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Introduction

Zinc oxide (ZnO) is a widely utilized commercial material that 
has recently garnered interest by medical and nanotechnology 
researchers due to its considerable antimicrobial1 and UV pro-
tection properties.2 In a review by Lansdown et al., the authors 
emphasize the importance of numerous Zn materials that have 
good clinical evidence showing anti-infective activity, improved 
wound healing, and higher epithelialization rates.3 A large number 
of commercial materials use ZnO as an active component, such as 
bandages, stockings, and occlusive adhesive dressings.3 Nanoscale 
forms of ZnO have been considered for use in nontoxic antimi-
crobial wound dressings.4 In addition, discrete ZnO nanoparticles 
have been shown to exhibit strong antimicrobial activity against 
Gram-positive bacteria5,6 as well as some preferential toxicity 
toward cancerous human myeloblastic leukemia cells (HL60) 
when compared with normal peripheral blood mononuclear cells.6 
There could be several reasons for preferential cell toxicity; one 
potential mechanism for this behavior (e.g., for ZnO nanoparticle 
toxicity) may involve the generation of reactive oxygen species 
(ROS).6 ROS generation, however, is generally assumed to occur 
after cellular uptake of Zn ions.7 ZnO nanoparticles themselves 
produce little ROS but generate dissolved Zn2+ ions, which then 
enter the cell and cause production of intracellular ROS.7

Zinc oxide (Zno) is a widely used commercial material that is finding use in wound healing applications due to its 
antimicrobial properties. our study demonstrates a novel approach for coating Zno with precise thickness control onto 
20 nm and 100 nm pore diameter anodized aluminum oxide using atomic layer deposition (ALD). Zno was deposited 
throughout the nanoporous structure of the anodized aluminum oxide membranes. An 8 nm-thick coating of Zno, 
previously noted to have antimicrobial properties, was cytotoxic to cultured macrophages. After 48 h, Zno-coated 20 
nm and 100 nm pore anodized aluminum oxide significantly decreased cell viability by ≈65% and 54%, respectively, 
compared with cells grown on uncoated anodized aluminum oxide membranes and cells grown on tissue culture plates. 
pore diameter (20–200 nm) did not influence cell viability.
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Both ionic Zn and ZnO nanomaterials have been shown to 
decrease cell viability in several mammalian cell lines. Various 
cells of the immune system, for example, respond differently to 
ZnO nanomaterials. For example, monocyte-derived dendritic 
cells exhibit a dose-dependent cytotoxic response and an increase 
in the activity of caspases, enzymes which are involved in apop-
totic cell death; however, peripheral blood mononuclear cells are 
not affected.8 At sub-cytotoxic concentrations, ZnO may modu-
late immune responses in some immune cell types but not oth-
ers.8 In general, the mode of toxicity for ZnO nanomaterials is 
thought to involve free Zn ions and likely follows a classical dose 
and time-dependent response for intracellular ROS production 
and cytotoxicity.9

ZnO has been shown to be toxic in vivo via certain routes 
of exposure. For example, ZnO nanoparticles were noted to 
be more toxic to the lungs than the equivalent dose in ionic 
(ZnCl

2
) form following intratracheal instillation.10 The particles 

are thought to be trapped in the lung and continuously release 
Zn ions that cause toxicity; the ionic solution is cleared more 
easily.10 When incorporated into hydrogel wound dressing ban-
dages, ZnO nanomaterials impart improved healing and antimi-
crobial activity.11 Nano-scale ZnO shows good in vivo outcomes 
in dermatology applications such as sunscreens and cosmetics, 
where it has limited penetration into skin layers and has little or 
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membrane to the other. To determine whether the ALD precur-
sors penetrated through the entire membrane, EDX elemental 
analysis was used to evaluate Side A, Side B, and the center of 
the membrane; as noted in the gold text of Figure 2A, ZnO was 
shown to be present in each of these three regions of the nanopo-
rous structure (shown). Figure 2B shows a representative EDX 
spectrum of the 200 nm pore side (Side A) of a ZnO-coated 
anodized aluminum oxide membrane. Prominent Zn and Al 
peaks were noted on spectra that were obtained from through-
out the membrane.

Cell responses. No significant differences were noted in 
cell viability (MTT assay) after 24 h exposure to any coated 
or uncoated membrane (Fig. 3). The ZnO-coated nanoporous 
membranes trended toward lower viability values; however, the 
differences with tissue culture polystyrene plate controls (TCPS) 
after 24 h were not statistically significant. Cells exposed to 
ZnO-coated 20 nm anodized aluminum oxide showed decreased 
viability; for example, viability of cells exposed to ZnO-coated 
anodized aluminum oxide was approximately 32% lower than 
that of cells grown in culture wells (TCPS). Viability of cells 
grown on ZnO-coated 100 nm anodized aluminum oxide was 
approximately 36% lower than that of cells grown in culture 
wells. After 48 h, cell viability for both ZnO-coated 20 nm 
anodized aluminum oxide and ZnO-coated 100 nm anodized 
aluminum oxide was significantly lower (P < 0.01) than for the 
corresponding uncoated controls and TCPS controls. Cell viabil-
ity for ZnO-coated 20 nm anodized aluminum oxide decreased 
by approximately 65% and ZnO-coated 100 nm anodized alu-
minum oxide decreased by approximately 54% from controls. 
Pore diameter did not appear to influence cell viability for coated 
or uncoated membranes. There were no differences among cell 
viability for 20, 100, or 200 nm pore diameter membranes after 
both 24 and 48 h (the data for the 200 nm pore surface not 
included on MTT figure). Moreover, the anodized aluminum 
oxide substrates themselves did not affect cell viability.

Production of intracellular ROS was monitored from 1 to 24 
h after treatment using extracts collected from incubating ZnO-
coated membranes for 24 h (Fig. 4). No significant increases in 
ROS production were observed between any groups at each time 
point. The H

2
O

2
 positive control induced a very strong response 

from the cells; in addition, no interference with the dye was 
observed.

Discussion

Several techniques are available for depositing ZnO coatings 
onto anodized aluminum oxide membranes, including pulsed 
laser deposition (PLD),18 ion beam sputtering,19 plasma chemical 
vapor deposition (CVD),20 and spin coating.21 ALD has previ-
ously been used to deposit nanometer-thick coatings of ZnO on 
polymer nanofibers with no alteration to the underlying nanofiber 
structure.22 Cross-sectional SEM/EDX analysis revealed a benefit 
of using ALD for growth of coatings on nanotextured surfaces, 
including nanoporous surfaces. The EDX data shown in Figure 
2B indicates that ZnO was deposited throughout the surfaces 
of the nanoscale pores. The main benefit of ALD is its ability to 

no effect on skin cell activity (e.g., morphology, metabolism or 
oxidation).12

When compared with discrete nanoparticles, very little toxi-
cology literature is available on nanotextured surfaces.13 Similar 
features are present in discrete nanoparticles and on nanotextured 
surfaces, namely the relatively large surface area and high radius 
of curvature inherent to nanoscale features. ZnO can be coated 
onto nanotextured surfaces without disrupting the underlying 
surface morphology using a thin film growth process known 
as atomic layer deposition (ALD). A ZnO-coated nanotextured 
surface will have a greater surface area for cell interactions than 
a smooth surface;14 as such, the ZnO-coated nanotextured sur-
face may exhibit a higher rate of Zn ion dissolution. Skoog et al. 
previously demonstrated that ZnO-coated anodized aluminum 
oxide membranes exhibit antimicrobial activity against several 
bacterial strains associated with skin infection; significant activ-
ity against Gram-positive bacteria was noted.15 They showed 
that membranes with ALD-grown ZnO coatings leach Zn ions 
in vitro. The extract from the ZnO-coated 20 nm and 100 nm 
anodized aluminum oxide membranes contained Zn at a con-
centration of approximately 90 μg/ml.16 This study raised the 
question about the cytotoxic potential of the released Zn ions to 
eukaryotic cells. The objective of the present study was to evalu-
ate macrophage responses (e.g., cytotoxicity and ROS produc-
tion) of an ALD-grown ZnO coating on an anodized aluminum 
oxide substrate. The underlying inert substrate used in the study 
was anodized aluminum oxide, which is known to have good cell 
adhesion and proliferation in vitro compared with a standard tis-
sue culture well. Hoess et al. showed that cells interact with 200 
nm pores and thus may exhibit different responses to membranes 
with dissimilar pore diameters.16 Ferraz et al. indicated that dif-
ferences in nanoporosity elicited dissimilar immune responses for 
20 and 200 nm diameter anodized aluminum oxide in vivo.17 In 
this study, cellular responses to ZnO-coated and uncoated 20 nm 
and 100 nm anodized aluminum oxide membranes were evalu-
ated using the MTT cell viability assay and the ROS production 
assay.

Results

Surface characterization. Scanning electron microscopy was 
performed to examine the morphologies of the coated and 
uncoated nanoporous anodized aluminum oxide membranes. 
All of the membranes had one side with circular 200 nm diam-
eter pores [designated as Side A (Fig. 1A and B)], which nar-
rowed to either 20 nm or 100 nm diameter branched pores on 
the other side (designated as Side B). Side B scanning electron 
micrographs for the 100 nm uncoated and ZnO-coated anod-
ized aluminum oxide membranes are shown in Figures 1C 
and D, respectively. Figures 1B and D are representative SEM 
images of the coated membranes; artifacts (e.g., crystals) result-
ing from the deposition process were noted on the surfaces of 
the coated membranes. The crystals were noted in images that 
were obtained from cleaved cross-sectional specimens (Fig. 2A). 
The majority of the coated membrane surface was free of these 
crystals. The pores were noted to continue from one side of the 
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Atomic layer deposition enables the amount of coating material 
that is deposited on the surface and subsequently released during 
use to be readily controlled. This attribute of atomic layer deposi-
tion is beneficial for coating medical devices with materials such 
as silver or zinc oxide, which are thought to produce antimicro-
bial activity through ionic interactions.25,26

The commercially-available nanoporous anodized alumi-
num oxide membranes used in this study are anisotropic; one 
side contains isolated, circular pores with a diameter of ~200 nm  
(Fig. 1A and B) and the other side contains a “branchlike” struc-
ture in which the pore diameter is ~20 or ~100 nm (Fig. 1C  
and D). Some crystals were noted on the surface of the 8 nm 
thick ZnO coating (Figs. 1 and 2); ZnO crystals may form on 
the membrane surface due to insufficient precursor purging 
between exposures. Some contamination by adventitious dust 
particles may also be present. It should be noted that the majority 
of the surface area of the ZnO-coated membrane was free of these 
crystals (Fig. 1B). The EDX elemental analysis showed Zn and 
Al peaks, which are attributed to the 8 nm thick ZnO coating 
and the underlying aluminum oxide substrate, respectively.

deposit conformal thin films over complex surface topographies. 
ALD is also particularly well suited for coating nanoporous 
anodized aluminum oxide materials and other materials with 
interconnected pores, which may be difficult to coat using other 
techniques.

In previous work, Palomaki et al. showed that ZnO nanopar-
ticles elicited concentration-dependent cytotoxicity in RAW 
264.7 macrophages.23 The present study was aimed to determine 
whether cell viability can be affected by atomic layer deposition-
grown ZnO-coated nanoporous surfaces instead of by free ZnO 
nanoparticles. Previous studies have indicated that the pore size 
of nanoporous anodized aluminum oxide membranes and coated 
membranes does not have a significant effect on cell viability.24 
As noted in the introduction, our group quantified Zn ion release 
from 20 nm and 100 nm anodized aluminum oxide membranes 
with atomic layer-deposition grown 8 nm-thick ZnO coatings 
into DMEM culture media containing 10% fetal bovine serum 
by means of inductively coupled plasma mass spectrometry.16 This 
study confirms that varying the pore size between 20 and 200 
nm does not alter cell viability as measured by the MTT assay. 

Figure 1. SeM images of both sides of a 100 nm anodized aluminum oxide membrane. (A) Side A of an uncoated anodized aluminum oxide mem-
brane, showing 200 nm circular pores. (B) Side A of an 8 nm Zno-coated anodized aluminum oxide membrane, showing 200 nm circular pores.  
(C) Side B of an uncoated anodized aluminum oxide membrane, showing 100 nm branching pores. (D) Side B of an 8 nm Zno-coated anodized alumi-
num oxide membrane, showing 100 nm branching pores.
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Zn may replace redox reactive metals such as iron and copper as 
well as function as a sacrificial site for oxidant attacks.35 It should 
be noted that the amount of Zn ions in the extract may have not 
been sufficient to result in measurable production of ROS. Since 
the ZnO surfaces were toxic only after 48 h, it is possible that the 
amount of Zn that had leached out after 24 h was not sufficient 
to cause measurable production of ROS.

Materials and Methods

ZnO deposition. Anodized aluminum oxide membranes with  
20 nm pores and 100 nm pores were acquired from a commercial 
source (General Electric Healthcare). These membranes exhib-
ited outside diameters of 13 mm and thicknesses of 60 μm. The 
20 nm pore size nanoporous anodized aluminum oxide mem-
branes exhibited pore diameters of 200 nm for 58 μm of the 
60 μm thickness and exhibited pore diameters of 20 nm for  
2 μm of the 60 μm thickness. The 100 nm pore size nanoporous 
anodized aluminum oxide membranes exhibited pore diameters 
of 200 nm for: 58 μm of the 60 μm thickness and pore diameters 
of 100 nm for: 2 μm of the 60 μm thickness. The ZnO ALD 
was conducted at a pressure of ~1 Torr using 360 sccm carrier 
gas flow of ultrahigh purity N

2
 in a custom viscous flow reactor. 

Prior to deposition, the nanoporous anodized aluminum oxide 
membranes were cleaned in situ by flowing ozone, which was 
generated by flowing 400 sccm ultrahigh purity O

2
 through a 

commercial ozone generator for five minutes at a temperature of 
200°C. The ozone concentration generated using this approach 
was ~10% and the ozone partial pressure was ~0.1 Torr. ZnO 
was deposited on the surfaces of the membranes by iteratively 
exposing the membranes to diethylzinc (Sigma Aldrich) and 
water vapors at a deposition temperature of 200°C. For each pre-
cursor, a six second exposure at a partial pressure of ~0.2 Torr 
was followed by a five second N

2
 purge. The anodized aluminum 

oxide membranes were coated with 8 nm ZnO as determined by 

The ZnO-coated membranes examined in this study were 
previously shown to possess antibacterial activity;16 however, the 
cytotoxicity of these materials was not previously examined. It is 
evident from the MTT cell viability assay results that the ZnO-
coated membranes are cytotoxic to macrophages after 48 h of 
incubation. No cytotoxicity was evident after 24 h, which sug-
gests that there is a gradual release of Zn ions into the media over 
time. In addition, the data suggests that the effect of Zn ions on 
macrophages may be time-dependent. Zn ions are known to be 
toxic to a variety of cell types.27 Many studies measure admin-
istration of a single bolus dose; toxicity results may differ if an 
identical dose is gradually administered over a period of time.

Cell culture methods also apparently have an effect on cell 
responses to ZnO; for example, keeping cell number and Zn 
concentration constant, more densely packed monolayers have 
higher resistance to Zn toxicity than an identical number of cells 
located further apart from one another.28 The observed relation-
ship between toxicity and seeding density is not fully understood 
and could occur due to differences in cellular function between 
isolated cells and cell assemblages. In the present study, cells are 
dispersed on the surfaces so that they are not directly touching 
each other, which could make them more susceptible to Zn ion 
toxicity.

Ionic zinc is known to modulate immune response from 
monocytes by suppressing TNF-α transcription and secretion.29 
For example, Grandjean-Laquerriere et al. showed that zinc 
decreases TNF-α production by unstimulated human mono-
cytes.30 Several previous studies have indicated that Zn prevents 
free radical generation and oxidative stress. In a rat model, Zn has 
been shown to decrease carbon tetrachloride-induced liver dam-
age31 from reactive free radical metabolites and reduce the toxicity 
of cadmium,32 a known carcinogen. In mice, oral Zn administra-
tion decreased alcohol-induced liver damage33 and toxicity from 
whole body radiation.34 Rostan et al. considered the role of Zn as 
an antioxidant and discussed mechanisms in which redox stable 

Figure 2. cross-sectional SeM and elemental analysis of a 20 nm nanoporous anodized aluminum oxide with an 8 nm Zno coating. (A) cross-sectional 
view of the membrane, showing the crystals present on the surface. (B) eDX spectrum obtained from the 200 nm circular pore side, showing Al and Zn 
peaks (Side B).
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exposed for two hours on each side and rotated 90° every 60 min 
to ensure complete sterilization. Upon completion of UV ster-
ilization, the membranes were placed in 24-well plates. RAW 
264.7 cells (mouse leukemic monocyte macrophage cell line), 

ellipsometry on Si(100) witness sam-
ples, which were concurrently coated 
with the anodized aluminum oxide 
membranes.

Scanning electron microscopy. 
Scanning electron microscopy (SEM) 
was performed using a JEOL 6400 
cold field emission scanning electron 
microscope (JEOL). Energy disper-
sive X-ray spectroscopy (EDX) was 
performed in order to confirm the 
elemental composition of the sur-
face. The SEM was equipped with 
an energy dispersive X-ray spectrom-
eter attachment with a Link Pentafet 
detector (Link Analytical) and a 4Pi 
Universal Spectral Engine pulse pro-
cessor (4Pi Analytical). An acceler-
ated voltage of 20 keV was used in 
this study.

MTT cell viability assay. The 
annealed ZnO-coated nanoporous 
anodized aluminum oxide mem-
branes and uncoated nanoporous 
anodized aluminum oxide mem-
branes were assayed for poten-
tial cytotoxicity using the MTT 
[3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bro-
mide] assay (CellTiter 96® non-radioactive cell proliferation 
assay) from a commercial source (Promega). Membranes were 
sterilized with UV light (UVP CL-1000). All membranes were 

Figure 3. cell viability (Mtt assay) in macrophages cultured on nanoporous uncoated anodized aluminum oxide membranes and nanoporous 
Zn-coated anodized aluminum oxide membranes. No statistical differences are present at 24 h. After 48 h, cells cultured on both 20 and 100 nm Zno-
coated anodized aluminum oxide membranes showed a reduction in cell viability compared with cells cultured on corresponding uncoated anodized 
aluminum oxide membranes and cells grown on standard tissue culture wells. Statistical significance ***P < 0.001, **P < 0.01 from cell and media only 
control.

Figure 4. RoS production in macrophages treated with 24-h extracts from Zno-coated anodized alu-
minum oxide membranes over 1 h, 3 h, 12 h, and 24 h. cells were treated with H2o2 as a positive control. 
All experimental groups, including Zno-coated and uncoated anodized aluminum oxide, had similar 
responses to cells grown with fresh media, indicating no significant RoS generation for any surface 
extract.
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with utilized in order to see if particulate or ionic leaching was 
the mode of toxicity as opposed to direct contact between the 
cells and the surface.

Statistical analysis. The results from each data set were ana-
lyzed with Prism 4 statistical software (GraphPad Inc.). The 
results were expressed as mean ± standard deviation. Statistical 
differences between the control and treated group were assessed 
using a one-way ANOVA with a Bonferroni post hoc test. Each 
experiment was repeated at least three times with each sample 
assayed in duplicate. A P value of less than 0.05 was consid-
ered to be statistically significant. For the MTT assay, the 
data were normalized to cells grown in a standard tissue cul-
ture well and the results were expressed as percent viability. 
Significance level notation was expressed as *P < 0.05, **P < 0.01,  
and ***P < 0.001.

Conclusions

ZnO-coated nanoporous anodized aluminum oxide membranes 
were shown to produce significant cytotoxicity after 48 h in mac-
rophages, a cell type involved in wound repair. It is possible to 
readily alter the thickness of a ZnO coating that is grown on a 
surface by means of ALD. Although the ZnO-coated membranes 
were noted to be cytotoxic (MTT assay) after 48 h, no statisti-
cally significant toxicity or ROS production was observed after 
24 h. An exposure time longer than 24 h appears to be necessary 
to release a sufficient amount of Zn ions into media in order to 
produce an adverse cell response. A threshold Zn ion concentra-
tion for reduction in macrophage viability may exist, which was 
not reached after a 24 h exposure but was reached after additional 
exposure. Further studies are necessary to determine the optimal 
thickness of a ZnO coating on nanoporous surfaces that will 
produce an antimicrobial effect while minimizing cytotoxicity. 
Studies involving other cells of the immune system are also nec-
essary to fully understand the potential in vivo cytotoxicity of 
ZnO-coated nanoporous anodized aluminum oxide membranes.
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which were obtained from a commercial source (ATCC), were 
added to the 24-well plates at a cell density of 2 × 105 cells/mL 
in Dulbecco’s Modified Eagle Medium (DMEM). All of the 
24-well plates were incubated for either 24 h or 48 h. Following 
incubation, the membranes were moved to a new 24-well plate 
so that assays were conducted on cells grown only on the mem-
branes and not in the non-membrane areas of the wells. The new 
wells contained 0.5 mL MTT-DMEM for macrophages. MTT-
DMEM was prepared by adding MTT dye solution:medium at 
a 15:100 ratio as specified by the kit. A 75 μl aliquot of MTT 
dye was added to each well in order to obtain a total volume of  
0.5 ml. The plates were then incubated under cell culture con-
ditions for 3 h. After each incubation period, the solubilization 
solution/stop mix was added and the plates were incubated again 
for 1 h at 37°C and 5% CO

2
. The wells were then mixed and the 

contents transferred to duplicate wells in a 96-well plate for absor-
bance measurements. Absorbance was measured at λ = 570 nm  
(reference wavelength 650 nm) using a 96-well OPTIMax plate 
reader (Molecular Devices). Cells spiked with 5% and 10% 
dimethyl sulfoxide (DMSO) served as a positive control for the 
MTT assay. The data were normalized to the uncoated nano-
porous anodized aluminum oxide membrane value and were 
expressed as percent viability.

Reactive oxygen species (ROS) production assay. The gen-
eration of intracellular ROS was measured by the increasing fluo-
rescence of 2'7'-dichlorofluorescein (DCF). The cell-permeable 
2'7'-dichlorodihydrofluorescein (DCF-DA) is oxidized by intra-
cellular reactive oxygen species to the highly fluorescent dichlo-
rofluorescein (DCF). Cells with a density of 2 × 105 cells/mL  
(2 × 104 cells/well) were cultured in DMEM within a standard 
transparent 96-well plate overnight. After cells were washed 
twice with HBSS to remove culture medium, 5 mM DCF-DA in 
HBSS was added to all of the wells and the plate was incubated 
at 37°C for 30 min. After incubation, the DCF-DA reagent was 
removed and the cells were washed twice with HBSS. Different 
concentrations of ZnO extracts in 100 μl aliquots of cul-
ture medium were added to each well. Cells were treated with  
200 μM hydrogen peroxide (H

2
O

2
) as a positive control. 

Different concentrations of extracts alone served as controls and 
were run in parallel to determine if there was any interference 
with the assay. DCF fluorescence was monitored after various 
treatments from 30 min to 24 h at excitation of 480 nm and 
emission of 530 nm using a fluorescence plate reader (Molecular 
Devices). Extracts were collected by placing sterilized filters into 
24-well plates and incubating in 1 ml DMEM media at 37°C 
and 5% CO

2
. Wells with media but without membranes served 

as control extracts. Media was then removed after 24 or 48 h and 
was used for additional studies. ROS generation was obtained by 
measuring cells exposed to surface media extracts as opposed to 
measuring cells directly grown on various surfaces; this approach 
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