us as to what the
specific functions of osteoblasts-derived exosomes in OP are.

Osteoclasts-Derived Exosomes in OP
Osteoclasts-derived exosomes have positive as well as negative
feedback in the progress of osteogenesis, which played dual roles
in OP. A recent study showed that exosomes secreted by osteoclast
precursors facilitated vitamin D-dependent osteoclast formation in
whole mouse marrow cultures, while exosomes from osteoclast-
enriched cultures suppressed osteoclastogenesis in the same cultures
which referred to an important factor-RANK (62). Furthermore,
miR-214-containing exosomes from osteoclasts have been reported
to have a significant effect on osteogenesis. On one hand, it could
restrain osteoblasts via targeting EphrinA2/EphA2 (63) and
activating transcription factor 4 (ATF4) (27). On the other hand,
it could promote osteoclastogenesis through the PI3K/Akt pathway
(64). Therefore, miR-214-3p may be a potential clinical target to
reverse established OP. In fact, another study performed by Zhu
et al. also found that the magnetic hydroxyapatite scaffold (MHA)
facilitated osteoblasts’ proliferation in a model of OP through
altering the osteoclasts-derived exosomal cargos and suppressing
exosomes intussuscept by osteoblasts (78), indicating exosomes
could act as tools to modify the interactions of bone cells or
direct drugs to treat OP.

Osteocytes-Derived Exosomes in OP
Osteocytes are vital components of bone tissue that originated from
osteoblasts and play multifaceted roles in bone remodeling.
Emerging studies found osteocytes-derived exosomes could enter
into circulation and carry some miRNAs, such as miR-29, miR-484,
andmiR-221 (79). Besides, Qin et al. offered evidence that exosomes
from osteocytes could co-localize with the nucleus of MC3T3-E1
cells and reduce osteoblastogenesis. More significantly, they
Frontiers in Endocrinology | www.frontiersin.org 6
expounded the specific mechanism that myostatin possessed the
ability to suppress osteocytes-derived exosomal miR-218, which was
an unprecedented method for muscle-bone communication (65).

Muscle-Derived Exosomes in OP
Muscle has a mechanical crosstalk with bone. As aforementioned,
muscle is identified as a secretory endocrine organ that takes part in
biochemical interplay and influences the functions mutually. Bone-
derived factors compromise fibroblast growth factor (FGF)-2,
prostaglandin E2, osteocalcin, and sclerostin, while the muscle
secreted factors are described as “myokines” (80), such as
myostatin, interleukin (IL)-6, irisin, and RANKL. Recently,
Fulzele et al. found that miR-34a-5p was overexpressed in muscle
and muscle-secreted exosomes with aging and with myoblast
exposure to oxidation (66). Further research showed that muscle-
derived exosomes containing miR-34a could suppress Sirt1
expression in BM-MSCs and accelerate BM-MSCs senescence
(81). The evidence represented a potential pathway by which
muscle could affect bone physiology and provide us a different
perspective to understand OP.

Endothelial Cells-Derived Exosomes in OP
Blood vessels occupy vital positions in bone homeostasis.
Endothelial cells are stationed at the inner layer of vascular
vessels, which actively participate in the progress of internalizing
and secreting substances like exosomes. Song et al. found that
miR-155 loaded in endothelial cells-derived exosomes
suppressed osteoclasts’ differentiation and activation by several
targets, like Spi1, microphthalmia-associated transcription factor
(Mitf), and suppressor of cytokine signaling 1 (Socs1) (67).
Furthermore, endothelial cells-derived exosomes could rescue
the glucocorticoid-induced osteogenic suppression of osteoblasts
by inhibiting ferritinophagy-dependent ferroptosis (68). Hence,
endothelial cells-derived exosomes might be promising and
biocompatible nanomedicine for OP.

Macrophages-Derived Exosomes in OP
Osteal macrophages are a subtype of bone-resident macrophages,
which are close to the bone surface and adjacent to osteoblasts, with
the function of mediating bone formation (82). Current knowledge
about macrophage-derived exosomes is limited. A study by Wei
et al. showed that BMP2/macrophage-derived exosomes could up-
regulate the expression of osteogenesis-associated genes such as
ALP, Runx2, BMP-2, BMP-7, and osteopontin, playing essential
roles in OP (83). Collectively, the explicit mechanism of the
macrophage-derived exosomes in OP remains unclear. However,
with more in-depth study, it may show great potential acting as the
therapeutic target for OP in the future.
RELATIONSHIPS BETWEEN EXOSOMES
AND OSTEOPOROTIC FRACTURE
HEALING

Bone is a unique form of tissue that can heal without a fibrous scar
(84). Similar to the process of bone remodeling, bone regeneration is
highly orchestrated and precisely controlled, and is influenced by
June 2021 | Volume 12 | Article 679914
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multiple extrinsic and intrinsic factors (85). Extrinsic factors include
smoking, alcohol, and certain use of medicines While intrinsic
factors cover injury to the periosteum or endosteum and poor
vascularization at the injury site (86). Although we have achieved
great improvement in surgical techniques nowadays, sometimes
osteoporotic fractures-related impaired bone regeneration like non-
union would happen, which greatly affects the life quality of a
number of patients (87). Therefore, it is of great need to do intensive
investigations to fill the clinical gaps and develop effective
therapeutic approaches for these affected patients.

In general, fracture healing is subdivided into four biological
phases followed in a chronological order: hematoma formation and
inflammatory response, proliferation and differentiation,
ossification, and remodeling (88). These phases are involved in
many physiological processes, like inflammation, angiogenesis, stem
cell differentiation, osteogenesis, and chondrogenesis with the
involvement of various types of bone-related cells (89). Exosomes
are closely connected with these processes through mediating cell-
to-cell communications (Table 3). In fact, exosomes could promote
osteoblasts’ differentiation, suppress osteoclasts formation and
differentiation, and accelerate angiogenesis. In addition, some
important intrinsic factors mentioned above could modify the
functions of exosomes to regulate the healing process. BM-MSCs
could be induced to recruit, proliferate, migrate, and differentiate
into osteoblasts and chondrocytes during intramembranous
ossification and endochondral ossification, which played
important roles in osteoporotic fracture healing (99). Reliable
evidence has illustrated the capacities of osteogenic differentiation
for BM-MSCs-derived exosomes. For example, Furuta et al. used
the CD9–/– mouse, an established model with reduced levels of
exosomes, and found there was an obvious delay of endochondral
ossification and fracture healing compared with the wild-type
mouse. More interestingly, the delay could be rescued by injecting
BM-MSCs-exosomes (90). Besides, Narayanan et al. incubated
exosomes isolated from osteogenic differentiated BM-MSCs with
BM-MSCs, finding BM-MSCs internalized these exosomes and gave
rise to an extensive upregulation of several important genes like
bone morphogenetic protein 9 (BMP9), transforming growth factor
Frontiers in Endocrinology | www.frontiersin.org 7
b1 (TGFb1), transcription factors, and ECM molecules (50). Xu
et al. showed similar results and detected this impact was involved in
the modulatory effect of miRNAs on target genes and pathways
(100). Among these, miR-196a acted as one of the most significant
molecules in the modulatory process and miR-21 and miR-25 have
also proven to possess the ability to accelerate osteogenesis and
angiogenesis (90, 91). More importantly, BM-MSCs-exosomes
contained a variety of bone repair-related cytokines such as
monocyte chemotactic protein 1 (MCP-1), monocyte chemotactic
protein 3 (MCP-3), stromal cell-derived factor-1 (SDF-1), and
angiogenic factors, which could promote fracture healing (101).
Recently, some researchers transplanted BM-MSCs-derived
exosomes into the fracture site in a rat model of femoral non-
union, obtaining the results that these exosomes could significantly
trigger osteogenesis and angiogenesis to promote bone healing
process though activating the BMP-2/Smad1/RUNX2 and the
HIF-1a/VEGF signaling pathways (92). Furthermore, some
studies also revealed that exosomes secreted by human umbilical
cord mesenchymal stem cells (uMSCs) could enhance angiogenesis
to accelerate bone healing by overexpressing VEGF, HIF‐1a (93), or
Wnt signaling pathway (94), which provided a new view for us
regarding uMSCs-related bone fracture. As we mentioned above,
some intrinsic factors could change the functions of exosomes and
thus affect the osteoporotic fracture healing. Xu et al. observed that
aged exosomes had obvious attenuated effects on MSCs osteogenic
differentiation in vitro and facture healing in vivo. Under further
investigation, they found miR-128-3p was dramatically over-
expressed in aged-BM-MSCs-derived exosomes, which functioned
as a suppressor in the process of fracture healing by directly
targeting the 3’-UTR of Smad5 (95). Hence, exosomal miR-128-
3p antagomir could be an ideal treatment for bone fracture healing,
especially for the elderly. Wang et al. observed that the healing time
was longer in obese fracture patients than normal weight patients.
Interestingly, using bioinformatics analysis and related assays, they
further found that high-fat treatment could decrease the secretion of
BM-MSCs-derived exosomes and reduce the carried lncRNA H19
viamiR-467/HoxA10 axis, hence affecting osteogenic differentiation
and fracture (96). Liu et al. performed a serious of in vivo and
TABLE 3 | Exosomes in fracture healing.

Origin of exosomes Exosomes
contains

Recipient cell Involved pathway Function Reference

MSCs MiR-196a,
miR-21

Not referred Not referred Promoted bone healing (90)

BM-MSCs MiR-25 Osteoblasts (SMURF1),
Runx2

Accelerated osteogenic differentiation, proliferation,
and migration of osteoblasts

(91)

BM-MSCs Not referred HUVECs and
MC3T3-E1

BMP-2/Smad1/RUNX2 and the HIF-1a/
VEGF signaling pathways

Enhanced osteogenesis, angiogenesis (92)

uMSCs Not referred HUVECs HIF-1a Promoted angiogenesis (93)
uMSCs Not referred Not referred Wnt signaling pathway Accelerated bone healing (94)
Aged-BM-MSCs MiR-128-3p MSCs Smad5 Inhibited bone healing (95)
High-fat treatment
BM-MSCs

LncRNA H19 Osteoblasts MiR-467/HoxA10 axis Inhibited osteogenesis (96)

Hypoxia
preconditioning BM-
MSCs

MiR-126 and MSCs the SPRED1/Ras/Erk signaling pathway Promoted bone healing (97)

M2 macrophage MiR-5106 Osteoblasts SIK2 and SIK3 Promoted osteoblast differentiation (98)
June 2021 | Volume 12 | Art
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in vitro experiments to verify that hypoxia preconditioning BM-
MSCs-derived exosomes exerted a greater effect on promoting
fracture healing. Hypoxic MSC-derived exosomes were enriched
with miR-126, which possessed the abilities of being pro-
angiogenesis, pro-proliferative, and pro-migratory by suppressing
SPRED1/Ras/Erk signaling pathway. Therefore, hypoxia-induced
BM-MSCs transplantation might have great potential as a therapy
for fracture, but several challenges remain to be overcome to achieve
clinical applications (97). Moreover, a study by Xiong et al. explored
the function of M2 macrophages in bone formation and its
underlying mechanisms. They co-cultured M2 macrophages and
Frontiers in Endocrinology | www.frontiersin.org 8
BM-MSCs and isolated the exosomes secreted by M2 macrophages,
finding M2 macrophages-derived exosomes (M2D-Exos) were rich
in miR-5106, which could be internalized by BM-MSCs and
promote osteoblasts’ differentiation to accelerate healing via
targeting the osteogenic related genes, like Salt-inducible kinase 2
and 3 (SIK2 and SIK3). Therefore, local injection of M2D-Exos
might be a significant therapeutic strategy to accelerate bone
fracture healing (98).

Current studies provided powerful evidence that exosomes
appeared to show the ability to enhance osteogenesis and
angiogenesis to promote fracture healing via multiple pathways,
FIGURE 2 | The therapeutic applications of exosomes in OP and related fracture healing. Exosomes can act as therapeutic agents or drug carriers not only to remit
OP by facilitating osteoblast proliferation, differentiation, mineralization, and MSCs proliferation, differentiation and angiogenesis as well as suppressing
osteoclastogenesis but also accelerating fracture healing via promoting osteogenesis and angiogenesis.
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implying a novel insight to comprehend the process of bone
regeneration. Therefore, we need to spare no effort to do related
research and detect an effective treatment for osteoporotic fracture.
SUMMARY AND PERSPECTIVES

The number of people with OP is increasing rapidly among
generations, coupled with a growing number of osteoporotic
fractures (102). Moreover, osteoporotic fractures increase the
incidence of abnormal fracture healing, like delayed healing or
non-union, which aggravates the heavy burden placed on healthcare
systems as well as the economy. Hence, we should endeavor to look
for more effective ways to prevent and treat osteoporotic fractures.
Nowadays, the application of exosomes in osteoporotic fractures has
received much attention, and lots of scientists have revealed
multiple functions of exosomes in this field. As outlined above,
exosomes played an essential role in mediating osteoporotic
fractures. First, many researchers found obvious dysregulations of
certain contents in circulatory exosomes from patients with OP or
related impaired fracture healing, which could be promising
biomarkers for the diagnosis of OP. Second, exosomes were a
double-edged sword for OP by transporting their cargos to
modify the activities of surrounding or distant bone-related cells.
Third, exosomes have been applicated as a brilliant drug delivery
system to treat osteoporotic fractures by accelerating osteogenesis
and angiogenesis (Figure 2). However, the specific mechanisms of
intercellular communications via exosomes is still not fully
understood. A recent study by Ge et al. detected 1536 proteins
contained in osteoblasts-derived exosomes and 172 among them
overlapped with proteins in the bone database, such as ephrinB1
(EFNB1), transforming growth factor beta receptor 3 (TGFBR3),
lipoprotein receptor-related protein (LRP6), bone morphogenetic
protein receptor type-1 (BMPR1), and Smad ubiquitylation
regulatory factor-1 (SMURF1) (103). Besides, increasing
data unveiled there were nine overexpressed miRNAs (let-
7a, miR-199b, miR-218, miR-148a, miR-135b, miR-203, miR-219,
miR-299-5p, and miR-302b) and four down-regulated (miR-221,
miR-155, miR-885-5p, miR-181a, and miR-320c) in MSCs-derived
exosomes (100). However, these complicated mechanisms and the
therapeutic potential for osteoporotic fractures remain a mystery
and there is a clear need for us to perform further investigations. On
the other hand, Xie et al. found that BM-MSCs-derived exosomes
could promote bone formation when mixed with decalcified bone
matrix scaffolds (104). But it is still a serious challenge to quantify
and separate different exosome subpopulations as well as modify
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these exosomes for us. Overall, it should be noted that several
significant developments are expected to occur, including:
(a) clarifying the specific mechanisms of cargos within bone-
related cells-derived exosomes in OP and osteoporotic fracture;
(b) elucidating the functions of exosomes in the occurrence and
healing of osteoporotic fractures, which possess both positive and
negative effects; (c) discovering credible biomarkers contained in
circulatory exosomes of clinical significance in the early diagnosis of
OP; (d) improving the methodologies of extraction and separation
of exosomes; and (e) propelling clinical application in the treatment
of osteoporotic fracture through utilizing them as therapeutic agents
or drug carriers. Advances in these areas will likely require new
experimental techniques, superior creativity, and much work. But at
the same time, such advances will help us to get a more
comprehensive understanding of osteoporotic fractures and allow
scientists to translate this knowledge into exosome-based therapies
and diagnosis in clinic. Therefore, exosomes provide a promising
method to improve the therapeutic effects of osteoporotic fractures,
even though an increase in research is demanded.
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