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Omics technologies have revolutionized microbiome research allowing the
characterization of complex microbial communities in different biomes without requiring
their cultivation. As a consequence, there has been a great increase in the generation of
omics data from metagenomes and metatranscriptomes. However, pre-processing and
analysis of these data have been limited by the availability of computational resources,
bioinformatics expertise and standardized computational workflows to obtain consistent
results that are comparable across different studies. Here, we introduce MIntO
(Microbiome Integrated meta-Omics), a highly versatile pipeline that integrates
metagenomic and metatranscriptomic data in a scalable way. The distinctive feature of
this pipeline is the computation of gene expression profile through integrating
metagenomic and metatranscriptomic data taking into account the community
turnover and gene expression variations to disentangle the mechanisms that shape the
metatranscriptome across time and between conditions. The modular design of MIntO
enables users to run the pipeline using three available modes based on the input data
and the experimental design, including de novo assembly leading to metagenome-
assembled genomes. The integrated pipeline will be relevant to provide unique
biochemical insights into microbial ecology by linking functions to retrieved genomes
and to examine gene expression variation. Functional characterization of community
members will be crucial to increase our knowledge of the microbiome’s contribution to
human health and environment. MIntO v1.0.1 is available at https://github.com/
arumugamlab/MIntO.
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INTRODUCTION

The human microbiome is a complex congregation of microbes comprising trillions of microbial
cells present in our bodies (Bashan et al., 2016). Microbe-microbe and microbe-host interactions
confer a variety of physiological benefits to the hosts and impact their susceptibility to disease. For
instance, the microbial niche can provide metabolic functions different from the host genome, most
of which are encoded by genes that have not yet been discovered (Nicholson et al., 2012; Donia and
Fischbach, 2015).
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Studying these microbial communities is a challenging task,
which has recently been made easier by high-throughput
sequencing approaches which generate omics data such as
metagenomes and metatranscriptomes. These omics methods
have revolutionized microbiome research by allowing the
characterization of complex microbial communities in
different biomes without requiring their cultivation.
Metagenomic data enables the genomic and taxonomic
characterization of microbial community composition and,
depending on the sequencing strategy employed, can allow the
recovery of Metagenome-Assembled Genomes (MAGs)
(Almeida et al., 2019; Stewart et al., 2019; Saheb Kashaf et al.,
2022). However, it can only unravel the functional potential in a
sample (Quince et al., 2017). In contrast, metatranscriptomic data
identifies the pool of genes that are transcribed under a specific
condition, which gives a more accurate picture of the processes
and molecular activity occurring in the microbial community
(Satinsky et al., 2014; Salazar et al., 2019). Hence, by analyzing
both metagenomes and metatranscriptomes, we can have
deeper insights into the functional potential as well as the
actual activity of microbial communities (Wang et al., 2020;
Tláskal et al., 2021).

In recent years, the application of high-throughput sequencing
approaches in microbiome research has greatly increased
together with the generation of large amounts of data (Qin
et al., 2010; Human Microbiome Project Consortium, 2012;
Pasolli et al., 2019). As a consequence, the pre-processing and
analysis of such data have been limited by the availability of
computational resources and bioinformatics expertise. In
addition, there is a lack of standardized protocols to handle
and analyze multi-omics data sets in a more consistent
manner, making the comparisons between different studies
and findings more challenging. Standardizing the way omics
data are handled ensures a degree of consistency of the results
across different studies. Furthermore, making the workflows
semi-automatic will allow the analysis of complex microbial
communities by users with limited bioinformatic skills.

Standard metagenomic and metatranscriptomic approaches
entail 1) read curation, 2) de novo assembly and/or co-assembly,
3) binning, 4) gene prediction, 5) annotation of predicted genes at
taxonomic and functional level and 6) quantification of gene
abundances and transcripts. However, most of the computational
pipelines developed so far can only analyze metagenomic or
metatranscriptomic data individually and only few, reported in

TABLE 1 | Features of pipelines that handle metagenomic and metatranscriptomic data in comparison to MIntO: Steps, capacities and approaches.

FMAP Kim et al.
(2016);

Salazar et al.
(2019)

IMP Narayanasamy
et al. (2016)

MOSCA
Sequeira

et al. (2019)

SqueezeMeta
Tamames

and
Puente-Sánchez,

(2018)

MUFFIN Van
Damme et al.

(2021)

MIntO (2021)

data source short reads paired-end short
reads

paired-end short
reads

paired-end short
reads

paired-end Illumina
reads (short reads)
and Nanopore-based
reads (long reads)

paired-end Illumina
reads (short reads)
and Nanopore-based
reads (long reads)

quality and read length
control

only quality control Yes Yes Yes Yes Yes

host genome removal only human genome
removal

Yes No No No Yes

rRNA removal No Yes Yes No No Yes
taxonomy assignment No Yes Yes Yes Yes Yes
de novo assembly/co-
assembly

No Yes Yes Yes combining short and
long reads

optionally, include long
reads

binning No Yes Yes Yes Yes Yes
gene prediction Yes Yes Yes Yes Yes Yes
function annotation Yes Yes Yes Yes Yes Yes
alignment to reference
database/genomes

alignment to reference
database

Yes No No No Yes

alignment to retrieved
MAGs

No Yes Yes Yes Yes Yes

normalization RPKM RPKM TMM, RLE RPKM TPM TPM, Marker genes
visualization Yes Yes Yes No Yes Yes
local installation Yes Yes Yes Yes Yes Yes
gene expression
computation

No No No No No Yes

differential analysis/
Downstream analysis

differentially-abundant
genes analysis

No differential gene
expression
analysis

No No No

Software
dependencies installed
by the user before using
the pipeline

Perl, R, Statistics::R,
DIAMOND or
USEARCH, Bio::DB::
Taxonomy, XML::
LibXML

Python3, pip, impy,
Conda, Docker/
Singularity

MOSGUITO, and
Conda, or Docker/
Singularity

Conda Nextflow and Conda
or Docker/Singularity

FetchMGs, Conda
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Table 1, can handle both meta-omics data (Kim et al., 2016;
Narayanasamy et al., 2016; Tamames and Puente-Sánchez, 2018;
Salazar et al., 2019; Sequeira et al., 2019; Van Damme et al., 2021).
Furthermore, only one of them (Van Damme et al., 2021) can
combine two sequencing technologies (Nanopore or long-
sequences and Illumina or short-sequences) to recover MAGs.

Overall, the pipelines shown inTable 1 integrate metagenomic
and metatranscriptomic data by comparing the abundances of

genes and their respective transcripts. To the best of our
knowledge, none of these (Table 1) considers the community
composition and gene expression alterations as the underlying
processes that shape the community transcript levels (Salazar
et al., 2019) when integrating metagenomic and
metatranscriptomic data. However, perturbations of the
transcript levels can be a consequence of two factors: the
variation in the expression of genes encoded by the

FIGURE 1 | Schematic overview of metagenomic and metatranscriptomic integration to quantify gene expression levels. (A) Three modes are available based on
the input data and the experiment design: the genome-based assembly-dependent mode (1, in dark purple) recovers MAGs from metagenomic samples, while the
genome-based assembly-free (2, in dark green) and the gene-catalog-based assembly-free (3, in red) modes use publicly available genomes or a gene catalog,
respectively, provided by the user. In the three modes, the pipeline workflow includes quality control and preprocessing; assembly-free taxonomy profiling of high-
quality metagenomic reads (in orange) by identifying phylogenetic markers (coloured); alignment of the high-quality reads to the selected reference and normalization;
integration: gene and functional profiling; and visualization and reporting. The gene prediction and functional annotation step is run using the recoveredMAGs (mode 1) or
publicly available genomes (mode 2). (B) The variation of gene expression depends on the abundance of transcripts from the organisms in the community and/or by
changes in the abundance of these members and their related genes (community turnover).
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organisms in the community, and/or by changes in the
abundance of these members and their related genes in a
process known as community turnover (Satinsky et al., 2014;
Salazar et al., 2019). Hence, the integration of abundances of
genes and the respective transcripts represents the gene
expression profiles, which are the relative amount of
transcripts per gene in a specific time (Salazar et al., 2019).
Additionally, being able to recover genomes from metagenomic
raw reads is crucial for an optimal computation of gene
expression levels and provides a more accurate ecological
description of the community’s functioning (Tamames and
Puente-Sánchez, 2018).

Here, we introduce MIntO (Microbiome Integrated meta-
Omics), a pipeline that includes state of the art tools to
integrate microbiome metagenomic and metatranscriptomic
data in a scalable way for read pre-processing, species
composition profiling, MAG generation, gene and function
expression profiling, as well as the visualization of the results
and comparison of multiple samples. Optionally, MIntO can
combine long-read sequences for more contiguous assemblies
and short-read sequences for higher accuracy, which helps
recover more accurate as well as complete MAGs (Bertrand
et al., 2019; Overholt et al., 2020; Brown et al., 2021).
Depending on the data availability and research question, the
pipeline can be run in three modes: (A) genome-based assembly-
dependent, (B) genome-based assembly-free and (C) gene-catalog-
based assembly-free (Figure 1A).

MIntO enables the study of microbial ecology by linking
functions to genomes and environmental context, helping to
understand the dynamics of the molecular activities captured
by the whole community-level changes in composition and gene
expression (Figure 1B).

METHODS

MIntO v1.0.1 has been developed using R software (v4.0.3) (The
R Project for Statistical Computing, 2021), Python 3 (Van
Rossum and Drake, 2009) and Perl (Wall, Christiansen and
Orwant, 2000) programming languages, and has been tested
on a 64-bit Linux server with 2 × AMD EPYC 7742 64-Core
Processors and 2 terabytes of memory.

Conda Environment and Singularity
Containers
MIntO has been designed to use publicly available software that
are available as conda environments (Anaconda Inc, 2020) or
singularity containers (Kurtzer, Sochat and Bauer, 2017) to
minimize the installation of individual software packages by
the user. All software dependencies are tied to specific versions
in conda or singularity containers to ensure reproducibility and
record-keeping of versions of the different libraries. It is
encapsulated within a user-friendly framework using
Snakemake (Mölder, 2021) to facilitate the scalability of the
pipeline by optimizing the number of parallel processes from a
single-core workstation to compute clusters. This pipeline enables

consistency of the results and straightforward application by
users with basic informatics skills to analyze complex omics data.

Pipeline Inputs
MIntO requires a configuration file as an input indicating the
metagenomic (metaG) and/or metatranscriptomic (metaT)
sample names and the corresponding raw FASTQ files
location together with the path of the pipeline dependencies,
currently only FetchMGs (Kultima et al., 2012). MIntO generates
the necessary directories and outputs the required files for further
analysis, including the configuration files needed in each step of
the pipeline, but they should be filled out by the user. Optionally,
the required databases can be downloaded and installed by
MIntO.

In addition, if MIntO is run under genome-based assembly-free
mode, the user should provide input genomes as FASTA files,
genome features as GFF files, and amino acid sequences of
protein-coding genes as FASTA files, while in the case of gene-
catalog based assembly-freemode the user should provide a multi
FASTA file with the nucleotide sequences of the genes, such as the
one published with the Integrated Gene Catalog (IGC) (Li et al.,
2014) (Figure 1A, user-provided input).

Pre-Processing of Metagenomic and
Metatranscriptomic Short Reads
MIntO pre-processes metagenomic and metatranscriptomic
short reads independently of each other. The pre-processing
step can be subdivided into three different steps: quality and
read length, host genome and ribosomal RNA (rRNA) filtering.

1. Quality and read length filtering.
We use Trimmomatic v0.39 (Bolger, Lohse and Usadel, 2014)

to first remove sequencing adapters and low quality bases from
raw reads and a second time to remove reads that are too short.

a. In the first step, the option TRAILING:5 LEADING:5
SLIDINGWINDOW:4:20 ILLUMINACLIP:{adapters.fa}:2:30:10
is used if a sequence adapters file is provided by the user
(trimmomatic_adaptors = <PathTo>/adapters.fa). Otherwise, a
custom script retrieves the adapters by selecting the most
abundant index in the first 10,000 headers of the raw FASTQ
files (trimmomatic_adaptors = False). The user can decide to skip
this step if adapter sequences have already been removed
(trimmomatic_adaptors = Skip).

b. For the second filtering, the MINLEN parameter in
Trimmomatic is used to remove reads that are too short.
This cutoff is estimated as the maximum length above which a
predefined percentage of the reads from the previous step are
retained (default parameter is 95% of the reads,
perc_remaining_reads: 95). If the estimated read length
cutoff is below 50bp, trimmomatic will use 50bp as the
minimum sequence length (Supplementary Figure S3).

2. Host genome filtering.
In the second step to remove putative host-derived

sequences, the filtered read-pairs are aligned to a reference
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genome given by the user. The BWA aligner (Vasimuddin
et al., 2019) version 2.2.1 is used to generate the index (bwa-
mem2 index) and to map the read-pairs to the host genome
(bwa-mem2 mem -a). Read-pairs aligned to this reference
genome are identified by msamtools v1.1.0 (Arumugam,
2022) (filter -S -l 30) and excluded from the FASTQ files by
mseqtools (https://github.com/arumugamlab/mseqtools)
version 0.9.1, even if only one end is mapped (subset
--exclude --paired --list {listfile}).

3. Ribosomal RNA filtering.
Prior to sequencing, it is recommended to deplete the rRNA in

the metatranscriptomic samples. Nevertheless, it is common that
metatranscriptomic sequence data still contains rRNA after such
a depletion step. MIntO uses SortMeRNA v4.3.4 (Kopylova, Noé
and Touzet, 2012) to map the metatranscriptomic reads to an
rRNA sequence database consisting prokaryotic (16S and 23S)
and eukaryotic (18S and 28S) rRNA sequences (--paired_in
--fastx --blast 1 --sam --other --ref). Reads classified as rRNA
by SortMeRNA are excluded from the FASTQ files using
mseqtools (subset --exclude --paired --list {listfile}).

The remaining high-quality filtered (host-free for
metagenomic and host- and rRNA-free for
metatranscriptomic) reads are then passed to the sequence
analysis and post processing steps.

Assembly-Free Taxonomic Profiling From
High-Quality Filtered Reads
High-quality filtered reads can be profiled by the default program,
MetaPhlAn3 v3.0.13 (Beghini et al., 2021) (--input_type fastq
--bowtie2out -t rel_ab_w_read_stats). Alternatively, users can
choose to run mOTUs2 v2.1.1 (Milanese et al., 2019) in two
different modes to generate a taxonomic profile as relative
abundance (taxa_profile: motus_rel, profile -u -q) or as
counts (taxa_profile: motus_raw, profile -c -u -q). If the latter
one is chosen, MIntO estimates the relative abundance of the
taxonomic profile. To explore the similarities and dissimilarities
of the data, the relative abundance of the species composition is
used to generate two visual outputs: 1) the 15 most abundant
genera across the samples, and 2) a principal coordinate analysis
(PCoA) using Bray-Curtis distance. These visualizations
provide users with a general idea of the microbial
composition in the different samples. For a more detailed
downstream analysis, MIntO outputs the combined table of
the taxonomy profiles of all samples in CSV format and as a
phyloseq object (McMurdie and Holmes, 2013), the latter
including the abundance of the species, taxonomic
classification and metadata tables.

Retrieving MAGs From Metagenomic
High-Quality Host-Free Reads
MIntO’s approach to reconstruct MAGs from high-quality host-
free reads exploits metagenomic assembly of single samples as
well as co-assembly of pre-defined sample groups followed by
binning preparation and contig binning.

1. Assembly:

a. Long-read assembly: If available, Nanopore reads are
assembled individually using metaFlye assembler
(Kolmogorov et al., 2020) v2.9 (--nano-raw <FASTQ>
--meta --min-overlap 3000 --iterations 3)

b. Short-read assembly: MetaSPAdes assembler v3.15.3 (Nurk
et al., 2017) is used to correct paired-end short reads from
individual samples (--only-error-correction, the default
--phred-offset is auto) followed by their single-assembly
(--meta --only-assembler, the default kmer option is k =
21,33,55,77,99,127).

c. Hybrid assembly: Optionally, we can combine
metagenomic Nanopore-based long reads and Illumina
paired-end short reads to perform hybrid assembly by
MetaSPAdes using the parameters as step (b) with an
additional --nanopore option.

d. Co-assembly: MEGAHIT (Li et al., 2015) v1.2.9 is run with
two different parameters (--meta-sensitive and --meta-large)
per co-assembly, where by default all samples used in the
single-assembly are assembled together. Users can also define
their own subsets of samples that should be co-assembled in
the configuration file.

2. Binning preparation:
Contigs longer than 2,500 bp from all the combinations of

assemblies above are combined together in preparation for
binning. Metagenomic reads from individual short-read
metagenomes are first mapped to this set of contigs using BWA
aligner (Vasimuddin et al., 2019) v2.2.1 (bwa-mem2 mem -a) in
paired-end mode. Sequencing depth of the contigs in each sample
is estimated by jgi_summarize_bam_contig_depths program
included in MetaBAT2 (Kang et al., 2019).

3. Contig binning:
Contig binning is then performed by executing VAMB

(Nissen et al., 2021), a binner using an unsupervised deep
learning approach in the form of variational autoencoders
that can be run with or without GPUs. GPU use is highly
recommended if available in order to speed up the binning
process, especially if working with a large number of
samples. By default, MIntO runs VAMB four times, each
time with a different set of parameters -l 16 -n 256,256; -l 24 -
n 384,384; -l 32 -n 512,512; and -l 40 -n 768,768. However the
user(s) can choose to perform just one run or a set of runs of
their choice.

4. Non-redundant MAGs:
Bins generated by VAMB are split into MAGs derived from

individual metagenomic samples. Only the MAGs that pass
quality control using CheckM (Parks et al., 2015)
(completeness > 90% and contamination < 5%) are kept. The
MAGs are then subjected to cluster analysis performed with
CoverM v0.6.0 (https://github.com/wwood/CoverM#usage,
module cluster) in order to dereplicate them at 99% average
nucleotide identity (ANI) (Jain et al., 2018). For each genome, a
score is retrieved with the formula below.
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assembly score � log10(longest contig length/#contigs) + log10(N50/L50)
genome score � completeness − 2pcontamination

final score � 0.1pgenome score + assembly score

Then for each cluster the genome with the highest score is
chosen, generating a unique set of non-redundant MAGs which
will be used in the next step.

Taxonomic Assignment of MAGs
Once the unique set ofMAGs is retrieved, taxonomy is assigned using
the module phylophlan_metagenomic in PhyloPhlAn3 (Asnicar et al.,
2020). MIntO uses SGB.Jul20 or SGB.Dec20 databases depending on
user’s choice (--database) which will be automatically downloaded in
the program folder if no other location is specified. Additionally, if the
users have previously downloaded one of the PhyloPhlAn3 databases
of their interest, they can use that by giving their path.

Genome Annotation on the Retrieved MAGs
First, Prokka (Seemann, 2014) (version 1.14) (with options
--addgenes --centre X --compliant) is used to identify and
annotate the genes from the recovered MAGs, retrieving the
corresponding nucleotide and amino acid sequences.
Next, predicted genes are annotated with several databases:

• eggNOG database (Huerta-Cepas et al., 2019) (COG ids)
with eggNOG-mapper v2.1.6 (Huerta-Cepas et al., 2017;
Cantalapiedra et al., 2021) (--no_annot --no_file_comments
--report_no_hits --override -m diamond and
--annotate_hits_table -m no_search --no_file_comments
--override, emapperdb v5.0.2).

• KEGG functions (Kanehisa andGoto, 2000) (-k -p prokaryote.hal
--create-alignment -f mapper, Kofam_scan (Aramaki et al., 2020)
version 1.3.0 and ko_list from November 2021).

• Carbohydrate-active enzyme database [CAZyme, (Huang
et al., 2018; Zhang et al., 2018)] with dbCAN annotation tool
v2.0.11 (Zhang et al., 2018) (run_dbcan.py protein).

• Pfam database (Mistry et al., 2021) with eggNOG-mapper
(Huerta-Cepas et al., 2017; Cantalapiedra et al., 2021).

These databases are installed locally by the user. The pipeline
integrates the different gene annotations: Gene ID, eggNOG,
KEGG_ko, KEGG_Pathway, KEGG_Module, dbCAN.mod,
dbCAN.enzclass and Pfam.

Functional Profiling
The high-quality filtered (host-free for metagenomic and host- and
rRNA-free for metatranscriptomic) reads are used to generate the
functional profiles following four steps: metagenomic and
metatranscriptomic read alignments, mappability ratio, read count
normalization, and gene and function expression computation.

Metagenomic and Metatranscriptomic Reads
Alignment
To estimate gene and transcript abundances, the high-quality
filtered reads can be aligned to 1) genomes such as the recovered

MAGs or publicly available genomes (genome-based) or 2) a gene
catalog (gene-based), depending on the mode that the pipeline
is run.

1. Genome-based alignment: The retrieved MAGs or the
reference genomes are concatenated and indexed using
the BWA aligner (Vasimuddin et al., 2019) v2.2.1 (bwa-
mem2 index). Mapping reads to the reference (bwa-mem2
mem -a) is followed by highest-scoring alignment(s)
filtering for each read with msamtools v1.1.0
(Arumugam, 2022) (filter -S -b -l 50 -p 95 -z 80 --
besthit). The filtered BAM files are indexed by samtools
v1.14 (Danecek et al., 2021) (sort --output-fmt = BAM;
index) and the GFF file with the genome features is used
to quantify the raw number of aligned reads to each gene by
bedtools multicov v2.29.2 (Quinlan and Hall, 2010).

2. Gene-based alignment: As an alternative, the gene
catalog given by the user is indexed using bwa-mem2
index [BWA aligner v2.2.1 (Vasimuddin et al., 2019)].
The aligned reads (bwa-mem2 mem -a) are filtered for
highest-scoring alignment(s) per read with msamtools
v1.1.0 (Arumugam, 2022) (filter -S -b -l 50 -p 95 -z 80 --
besthit).

Optionally, the user can filter the aligned reads by establishing
the minimum number of mapped reads to a gene, using the
MIN_mapped_reads parameter. While the default value for
this parameter is 0, for metagenomes with sequencing depth
higher than 10 million paired-end reads, we recommend
setting this threshold at 10 mapped reads to a gene
(MIN_mapped_reads: 10), which is what we used for
IBDMDB dataset.

Mappability Ratio
In addition, to estimate how representative the gene or genome
databases are of the metagenomic and metatranscriptomic
samples, the filtered BAM files are used to calculate the
mappability ratio by msamtools v1.1.0 (Arumugam, 2022)
(profile --total {total_reads} --multi prop --unit all --nolen).
Here, we used the IGC (Li et al., 2014) and recovered MAGs
as references.

Read Count Normalization
Normalization of read counts makes possible the comparison
within or between different samples. Based on the users’ selection,
TPM (Transcripts Per Kilobase Million) or MGs (Marker Genes)
normalized gene and transcript abundance profiles are generated
from the metagenomic and metatranscriptomic read alignments,
respectively.

1. TPM normalization. Sequencing depth and gene length
are used to obtain the relative abundance of genes or
transcripts (Wagner, Kin and Lynch, 2012). The TPM
value of the gene i, TPM(i), is calculated by employing
the equation:
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TPM(i) � reads mapped to gene/gene length

sum(reads mapped to gene/gene length)
× 106

� ni/li
Σj(nj/lj) × 106

where ni is the number of reads mapped to the gene i, li is the
length of that gene and j iterates over all genes identified in the
sample.

2. MGs normalization. In a similar approach to Salazar et al.
study, but more customized to MAG-based analysis, the gene
or transcript abundances of a MAG are divided by the median
abundance of 10 universal single-copy phylogenetic MGs from
the corresponding MAG (Salazar et al., 2019). These MGs are
identified in each MAG by FetchMGs v1.2 (available at http://
motu-tool.org/fetchMG.html) as OGs: COG0012, COG0016,
COG0018, COG0172, COG0215, COG0495, COG0525,
COG0533, COG0541, and COG0552. In addition, these
MGs are constitutively expressed housekeeping genes across
many different conditions (Sunagawa et al., 2013; Milanese
et al., 2019; Salazar et al., 2019). Thus, the MGs-normalized
metagenomic and metatranscriptomic profiles can be
interpreted as the gene and transcript abundances in a
MAG relative to housekeeping MGs abundance and
transcript, respectively. The MGs value of the gene i,
MGs(i), is calculated by employing the equation:

MG(i) � reads mapped to gene/gene length

median 10MGs from a genome
× 106

� ni/li
M(MGs) × 106

where ni is the number of reads mapped to the gene i in the
gene’s MAG, li is the length of that gene and M(MGs) is the
median abundance of the 10 MGs from the gene’s genome.
When the reads are mapped to a gene database, msamtools
v1.1.0 (Arumugam, 2022) is used to normalize the number of
aligned reads per gene to TPM (profile --total {total_reads}
--multi prop --unit tpm). However, if the reads are mapped to a
set of MAGs or publicly available genome(s), the user can
choose to obtain TPM or MGs normalized abundances.

Computing Gene and Function Expression Profiles
The levels of gene expression are computed by the integration of
gene and transcript abundance profiles, which is, the relative
amount of RNA molecules per DNA copy of that gene (TPM
normalization):

gene expression � transcript abundance/gene copy number

Or gene expression in that MAG relative to housekeeping MGs
expression (MGs normalization):

MGs-normalized gene expression

� gene expression /medianMGs gene expression

Finally, functional profiles are obtained by grouping the genes
into functions.

Visualization
All the visualization outputs are generated in R software (v4.0.3)
(The R Project for Statistical Computing, 2021), using the
following packages: BiocManager (v1.30.16) (Morgan, 2021),
data.table (v1.14.2) (Dowle and Srinivasan, 2021), reshape2
(v1.4.4) (Wickham, 2007), phyloseq (v1.34.0) (McMurdie and
Holmes, 2013), tidyverse (v1.3.1) (Wickham et al., 2019), ggplot2
(v3.3.5) (Wickham, 2016), ggrepel (v0.9.1) (Wickham, 2007;
Slowikowski, 2021), dplyr (v1.0.7) (Wickham et al., 2021),
tidyr (v1.1.4) (Wickham and Girlich, 2021), stringr (v1.4.0),
rlang (v0.4.11) (Henry and Wickham, 2021), haven (v2.4.3)
(Wickham and Miller, 2021), vegan (v2.5-7) (Oksanen et al.,
2020), keggrest (v1.30.1) (Tenenbaum, 2017), and pfam.db
(v3.12.0). To have a better representation of the result, it is
recommended to provide a metadata table by including the file
path in the config file (METADATA) with sample ID, conditions
and sample alias columns. If no metadata are provided, the sample
IDs are used to generate the plots. However, the user can always use
MIntO outputs for further downstream analysis.

Data
Inflammatory Bowel Disease Multi’Omics Database
Samples
We used 91 human fecal metagenomes from the Inflammatory
Bowel Disease Multi’omics Database [IBDMDB, (Lloyd-Price
et al., 2019)]. The IBDMDB study provides matching Illumina
metagenomic and metatranscriptomic data. We selected six
participants diagnosed as non-IBD [P6018 (nIBD1), M2072
(nIBD2)]; Crohn’s disease [H4006 (CD1) and H4020 (CD2)];
and ulcerative colitis [H4019 (UC1) and H4035 (UC2)] that were
followed for 1 year each (Supplementary Table S1). Sample
H4019_20 was not included due to a parsing error. Sequence
data were retrieved from NCBI Short Read Archive under
BioProject identifier PRJNA398089.

Paired-End Illumina and Nanopore-Based
Metagenomic Data From Head and Neck Cancer
Patients
We used human fecal metagenomes from head and neck cancer
(HNC) patients (Wongsurawat et al., 2019), where samples were
sequenced using Illumina and Nanopore technologies. We
selected a subset of five patients: PatientHNC_03,
PatientHNC_05, PatientHNC_06, PatientHNC_08 and
PatientHNC_10. These were obtained from NCBI Short Read
Archive under the accession numbers SRR7947170, SRR7947175,
SRR7947177, SRR7947178, SRR7947179, SRR7947181,
SRR7947184, SRR7947185, SRR7947186 and SRR7947187.

Human Genome
During MIntO pre-processing, the human genome (build hg38)
was used to remove putative host-derived sequences (host
genome filtering step).

Implementation of the Pipeline
MIntO implementation and automation are achieved by
Snakemake (Mölder, 2021), a user-friendly framework that
facilitates the scalability of the pipeline by optimizing the
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number of parallel processes from a single-core workstation to
compute clusters. MIntO leverages singularity containers
(Kurtzer, Sochat and Bauer, 2017) and Conda environments
(Anaconda Inc, 2020) to ensure version control of the
different libraries and implements a pipeline connecting
several state of the art bioinformatic tools. In this way, MIntO
enables consistency of the results and straightforward application
by users with basic informatics skills to analyze complex omics
data. The only dependencies are FetchMGs and Conda.

RESULTS

MIntO can be run in three different modes, thanks to its modular
design, depending on the user’s preference and available data:
genome-based assembly-free, gene-catalog-based assembly-free
and genome-based assembly-dependent. For all the three
modes, users have to input FASTQ files from metagenomic
and/or metatranscriptomic paired-end raw short reads and
optionally, nanopore-based long reads, as well as a
configuration file indicating the metagenomic and/or
metatranscriptomic sample names and the corresponding
location of raw FASTQ files. In the genome-based assembly-
dependent mode, the given metagenomes are used to retrieve
MAGs, while in the two assembly-free modes, genome-based or
gene-catalog-based, the user also has to provide a set of reference
genomes or a gene-catalog database, respectively, to generate the
gene and functional profiles. These two options could be used
when the user is working with a defined community or when
there are not enough metagenomic samples to generate
representative MAGs. These three modalities are illustrated in
Figure 1A.

MIntO can be divided into seven major steps, which will be
discussed in the next paragraphs using our analysis of example
data (Figure 1A):

1. Quality control and pre-processing
2. Assembly-free taxonomy profiling
3. Recovery of MAGs and taxonomic annotation (only run in

genome-based assembly-dependent mode)
4. Gene prediction and functional annotation (only run in

genome-based modes)
5. Alignment and normalization
a. genome-based mode: recovered MAGs or publicly available

genomes
b. gene-based mode: gene catalog
6. Integration: Gene and functional profiling
7. Visualization and reporting

The third step is skipped if an assembly-free mode is selected,
and the fourth step is skipped when gene catalog-based assembly-
free mode is chosen (Figure 1A). An overview of the directories
generated can be seen in Supplementary Figure S1.

To illustrate the use of MIntO, a set of 91 human fecal
metagenomes from the Inflammatory Bowel Disease
Multi’omics Database (IBDMDB) was selected (Lloyd-Price
et al., 2019). These samples correspond to six participants

diagnosed as non-IBD (nIBD1 and nIBD2), Crohn’s disease,
(CD1 and CD2) and ulcerative colitis, (UC1 and UC2), which
were followed for 1 year each (Supplementary Figure S2,
Supplementary Table S1). The IBDMDB study provides
matching Illumina metagenomic and metatranscriptomic data.
The subset of samples used here correspond to 933.4 and 612
million read-pairs (2 × 101 bp) from metagenomic and
metatranscriptomic sequencing, respectively (mean 10.85
million read-pairs, ranging from 0.26 to 21.04 million for
metagenomic; mean 6.18 million read-pairs, ranging from 0.01
to 15.72 million for metatranscriptomic).

Here, we present the results from the genome-based assembly-
dependent and gene catalog-based assembly-freemodes, where we
used recovered MAGs and the Integrated Gene Catalog (IGC) (Li
et al., 2014), respectively, as reference to profile genes and
functions.

Quality Control and Pre-Processing
The IBDMDB dataset was already filtered by quality and
sequence adapters, therefore the first step in the pre-
processing of the 91 samples was skipped
(trimmomatic_adaptors = Skip, see Methods). We then used a
minimum read length cutoff of 53 bp for metagenomic and 54 bp
for metatranscriptomic to keep 95% of the longest sequences
using Trimmomatic (Bolger, Lohse and Usadel, 2014)
(Supplementary Figure S3).

Subsequently, putative host-derived sequences were removed
using the human genome (build hg38). In silico rRNA sequences
screening was exclusively applied to metatranscriptomic reads
using SortMeRNA (Kopylova, Noé and Touzet, 2012). This
resulted in a total number of 599.4 million high-quality read-
pairs for metagenomic and 910.9 million high-quality read-pairs
for metatranscriptomic data (Table 2, Supplementary
Figure S4).

Assembly-Free Taxonomy Profiling
Once the reads were pre-processed, high-quality reads were
profiled at species level using MetaPhlAn3 (Beghini et al.,
2021) (Figure 1A, assembly-free taxonomy profiling step). In
Figure 2A, we can see the temporal shifts and dynamics exhibited
by microbes over the course of 1 year and the difference of
microbial composition between the six participants focusing
on the 15 most abundant genera across the samples. In
general, the most predominant genera are Bacteroides,
Faecalibacterium and Roseburia. The constitution of a separate
cluster by samples from participant nIBD2 in Figure 2B cannot
be explained by the 15 most abundant genera across the samples
(Figure 2A), but it could be due to the difference in composition
of lower-abundance bacteria.

TABLE 2 | Median (minimum and maximum) of raw and high-quality million read-
pairs in the 91 human fecal microbiome samples from the IBDMDB.

metagenomic metatranscriptomic

Raw read-pairs (millions) 10.85 (10.15–21.04) 6.18 (6.65–15.72)
High quality read-pairs (millions) 10.56 (9.9–20.58) 6.04 (6.52–15.45)
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FIGURE 2 | Taxonomic profiles. (A) Relative abundance for the 91 samples for the 15 most abundant genera across the samples using MetaPhlAn3 (Beghini et al.,
2021). (B) Projection of the first two principal coordinates based on Bray–Curtis dissimilarity from the microbiome composition using MetaPhlAn3 (Beghini et al., 2021).
(C) Taxonomy tree representing the 131 SGBs taxonomies after running PhyloPhlAn3 (Asnicar et al., 2020) on the retrieved MAGs. The first six rings mark MAGs that
were retrieved in the 6 patients with the different conditions used in this work (nIBD, CD andUC), while the last ringmarks theMAGs obtained from co-assembly. (D)
Distribution of the SGBs in the 6 patients: 51 SGBs taxonomies were retrieved from just one sample, 13 from two samples, 3 from three samples, 2 from five samples and
1 in all the samples. The last bar represents the 61 taxonomies that were found only by having performed co-assembly.
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Recovery of MAGs and Taxonomic
Annotation
In parallel, the pre-processed reads underwent the assembly step
in the genome-based assembly-dependent mode (Figure 1A,
recovery of MAGs and taxonomic annotation step). As this
dataset consists of short-read metagenomes only, we used two
assembly approaches to recover high-quality scaffolds: 1)
assembly of each metagenome individually (single-assembly)
using MetaSPAdes assembler (Nurk et al., 2017) and 2)
assembly of all metagenomes together (co-assembly) using
MEGAHIT (Li et al., 2015) assembler. Genome bins were
generated from assembled scaffolds that were at least
2,500 bp long by mapping the 91 samples individually to
the scaffolds, calculating the sequence depth of each
scaffold in the 91 samples, and finally running VAMB
(Nissen et al., 2021) four times with different parameters
and GPU mode (see Methods).

After binning, 5,048 MAGs were retrieved from the 91
metagenomic samples. Using CheckM (Parks et al., 2015),
we identified high-quality (HQ) MAGs (completeness > 95%
and contamination < 5%) and kept 957 MAGs. We then
obtained unique high-quality MAGs when clustering the
HQ MAGs at 99% ANI distance (Jain et al., 2018) with
CoverM (https://github.com/wwood/CoverM#usage) and
choosing the best genome in a given cluster using a genome
quality score (see Methods). This de-replication process
resulted in 163 MAGs which constituted a set of non-
redundant genomes (available at 10.5281/zenodo.6360083).
These MAGs are useful to collectively explain the ecological
description and biodiversity in the samples, and to capture
sample-specific variation at functional and abundance level
without relying on publicly available reference genomes.
Additionally, working with a restricted number of genomes
is helpful to speed up the next steps of the pipeline.

The taxonomic annotation of the 163 MAGs was performed
by phylophlan_metagenomic module in PhyloPhlAn3 (Asnicar
et al., 2020), which also provides taxonomic lineage information
about the 10 nearest genomes in the PhyloPhlAn3 genome
database. Each MAG was assigned to a species-level genome
bin (SGB) if its closest genome in the database was within 5%
average nucleotide identity. This resulted in the 163 MAGs falling
into 131 SGBs (Figure 2C). In general, MAGs with a distance
higher than 5% to the closest genome in the database can be
considered as putative novel species (Manara et al., 2019; Pasolli
et al., 2019). However, we did not recover any MAGs from
putative novel species in this dataset.

By default, MIntO performs co-assembly, which although time
consuming, is an extremely important step. In fact, we obtained
the highest number of unique taxa from the co-assembled
samples compared to any single-sample assembly (Table 3).
Remarkably, 61 of the 131 taxonomies (~46%) could be
retrieved only by performing co-assembly (Figure 2D). With
single-sample assembly we still retrieved 31 (~23%) unique
taxonomies not covered by the co-assembled samples, of
which 13 (~10% of the total) are only found in one sample
(Figure 2C). This is helpful to better distinguish sample-specific
composition, as for example Akkermansia muciniphila SGB9228,
which is the second Akkermansiacae species by presence in the
human population (Karcher et al., 2021) can only be found in
patient CD1. These results are achievable only by performing
both single and co-assembly.

In addition, we performed our own benchmark to show that
combining long and short reads improves the assembly
contiguity. MIntO assembled paired-end metagenomes from
the gut microbiota of five patients with head and neck cancer
(Wongsurawat et al., 2019), which were generated by 1) Illumina-
only, or 2) Illumina and Nanopore sequencing platforms. The
number of generated scaffolds (127,315 and 172,888 for Illumina
and Illumina + Nanopore, respectively), and their mean length
(9.44 kb and 9.72 kb for Illumina and Illumina + Nanopore,
respectively), were greater when long-reads were included in
the assembly. Furthermore, Illumina + Nanopore assembly
generated 13 scaffolds longer than 600 kb with a maximum of
1,119 kb, whereas the assembly of Illumina-only data generated 2
scaffolds longer than 600 kb with a maximum of 736 kb. Finally,
the scaffold length distribution shows that scaffolds from
Illumina + Nanopore assemblies are more contiguous than
Illumina-only assemblies (Supplementary Figure S6).

Gene Prediction and Functional Annotation
The unique set of MAGs recovered in the previous step
underwent gene prediction and functional annotation
(Figure 1A, gene prediction and functional annotation).
Prokka (Seemann, 2014) was used to identify and annotate the
genes, retrieving the corresponding nucleotide and amino acid
sequences. A total of 412,394 genes were predicted in the 163
recovered MAGs. These were annotated with seven different
functional databases: eggNOG (Yin et al., 2012; Huerta-Cepas
et al., 2019), KEGG Pathways, Modules and KOs (Kanehisa and
Goto, 2000), dbCAN modules and enzyme classes (Yin et al.,
2012), and Pfam (Mistry et al., 2021) (Figure 3). The same
process could also be applied to user-provided genome
sequences under genome-based assembly-free mode.

The gene and function annotation step was skipped in the gene
catalog-based assembly-free mode as we used existing eggNOG,
KEGG Pathways, KEGG Modules, KEGG KO, dbCAN modules,
dbCAN enzymes class, Pfam function annotation for IGC
(available at https://db.cngb.org/microbiome/genecatalog/
genecatalog_human/). The number of expressed genes and
functions for both modes are summarized in Figure 3. Even
though we detected > 5 × genes by mapping the metagenomes to
IGC compared to genes encoded in the 163 MAGs, genes from
the MAGs covered the vast majority of the functions detected via

TABLE 3 | Number of SGB taxonomies retrieved per sample.

Sample/Method Number of Taxa

nIBD1 18
nIBD2 21
CD1 24
CD2 15
UC1 21
UC2 24
Co-assembly 100

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 84692210

Saenz et al. MIntO: Microbiome Integrated Meta-Omics

https://github.com/wwood/CoverM
https://doi.org/10.5281/zenodo.6360083
https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


IGC. In some cases such as Pfam and CAZy databases, MAGs
recovered more functions suggesting that contiguous assemblies
and more complete genes could improve the quality of functional
annotations.

Alignment and Normalization
The metagenomic and metatranscriptomic high-quality reads
were mapped to a reference database followed by TPM
normalization to obtain the relative abundance of genes from
metagenomic read alignments (i.e., gene abundance profile) and
transcripts from metatranscriptomic read alignments (i.e., gene
transcript profile) (Figure 1A, alignment, normalization and
integration). We used as a reference database the 163 recovered
MAGs for the genome-basedmapping and the IGC (Li et al., 2014)
for the gene-based alignment. Overall, the mappability rate at 95%
of sequence identity forMAGs (median 72.26%)was lower than for
IGC (median 92.47%) with the highest difference for participant
CD2 (Supplementary Figure S5), which could be due also to the
lower number of taxonomies retrieved for the samples (Table 3).
However, this difference was not as remarkable when using
metatranscriptomic reads (77.61 and 73.9% median, respectively).

Integration: Gene and Function Expression
Profiling
The variation of microbial community transcript levels may be
affected by the changes in gene expression and/or by the
community turnover. To disentangle the individual
contributions of these mechanisms across the different
samples, we integrated gene abundance and transcript
abundance profiles (Salazar et al., 2019) (see Methods). The
obtained levels of gene expression represent the relative
amount of expressed transcripts per gene (Figure 1A,
integration: gene and functional profiling). From the 412,394

predicted genes in the 163 recovered MAGs, 219,133 genes were
expressed in at least one sample, while we detected the expression
of 1,260,394 genes from the 9.9 million genes in IGC.

Furthermore, the corresponding gene profiles were used to
generate the function abundance, transcript and expression
profiles by grouping the annotated genes into functions. The
highest number of features detected in the samples corresponded
to the eggNOGdatabase on bothmodes, followed by Pfam or KEGG
KO (Figure 3). We identified 5,734 and 6,131 KEGG KO expressed
features when we used the recovered MAGs and IGC as a reference,
respectively. Among the 7,217 KEGG KO functions identified
between the two profiles, 64.4% (4,651 features) were found in
both. The 15% of features (1,086) uniquely identified in the MAGs
could correspond to genomes not included in the database and the
20.5% of the functions (1,481) detected in IGC could belong to low
abundant bacteria whose genomes could not be retrieved or were
missed due to MAGs filtered out based on our quality criteria.

We used MIntO’s visualization features to perform principal
coordinate analysis (PCoA) on the different gene and functional
profiles to observe the longitudinal compositional changes and to
compare the dissimilarities between participants. In Figure 4A
we show the gene expression PCoA plot for the assembly-free gene
catalog mode using IGC (Li et al., 2014). In general, the samples
were clustered by Crohn’s disease and Ulcerative colitis diagnosis
suggesting a similar bacterial abundance and expressed genes due
to the presence of the disease (Kostic, Xavier and Gevers, 2014;
Lloyd-Price et al., 2019). Samples from participants used as
control (nIBD1 and nIBD2) were clustered separately,
probably due to the inter-individual variations in the
microbiome composition. In fact, the most abundant genus in
all participants was Bacteroides, with the exception of nIBD1
where Roseburia and Faecalibacterium were predominant. At
transcript level (Supplementary Figure S7), the dissimilarity
between the samples explained by the first two principal

FIGURE 3 | Comparison of number of genes and features per function database between non-redundant high quality 163 MAGs and IGC.
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coordinates (18.7% and 12.2%) was higher than at gene
expression level (8.9% and 7.2%). The transcript abundance
changes might be mainly attributed either to differences in the
expression of genes encoded by themicrobes in the community or
changes in the abundance of these members and their related
genes or a combination of these mechanisms. Hence, the
computation of gene expression profiles by the integration of
abundances of genes and the respective transcripts is of crucial
importance to obtain a more accurate representation of
ecologically relevant processes that are occurring.

Overall, the dissimilarities between the samples were visible at
the gene expression, gene abundance and transcript abundance
profiles (Figure 4A and Supplementary Figure S7). However, at
function expression level (Figure 4B) the clusters were not as well
defined, suggesting that genes from different species could harbor
the same functions in different microbial communities. Although
the taxonomic composition differed between the six participants
and consequently the gene composition and expression, the
functional profiles across individuals and time were more
conserved (functional redundancy) (Tian et al., 2020).
Differences in functional profiles between nonIBD and IBD
diagnosed participants could provide insights into the
functions involved in microbiome–host interactions at states of
health or disease (Heintz-Buschart and Wilmes, 2018).

Visualization and Reporting
Further analyses can be done using the output files (Figure 1A,
visualization and reporting; Supplementary Figure S1). MIntO
generates three different types of table: 1) assembly-free and
assembly-based taxonomic profiles; 2) gene profiles, including the
gene IDs [generated by Prokka (Seemann, 2014; Beghini et al.,
2021) when selecting assembly-dependent mode or sequence IDs
when choosing assembly-free mode] and normalized gene
abundance, transcript or expression; and 3) functional profiles
per database, including the function IDs, function description and

function abundance, transcript or expression normalized counts.
For an easier downstream analysis of these data, phyloseq objects
are generated for the taxonomic, gene and functional profiles.

MIntO also outputs the shown plots as preliminary results to
help the user in the downstream analysis (Figures 2A,B, Figures
3, 4, Supplementary Figures S3, S7).

The metadata provided in IBDMDB (Supplementary Table
S1) was given as an input to the pipeline, which colored the
samples by sample_alias (participant’s ID) in the output plots.

DISCUSSION

MIntO is a versatile pipeline that integrates metagenomic and
metatranscriptomic data, beyond a comparison of the gene and
transcript abundances, in order to quantify gene and function
expression in a very straightforward way. The modular design of
MIntO enables the user to run the pipeline using three available
modes based on the input data and the experimental design.

In order to illustrate the pipeline, a subset of 91 human fecal
microbiome samples from the IBDMDB (Illumina metagenomic and
metatranscriptomic paired-reads) was used to run the full version of
the pipeline with default parameters. Here, we show the
complementary results from two of the three available modes,
genome-based assembly-dependent and gene catalog-based assembly-
free. In the former, MIntO retrieved 163 high-quality non-redundant
MAGs that encoded 412,394 genes, among which 219,133 genes were
expressed in at least one sample, while 1,260,394 genes from IGC were
expressed in the gene catalog-based assembly-free mode. Overall, the
dissimilarities between the samples were visible at the taxonomic and
gene levels, while the functional profiles across individuals and time
were more conserved (functional redundancy), indicating that strain-
specific genes from different microbiomes represented similar
functions. Interestingly, among the 7,217 KEGG KO functions
identified between the two profiles, 15% of the features were

FIGURE 4 |Projection of the first two principal coordinates based on expression profiles Bray–Curtis dissimilarity at (A) gene and (B) function KEGGKO levels using
a subset of 91 samples from IBDMDB. Labels correspond to the sample alias and are colored by condition (patients diagnosis).
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uniquely identified in the MAGs and 20.5% of the functions were
detected in IGC.

The distinctive feature of this pipeline is the integration of the
metagenomic and metatranscriptomic data, to obtain the expression
profiles and furthermore the functional profiles by annotating the
sequences with several databases. This enables us to study in detail
the variation in expression of the genes and functions in the different
samples across time and experiment conditions, thus the community
behavior. Overall, the IBDMDB-samples clustered by the participant
ID using the genes and transcript abundances and gene expression.
However, using the KEGG KO annotations at function expression
level, the clusters are not as well defined, due to the functional
redundancy (Tian et al., 2020).

Another important feature of MIntO is performing de novo
assembly and contig binning to recover high-quality MAGs from
metagenomic reads, which compared to other methods utilizes an
accurate unsuperviseddeep learning approach in the formof variational
autoencoders (Nissen et al., 2021). The assembly-dependentmode could
be helpful to retrieve novel genomes that are missed by reference-
dependent profiling methods (Pasolli et al., 2019). The recovery of
MAGs is indispensable to uncover the diversity of bacteria in an
environment and it is crucial for an optimal calculation of the
variation of gene expression, including unknown or functional genes
from biosynthetic gene clusters (Youngblut et al., 2020). Additionally,
new putative genomes can increase the number of known species in the
available databases, especially when the analyses are performed on
metagenomes coming from new environmental sources.

In conclusion, in this paper we show how MIntO can be a
useful tool to analyze metagenomic and metatranscriptomic data
in a standardized way, enabling the study of microbial ecology by
linking functions to genomes and environmental context. We
foresee that this pipeline will contribute to the understanding of
the dynamics of the molecular activities captured by the
community turnover and gene expression alterations as the
cause that shapes community transcript levels. Elucidating the
functions and characterizing the specific strains of a community
will be crucial to increase our knowledge of the microbiome’s
contribution to human health and environment.
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