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RNA editing plays an extensive role in the initiation and pro-
gression of cancer. However, the overall profile and molecular
functions of RNA editing in different ovarian cancer subtypes
have not been fully characterized and elucidated. Here, we con-
ducted a study on RNA editing in four cohorts of ovarian can-
cer subtypes through large-scale parallel reporting and bioin-
formatics analysis. Our findings revealed that RNA editing
patterns exhibit subtype-specific characteristics within cancer
subtypes. The expression pattern of ADAR and the number
of differential editing sites varied under different conditions.
CCOC and EOC exhibited significant editing deficiency,
whereas HGSC and MOC displayed significant editing excess.
The sites within the turquoise module of the coedited network
also revealed their correlation with ovarian cancer. In addition,
we identified an average of over 40,000 cis-edQTLs in the four
subtypes. Finally, we explored the association between RNA ed-
iting and drug response, uncovering several potentially effec-
tive editing-drug pairs (EDP) and suggesting the conceivable
utility of RNA editing sites as therapeutic targets for cancer
treatment. Overall, our comprehensive study has identified
and characterized RNA editing events in various subtypes of
ovarian cancer, providing a new perspective for ovarian cancer
research and facilitating the development of medical interven-
tions and treatments.
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INTRODUCTION
Ovarian cancer (OV) is a disease with clinical diversity and high his-
tological and molecular heterogeneity,1–3 and its histological pheno-
type is associated with distinct genetic patterns.4 Each subtype has a
different histopathology and a different response to treatment.5,6

Based on histopathological examination, pathologists classify OV
into high-grade serous OV (HGSC), low-grade serous OV (LGSC),
clear cell OV (CCOC), endometrioid OV (EOC), and mucinous
OV (MOC). While OV has traditionally been considered a singular
disease, there is growing recognition that OV subtypes represent
distinct diseases with diverse natural behaviors and prognoses.7 These
differences should be reflected in clinical study design and, ultimately,
This is an open access article under the CC BY-N
in the treatment of OV. However, the role of sequence variation
caused by posttranscriptional events, such as RNA editing, in these
diseases remains largely unexplored.

RNA editing is a widely recognized posttranscriptional modification
mechanism that is catalyzed by adenosine deaminase acting on RNA
(ADAR) enzymes.8 This process involves altering the nucleotide
sequence information of RNA molecules, typically through the inser-
tion, deletion, or substitution of nucleotides. RNA editing can influ-
ence RNA splicing, protein recoding, microRNA binding, mRNA sta-
bility, and the biogenesis of circular RNAs,9 thereby playing a crucial
role in maintaining normal cellular functions, regulating gene expres-
sion in balance, and adapting to environmental changes. Studies have
shown that RNA editing plays an important role in the pathogenesis
of numerous diseases.10 Researchers have extensively used quantita-
tive trait locus (QTL) methods to discover genetic variations in mo-
lecular phenotypes, such as gene expression,11,12 splicing,13,14 and
methylation.15,16 RNA editing QTL (edQTL) analysis helps to eluci-
date disease-related genetic variants and their impact on editing
levels, allowing for the prioritization of disease-causing editing sites.
Recent investigations have focused on the relationship between
RNA editing and genetic variation, particularly aberrant changes
from adenosine to inosine (A-to-I). For example, RNA editing vari-
ability can affect the phenotype of complex traits and diseases by
altering the stability and homeostatic levels of key RNA molecules.17

Cuddleston et al. also investigated different brain regions linking
spatiotemporal changes in cell type and editing levels to editing vari-
ation and genetic regulation.18,19 Furthermore, RNA editing has been
associated with drug resistance in tumors,20 and ADAR1-mediated
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Figure 1. Schematic diagram of the analysis pipeline

in this research

The donut chart and associated percentages represent the

proportion of each OV subtype, and the colors represent

different subtypes.
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SCD1 RNA editing has been shown to drive drug resistance in gastric
cancer.21 Overall, the progression of OV is hindered by a combination
of genetic and epigenetic changes, drug resistance, and increased ge-
netic diversity in tumor cells. These factors present significant obsta-
cles to achieving effective treatment. A-to-I RNA editing holds prom-
ise as a target for cancer immunotherapy.

In our previous study, we conducted an extensive exploration of RNA
editing profiles in OV.22 Given the heterogeneous nature of OV en-
compassing multiple subtypes, it is plausible that genetic variants
may also govern A-to-I RNA editing. However, it is currently unclear
whether differences or associations between RNA editing and the
expression of different subtypes of OV can be attributed to specific
biomarkers. Published studies have not thoroughly analyzed the
mechanisms of RNA editing-mediated genetic regulation in OV.
Therefore, a systematic analysis of A-to-I editing related to genetic
variation and drug response is urgent and necessary.
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We aimed to explore the possible links between
altered RNA editing events and OV subtypes,
providing a more comprehensive landscape of
the genetic control of RNA editing in OV subtypes.
To achieve this goal, here, we acquired 194 RNA
sequencing (RNA-seq) datasets comprising four
OV subtypes and 17 normal ovarian tissue sam-
ples. By integrating these datasets, we systemati-
cally elucidated the RNA editing events associated
with OV subtypes. Our analysis encompassed not
only the overall/differential editing (DE) but also
the dissection of edQTL, co-edited networks, and
RNA editing events associated with drug response
(Figure 1). These results revealed an extensive
repertoire of highly regulated RNA editing sites
(RES) in different subtypes of OV and provided
a resolved map linking OV subtypes with editing
variation and genetic regulatory effects. In conclu-
sion, our findings suggested that RNA editing
plays a critical role in OV development and greatly
deepen our understanding of RNA editing-medi-
ated cancer development and therapy.

RESULTS
Subtype-specific characteristics of RNA

editing patterns in OV

OV exhibits heterogeneity. However, the extent of
RNA editing events among different subtypes re-
mains largely unknown. In this study, we down-
loaded a total of 211 OV samples for analysis. A
multistep approach was used to progressively identify RNA editing
sites by integrating RNA-seq datasets and SNP information (Figure 2A;
seeMaterials andmethods). Stringent downstream filtering and quality
control were applied to all of the sites. Overall, our analysis identified
216,669 (CCOC), 117,650 (EOC), 768,377 (HGSC), and 124,980
(MOC) editing sites within the four subtypes of OV samples, respec-
tively, compared to 422,572 editing sites in normal samples (Figure 2B).
Interestingly, a considerable proportion of these sites were located in
repetitive sequences, with the majority (75%) attributed to Alu repeats.
Furthermore, 73.87% of CCOC, 37.23% of EOC, 84.36% of HGSC, and
42.63% of MOC were classified as cancer subtype specific, indicating
unique detection within a specific subtype (Figure 2B).

We thoroughly annotated all of the editing events and identified
consistent features among them. Across the detected sites, we
observed a total of 12 types of editing: GT, AC, CT, AG, GC, CA,
AT, TG, GA, TA, TC, and CG, with the A-to-I being the most



Figure 2. General characteristics of RNA editing events

(A) The workflow for detecting high-confidence OV subtype-associated editing sites, along with the de novo identification and filtering of RNA editing sites. (B) Upset plots

displaying the counts and overlap of all subtype-enriched sites. The pie charts indicate the proportion of sites mapping to Alu elements compared to other elements. (C)

Identification of different types of RNA editing. The x axis represents the editing type, and the y axis represents the total number of editing events. (D) The number of A-to-G

editing sites (Y axis) categorized by annotations in the database (known or novel) and counted separately for each cancer subtype. (E) Spider plots showcasing the top 3

genes enriched with RNA editing sites for each cancer subtype. (F) Total number of RNA editing sites across genomic regions. (Right) Breakdown of coding regions. (G) Local

sequencemotif enrichment analysis of known and novel sites depicting the frequency of nucleotides in flanking sequences (upstream and downstream 4 bp) of G editing sites

and randomly selected genomic “A” sites.

(legend continued on next page)
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abundant in all 4 cancer subtypes (Figure 2C). In addition, we
compared the RNA editing sites identified in this study with sites
included in the REDIportal23 database, which contains information
on more than 4 million human A-to-I RNA editing sites. Our analysis
revealed that 56,964 (26.29%, CCOC), 80,322 (68.27%, EOC), 222,380
(28.94%, HGSC), 96,770 (77.43%, MOC), and 169,502 (40.11%, con-
trol) A-to-I editing sites corresponded to known sites annotated in
this database (Figure 2D). The sites identified in this study signifi-
cantly expand the current knowledge of the editing landscape of
OV subtypes. Most of the genes had multiple editing sites, with a
notable correlation observed between the number of RNA editing
sites per gene. Within CCOC, genes NBPF25P (n = 758 sites),
SYNE2 (n = 533 sites), and MUC4 (n = 455 sites) were particularly
enriched with editing sites. Studies have confirmed that MUC4 can
be used as an independent marker for the early diagnosis of OV
and can be used in combination with MUC16/CA125 to achieve
higher sensitivity in the detection of advanced tumors.24 In EOC,
the genes PITPNC1 (n = 346 sites), UBE2D2 (n = 340 sites), and
KIAA1217 (n = 325 sites) displayed enrichment of editing sites,
whereas in HGSC, the genes PMS2P5 (n = 1,149 sites), NBPF25P
(n = 688 sites), and GUSBP16 (n = 611 sites) exhibited enrichment.
We found enrichment of editing sites in the genes PMS2P5 (n =
469 sites), RBM6 (n = 271 sites), and EXT1 (n = 261 sites) in MOC
(Figure 2E). Conversely, the genes NBPF25P (n = 448 sites), INSR
(n = 456 sites), and WWOX (n = 404 sites) were found in normal
samples (Figure 2E). Notably, the PMS2P5 variant with the higher ed-
iting rate among the four subtypes was associated with OV. PMS2
variants have been associated with breast cancer and OV, with a fre-
quency of up to 47.6%.25 Approximately 80.99% of all of the editing
events were found in introns, with only a small fraction (4.06%)
affecting protein-coding regions (Figure 2F).

Although ADARs do not have strict sequence specificity, the
enzyme does exhibit a preference for certain adjacent nucleotides
in a position-dependent manner.26 We used Two Sample Logos27

to validate the presence of a common local sequence motif of
4 bp flanking all adenosine-to-guanine (A-to-G) editing events.
Our analysis revealed a depletion of guanosine at �1 bp upstream
of the target adenosine, whereas its enrichment was observed
at +1 bp downstream (Figure 2G). Therefore, ADAR preference
and selectivity are guided by the primary sequence and secondary
structure (i.e., cis-acting regulatory elements) surrounding the edit-
ing site.

Differential expression patterns of ADAR in OV subtypes

A-to-I RNA editing is the most common editing event and is medi-
ated by editing enzymes (ADAR1, ADAR2, ADAR3). Given that
the majority of RNA editing occurs in Alu elements and that almost
all adenosine in the Alu repeats are targets of ADAR, we investigated
the expression levels of the three ADAR editing enzymes, along with
the average expression levels in the three Alu families. Notably, all
of the samples had been treated to eliminate batch effects (Figure S1).
We observed that ADAR1 expression was significantly higher in
HGSC compared to other cancer subtypes, with MOC displaying
4 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
the lowest ADAR1 expression (Figure 3A). Overall, the expression
of three editing enzymes in CCOC, EOC, and MOC was lower than
that in normal samples, whereas HGSC had slightly higher expression
levels compared to normal samples. Since ADAR1 mediates A-to-I
RNA editing events, we further assessed the differences in RNA edit-
ing among OV subtypes by calculating the overall editing level (OEL)
of each sample (Figures 3B and 3C). Interestingly, the global A-to-I
editing level of each subtype was inconsistent with the expression
pattern of ADAR1, with higher OELs in CCOC, HGSC, and MOC
compared to normal samples, and the lowest editing rate in the
EOC subtype. Furthermore, the expression of all three Alu families
(AluJ, AluS, AluY) showed consistency (Figure 3D). Also, we calcu-
lated the recoding editing index (REI), which was calculated based
on the weighted average of the editing levels of all of the known recod-
ing sites in the REDIportal database. All OV subtypes exhibited a
higher REI than normal samples (Figure 3E). Notably, changes in
OEL were positively correlated with the expression of ADAR1
(R2 = 0.01, p = 0.121), ADAR2 (R2 = 0.01, p = 0.12), and ADAR3
(R2 = 0.06, p = 0.00049) (Figure 3F).

Distinct patterns of differential editing in OV subtypes

Since RNA editing may be highly cancer subtype specific, we investi-
gated whether the differential editing patterns in OV originate from
specific cancer subtypes. To comprehensively detect differential edit-
ing sites (DESs) in each subtype, we used the REDIT and Wilcoxon
rank-sum tests to calculate differential editing (p < 0.05 and mean ed-
iting level difference |Diff| R5%), subsequently intersecting the re-
sults. This analysis revealed 3,934 (CCOC), 835 (EOC), 2,477
(HGSC), and 5,994 (MOC) DESs between OV and control in each
of the 4 OV cohorts. Overall, CCOC and EOC exhibited a tendency
of underediting, whereas HGSC and MOC tended to overediting
(Figures 4A–4D).

There was a minimal overlap between DESs in these subtypes (Fig-
ure 4E), indicating distinct editing patterns for each subtype. Most
of the DESs were found in intronic regions, intergenic regions, and
30 UTRs (Figure 4F). Only a limited number of DESs resulted in non-
synonymous amino acid changes, stop loss, or stop gain, which were
classified as RNA recoding events. Specifically, we found 130 (54.39%,
CCOC), 52 (57.78%, EOC), 50 (56.18%, HGSC), and 20 (52.63%,
MOC) sites, respectively, which could lead to changes in the amino
acid sequence (Figure 4G). Although editing events in coding
regions are rare, these editing events may have important functions.
Through a comprehensive evaluation of the impact of these nonsy-
nonymous mutations using SIFT, PolyPhen-2, and PROVEAN in
ANNOVAR,28 we found that a total of 27 sites were classified as dele-
terious (Figure 4H). We demonstrated the amino acid substitutions
caused by the synonymous DESs under each subtype condition in
OV. In addition, the majority (85%) of these genes associated with
OV were found among the 27 deleterious DESs (Figures 4I;
Table S1). For example, the editing level of the NRP1 coding region
was higher in EOC relative to normal samples. A previous study pro-
posed that increased NRP1 expression may be associated with the
development of EOC and that NRP1 could serve as a valuable



Figure 3. Transcriptome-wide overall RNA editing profiles across OV subtypes

(A) Estimation of mRNA expression levels of ADAR1, ADAR2, and ADAR3 in OV subtypes from RNA-seq data. The p value was measured by Wilcoxon rank-sum test.

*p% 0.05; **p% 0.01; ***p% 0.001. (B) Overall RNA editing levels for all cancer subtypes. Significance between groups was tested using the t test. Whisker box line plots

display the median, lower quartile, and upper quartile, with whiskers representing the minimum and maximum values. (C) Circos plots of the genome-wide editing levels. (D)

The boxplot of the mean editing ratios of the 3 major Alu subfamilies (S, Y, and J). (E) REI for all OV subtypes. (F–H) The correlation between (F) ADAR1 (R2 = 0.01, p = 0.121),

(G) ADAR2 (R2 = 0.01, p = 0.12), and (H) ADAR3 (R2 = 0.06, p = 0.00049) expression levels and OELs across all of the samples. FPKM, transcripts per kilobase per million

mapped reads.
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prognostic marker as well as a potential molecular therapeutic target
for OV patients.29

Co-editing network modules and their correlation with OV

To further evaluate OV-related editing sites shared between OV sub-
type cohorts, we performed weighted gene coexpression network
analysis (WGCNA)30 on common RNA editing sites (see Materials
and methods). The purpose of this analysis is to identify clusters of
RNA editing sites (i.e., modules) that are associated with disease sta-
tus. To ensure the stability and accuracy of the results, we must pay
attention to the influence of outlier samples on the results (Figure S2).
A soft threshold (b value) of 4 was determined for the coordinately
edited (coedited) network (Figure S3) to ensure that the correlation
matrix conformed to an approximate scale-free topology. For each
cohort, WGCNA generated multiple modules (Figure 5A). Notably,
we identified a module enriched in editing sites (labeled “turquoise”
module), which was significantly associated with HGSC (Figure 5B).
The editing sites in the turquoise modules in all of the cohorts have a
high degree of overlap in the HGSC subtype (Figure 5C). These co-
horts also shared a large number of genes containing editing sites
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 5
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Figure 4. Identification and analysis of differential RNA editing in subtypes of OV

(A–D) Differential editing in (A) CCOC, (B) EOC, (C) HGSC, and (D) MOC. |Diff| represents the difference of themean editing level between tumor and normal samples. (E) Venn

diagram of DESs across all OV subtypes. (F) Annotation of all DESs. (G and H) Functional annotation of DESs. (I) Genes corresponding to differentially edited sites causing

nonsynonymous mutations are associated with OV (*p % 0.05; **p % 0.01; ***p % 0.001).
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in the turquoise module. Gene Ontology (GO) analysis of the shared
genes revealed a number of pathways associated with mitotic G2/M
checkpoints, such as negative regulation of G2/M transition of the
mitotic cell cycle, mitotic G2/M transition checkpoint, and mitotic
G2 DNA damage checkpoint signaling (Figure 5D). OV is a multifac-
torial disease, and these malignancies are characterized by abnormal
proliferation resulting from altered cell-cycle regulatory mecha-
nisms.31 Studies indicate that G2/M checkpoint inhibition and
DNA damage often lead to mitotic catastrophe. Dysregulation of
the cell-cycle regulation leads to increased cancer cell proliferation,
and disruption of cell-cycle checkpoints, which is recognized as a hall-
mark of many cancers.32,33 Therefore, aberrant regulation of these
pathways may lead to cell-cycle disruption, accumulation of DNA
damage, and inhibition of apoptosis, thereby promoting OV develop-
ment and progression.

Association of RNA editing with genetic variants

To identify genetic variants that could explain selective RNA editing
variability, we used estimated genotype data to test for common SNPs
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associated with RNA editing levels (edQTL, editing quantitative trait
loci) (Figure 6A; see Materials and methods). We tested for associa-
tion in each OV subtype and identified cis-edQTL at a genome-
wide false discovery rate (FDR) <0.05 (i.e., restricting the analysis
to SNPs within 200 kb upstream and downstream of the RES). A total
of 21,869 (CCOC), 21,572 (EOC), 116,747 (HGSC), and 23,790
(MOC) cis-edQTL, respectively, were annotated. In addition, we
compared the absolute effect sizes of all edQTLs and found that the
HGSC subtype exhibited the lowest effect size, and MOC had the
highest effect size (Figure 6F). We observed that variants within 1
megabase (MB) of the editing site were more likely to be significantly
associated, and that each max-edQTL (defined as the most significant
SNP-site pair per site, if any) that satisfied the genome-wide signifi-
cance threshold was highly enriched within 200 kb of its associated
editing site and acted in cis (Figure 6G). We examined the locations
of edQTL editing sites (eSites) in genomic regions. The locations of
these eSites were similar to common A-to-I editing sites, which
were located mainly in introns (46%) as well as in the 30 UTR
(16%) (Figure 6H).



Figure 5. Unsupervised coedited network analysis of RNA editing in each subtype of OV

(A) Dendrogram of RNA editing sites. Each color represents different coedited modules, and turquoise modules are indicated by turquoise color. (B) Heatmap of

the correlation of editing sites in different modules with different conditions (cancer or healthy tissue), and the numbers in the heatmap represent the coefficients

and p values of the Pearson correlation. (C) Overlap between turquoise sites and differentially edited sites. (D) GO enrichment analysis of genes harboring turquoise

sites (n = 473 genes).
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To validate the edQTL, we compared the changes in the editing
levels of eSites with the genotypes of the associated SNPs. We
observed a significant correlation between the editing level of
eSites and the genotypes of the associated SNPs. For example,
for the chr7:63354367:AG edQTL in CCOC, the A allele at
rs1408601915 was associated with high levels of RNA editing,
whereas the G allele attenuated RNA editing (Figure 7B).
The YWHAE (tyrosine 3-monooxygenase/tryptophan 5-monoox-
ygenase activation protein epsilon) is a protein-coding gene.
YWHAE can acts as an HE4-interacting protein that can influ-
ence the malignant behavior of OV by regulating the phosphati-
dylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein
kinase pathways.34 YWHAE enhances invasion, migration, and
proliferation, and inhibits apoptosis in OV cells.34 Despite the
correlation between YWHAE and YWHAEP1 genes, further
studies are needed to elucidate their specific relationships and
interactions.

Enrichment analysis of the genes corresponding to all edQTL-associ-
ated eSites resulted in significant enrichment into pathways associ-
ated with OV (Figure 7C). For example, the PI3K/AKT and AMPK
signaling pathways play important roles in OV cell survival, meta-
bolism, and proliferation. Adherens junctions and tight junctions,
which are intercellular junctional structures, play important roles in
cell-to-cell adhesion and the maintenance of cell polarity. Disturbed
cytomembrane junctionsmay lead to decreased intercellular adhesion
and loss of cell polarity, which are associated with OV development
and metastasis.
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 7
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Figure 6. Characterization of RNA edQTL

(A) Schematic diagram of an edQTL. (B–E) Quantile-quantile plot for association tests between edQTL and RNA editing sites. (F) Comparison of the absolute effect

sizes of edQTLs associated with cancer subtypes (b, x axis). (G) Distribution of the association tests in relation to the distance between the editing site and variant

for cis-edQTLs. The gray box indicates ±200 kb relative to the editing site. (H) The total number of eSites (unique editing sites with associated edQTLs) categorized

by gene region.
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RNA editing as a potential therapeutic target for OV

We found editing-drug response associations in the data for all of the
samples. Specifically, for each editing-drug pair (EDP), we measured
rank associations using Spearman correlation and selected the EDP
with the smallest associated p value (Figure 8A). In this study, we
used IC50, which is the concentration at which a substance inhibits
certain biological programs to 50% inhibition. It can represent the de-
gree of tolerance of a certain cell to a drug. The results yielded more
than 10,000 EDPs, all of which were relatively significantly correlated
(Figure 8B). Eventually, we screened the 10 most relevant EDPs and
the corresponding drugs (Figures 8C; Table S2). It is worth noting
that the NBPF gene plays an important role in OV. Itamochi et al. re-
8 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
vealed that the most common mutations in 55 OV cases were
NBPF20 (67%) and NBPF10 (60%), totaling 51 (93%) cases with mu-
tations in NBPF20 and NBPF10, all of which were nonsynonymous
mutations.35 The host gene for the editing site (chr1:146034018) be-
longs to the NBPF family, and the nonsynonymous mutations gener-
ated by the editing may affect the occurrence and development of OV.
The most relevant drug at this site is staurosporine. The experimental
result of Alsamman et al. demonstrated that staurosporine treatment
could lead to a significant reduction in p62 levels in OV and eliminate
the cisplatin-induced upregulation of p62.36 Staurosporine can sensi-
tize OV cells to cisplatin through the mechanism of downregulation
of p62.



Figure 7. cis-edQTLs in OV subtypes

(A) Manhattan plot of the FDR for each A-to-I editing site in cis-edQTL mapping. (B) Examples of cis-eSites. Boxplots showing the association of editing levels with relevant

SNP genotypes. (C) GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of genes harboring the eSites (n = 1,823 genes). Red, biological

process; yellow, cellular component; light blue, molecular function; dark blue, KEGG pathway. The numbers represent the number of genes involved in each item.
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DISCUSSION
OV is the primary cause of gynecological cancer-relatedmortality and
among the most prevalent fatal malignancies in women. Although
90% of tumors originate in the epithelium, OV exhibits considerable
heterogeneity in clinical presentation and molecular biology.37,38

RNA editing is one of the epigenetic mechanisms widely involved
in the initiation and progression of various cancers. RNA editing
holds promise as a diagnostic biomarker for associated diseases and
is intricately linked to cancer prognosis. Recent recognition has high-
lighted common genetic variations as significant regulators of RNA
editing levels.18 Although numerous studies have explored RNA edit-
ing in cancer, the prevalence of RNA editing events across various
subtypes of OV and the genetic determinants governing their regula-
tion remain unclear. At present, limited studies have examined the
correlation between this epigenetic modification, genetic regulation,
and drug response. Given the scarcity of studies examining the
comprehensive characteristics of RNA editing across various subtypes
of OV, our primary aim was to assess the profile of RNA editing and
its genetic regulation in four prominent OV subtypes.

In this study, we conducted the inaugural comprehensive analysis of
RNA editing across subtypes of OV and identified distinct patterns
in RNA editing among different subtypes. Within these subtypes, we
identified genome-wide RNA editing sites and examined their genomic
distribution. Consistent with previous studies, the majority of RNA ed-
iting sites were of the A-to-I type and primarily situated in noncoding
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 9
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Figure 8. Identification of effective EDPs for OV treatment

(A) Simplified flowchart for identifying significantly correlated EDPs. (B) Distribution of Spearman correlation coefficients for significantly correlated EDPs. (C) The Spearman

correlation coefficients of the drugs in the top 10 significantly correlated EDPs. Blue, significant negative correlation. Red, significant positive correlation.
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regions, particularly in introns and 30 UTRs. Interestingly, our findings
revealed inconsistent expression patterns of ADARs across the four
subtypes. Compared with normal samples, CCOC, HGSC, and MOC
exhibited higher OEL, whereas the EOC subtype had the lowest editing
rate. Among the recoding sites, all of the subtypes consistently ex-
hibited higher REIs compared to controls. The differences in RNA ed-
iting levels among the different subtypes of OVmay have an impact on
subsequent gene expression and functional regulation. It may also lead
to different pathological features and developmental patterns among
OV subtypes, which is of significant importance for the diagnosis
and treatment of the disease. There was a positive correlation observed
within all of the cancer samples between the expression levels of ADAR
and the overall A-to-I RNA editing levels.

Furthermore, we observed substantial diversity in the balance of over-
editing and underediting of DESs across various OV subtypes. CCOC
and EOC demonstrated a propensity for underediting, whereas HGSC
and MOC exhibited a proclivity for overediting. Studying the RNA ed-
iting patterns in different subtypes of OV contributes to a deeper un-
derstanding of the biological characteristics of tumors, their develop-
10 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
mental patterns, and the development of personalized treatment
plans. Specifically, we simultaneously observed 27 unique nonsynony-
mous DES variants across all four subtypes. A total of 85% of the genes
harboring these variants were reported to be linked with the progres-
sion of OV. In addition, we conducted coedited network analysis in
OV and identified coedited sites spanning across the subtypes. GO
enrichment analysis of these sites revealed an association with the
mitotic G2/M checkpoint as a top biological term. OV is a multifacto-
rial disease, with numerous cell-cycle regulation irregularities playing a
pivotal role in its occurrence and development. Also, we uncovered the
prevalence of edQTLs in OV, with corresponding eSites primarily
located in introns and 30 UTR regions. The enrichment of these eSites
also led to the enrichment of pathways significantly linked to OV.
These findings expanded the landscape of RNA editing and its genetic
regulation in OV. Finally, we also revealed the drug response mecha-
nism mediated by RNA editing and screened potential drugs targeting
RNA editing for the treatment of OV.

In conclusion, this study provides a comprehensive characterization
of the RNA editing landscape in OV subtypes. These four subtypes
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of OV exhibit distinct ADAR expression patterns and differential
RNA editing (DRE) patterns (overediting and underediting). The
edQTL analysis contributes to explaining the genetic variants linked
to OV and their impact on editing levels. The identification of poten-
tially effective editing-drug response pairs suggests that RNA editing
sites could serve as promising therapeutic targets for cancer
treatment.

Our study also had several limitations requiring further research.
First, we did not consider LGSC among the multiple subtypes of
OV that we studied. This absence could result in overlooking a
distinct expression pattern in this subtype, potentially affecting the
understanding of the developmental processes of OV. Second, our
study lacked information on the colocalization of genome-wide asso-
ciation study loci and edQTL signatures in OV. This highlights the
necessity for further exploration of edQTL signatures that colocalize
with cancer loci in specific cancer types. Furthermore, although our
study investigated the correlation between RNA editing and drug
response, limited RNA editing and drug data confine our exploration
to an initial stage. Therefore, future research holds promise for a more
comprehensive understanding of the impact of RNA editing modifi-
cations on the mechanisms of resistance to anticancer therapies,
potentially paving the way for personalized cancer therapy. In future
research, the role of RNA editing at the single-cell level could be
explored further. For example, using resources such as the single-
cell transcription map available in the GEN39 database could provide
more in-depth insights into the distinct RNA editing attributes in OV.

MATERIALS AND METHODS
Data sources for OV subtypes

The RNA-seq datasets for each subtype of OVwere obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo/) database (Table S3). The
cohort included a total of 194 OV samples, primarily comprising se-
rous OV, CCOC, EOC, and MOC. However, HGSC predominated in
the cohort, with LGSC samples being less common and excluded
from the analysis. In addition, 17 normal ovarian tissue samples
were collected for differential analysis. The utilization of multiple da-
tasets may lead to technical variations, including RNA extraction, li-
brary preparation, and sequencing. These discrepancies could intro-
duce variations in gene expression levels, potentially affecting the
results of bioinformatics analysis. To address this issue, we used the
combat-seq40 method for RNA-seq data to remove batch effects.

RNA editing identification and annotation

The original FASTQ files were extracted from the sequence read
archive by fasterq-dump (https://github.com/ncbi/sra-tools/wiki/
HowTo:-fasterq-dump), a more efficient replacement for the old
fastq-dump tool. Subsequently, the FASTQ datasets were aligned to
the human reference genome (hg19) through hisat241 and samtools42

with default parameters. Next, the REDITools43 tool was used to iden-
tify RNA editing sites. To ensure the accuracy of the identified sites,
several computational steps were performed: sites in the dbSNP
were removed; sites required a minimum coverage of at least 10 reads
and at least 3 edited reads. ANNOVAR28 was used to annotate the
functions and categories of the RNA editing sites. This tool provided
annotations such as gene types of RNA editing sites and determined
whether the editing sites would result in amino acid sequence
changes.

Overall RNA editing

To determine the RNA editing status of each sample, we calculated
the RNA editing level of each sample. The editing level was defined
as the ratio of edited reads with G nucleotides at a given RNA editing
site to the total reads at that site (i.e., total reads with A and G nucle-
otides). The derived metric is a continuous measure between 0 and 1,
indicating a range from completely unedited (0) to completely
edited (1).

DRE

DRE analysis was performed separately for each subtype cohort. To
identify a set of high-quality and highly reliable DESs, we used two
statistical methods in parallel and integrated their results to generate
a comprehensive list of DESs. First, we used REDIT44 software to
identify RES with significantly DE levels between cancer and control.
Second, we used the nonparametric Wilcoxon rank-sum test to detect
RNA editing sites with divergent editing percentages between cases
(OVs of each subtype) and controls (normal ovarian tissue). Finally,
we combined the results of these two methods to identify the overlap-
ping set of differential RNA editing sites.

WGCNA

To identify coedited sites in both OV and control samples, we applied
an unsupervised WGCNA30 method. WGCNA involved automated
network construction and modular detection, facilitating the estab-
lishment of scale-free topology by setting corresponding soft-thresh-
olds power. The sites that characterized each module were examined
for correlation with the disease condition, aiming to identify the mod-
ule exhibiting the highest correlation with the disease state. A linear
regression model was used to evaluate this association.

edQTL analysis

To map genome-wide edQTLs, linear models were used to estimate
genotype doses and levels of RNA editing using MatrixEQTL.45 To
emphasize the cis-regulatory role of the detected edQTLs, only
SNPs within 200 kb of the edited site were included in the analysis.
To control for multiple tests, the FDR was estimated for all cis-
edQTLs (defined as the 200 kb between the SNP and the edited
site). Significant cis-edQTLs were identified using a genome-wide sig-
nificance threshold (FDR <0.05). For each editing site, the edQTL was
defined as the closest SNP with the most significant MatrixEQTL p
value.

RNA editing events related to drug response

Drug response data were obtained from the Genomics of Drug Sensi-
tivity in Cancer,46 which was developed by the Sanger Institute in the
United Kingdom. We applied the method described by Ruan et al.,47

performing a large-scale Spearman correlation test between RNA ed-
iting and drug response using the ‘rcorr’ function in the ‘hmisc’
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package. EDPs with an absolute Spearman correlation R0.3 and an
FDR <0.01 were considered a significant association.

Function and pathway enrichment analysis

Functional annotation of genes with DESs was performed using
Metascape48 (http://metascape.org/) to conduct a comprehensive
analysis of functional and pathway enrichment in the study. Meta-
scape is a powerful online analysis website integrating gene annota-
tion, functional enrichment analysis, and protein interaction analysis.

DATA AND CODE AVAILABILITY
All of the data that support the findings of this study are available
from the corresponding authors upon reasonable request.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2024.102127.

ACKNOWLEDGMENTS
This study was supported by grants from the National Natural Sci-
ence Foundation of China (nos. 62273175 and 62003165), the Funda-
mental Research Funds for the Central Universities (no. NS2023017),
and the Key R&D Projects of Jiangsu Province (no. BE2022843).

AUTHOR CONTRIBUTIONS
X.S. and Q.W. conceived the study and revised the manuscript. Y.W.
implemented the study and drafted the manuscript. J.Z., J.W., and
T.X. collected the public data, provided scientific advice, and contrib-
uted to the results interpretations. M.Z., J.L., and Y.W. provided tech-
nical support and performed the analysis. X.S., Q.W., and J.Z. assisted
with manuscript review and revision. All of the authors read and
approved the final manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
1. Kopper, O., de Witte, C.J., Lõhmussaar, K., Valle-Inclan, J.E., Hami, N., Kester, L.,

Balgobind, A.V., Korving, J., Proost, N., Begthel, H., et al. (2019). An organoid plat-
form for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25,
838–849. https://doi.org/10.1038/s41591-019-0422-6.

2. Piki, E., Dini, A., Raivola, J., Salokas, K., Zhang, K., Varjosalo, M., Pellinen, T.,
Välimäki, K., Veskimäe, K.T., Staff, S., et al. (2023). ROR1-STAT3 signaling contrib-
utes to ovarian cancer intra-tumor heterogeneity. Cell Death Dis. 9, 222–310. https://
doi.org/10.1038/s41420-023-01527-6.

3. Kossaï, M., Leary, A., Scoazec, J.-Y., and Genestie, C. (2018). Ovarian Cancer: A
Heterogeneous Disease. Pathobiology 85, 41–49. https://doi.org/10.1159/000479006.

4. O’Mahony, D.G., Ramus, S.J., Southey, M.C., Meagher, N.S., Hadjisavvas, A., John,
E.M., Hamann, U., Imyanitov, E.N., Andrulis, I.L., Sharma, P., et al. (2023).
Ovarian cancer pathology characteristics as predictors of variant pathogenicity in
BRCA1 and BRCA2. Br. J. Cancer 128, 2283–2294. https://doi.org/10.1038/s41416-
023-02263-5.

5. Prat, J. (2012). Ovarian carcinomas: five distinct diseases with different origins, ge-
netic alterations, and clinicopathological features. Virchows Arch. 460, 237–249.
https://doi.org/10.1007/s00428-012-1203-5.
12 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
6. Koshiyama, M., Matsumura, N., and Konishi, I. (2017). Subtypes of Ovarian Cancer
and Ovarian Cancer Screening. Diagnostics 7, 12. https://doi.org/10.3390/diag-
nostics7010012.

7. Köbel, M., Kalloger, S.E., Boyd, N., McKinney, S., Mehl, E., Palmer, C., Leung, S.,
Bowen, N.J., Ionescu, D.N., Rajput, A., et al. (2008). Ovarian Carcinoma Subtypes
Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 5, e232.
https://doi.org/10.1371/journal.pmed.0050232.

8. Nishikura, K. (2016). A-to-I editing of coding and non-coding RNAs by ADARs. Nat.
Rev. Mol. Cell Biol. 17, 83–96. https://doi.org/10.1038/nrm.2015.4.

9. Chalk, A.M., Taylor, S., Heraud-Farlow, J.E., and Walkley, C.R. (2019). The majority
of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol. 20,
268. https://doi.org/10.1186/s13059-019-1873-2.

10. Christofi, T., and Zaravinos, A. (2019). RNA editing in the forefront of epitranscrip-
tomics and human health. J. Transl. Med. 17, 319. https://doi.org/10.1186/s12967-
019-2071-4.

11. Montgomery, S.B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R.P., Ingle, C., Nisbett,
J., Guigo, R., and Dermitzakis, E.T. (2010). Transcriptome genetics using second gen-
eration sequencing in a Caucasian population. Nature 464, 773–777. https://doi.org/
10.1038/nature08903.

12. Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E.,
Veyrieras, J.-B., Stephens, M., Gilad, Y., and Pritchard, J.K. (2010). Understanding
mechanisms underlying human gene expression variation with RNA sequencing.
Nature 464, 768–772. https://doi.org/10.1038/nature08872.

13. Battle, A., Mostafavi, S., Zhu, X., Potash, J.B., Weissman, M.M., McCormick, C.,
Haudenschild, C.D., Beckman, K.B., Shi, J., Mei, R., et al. (2014). Characterizing
the genetic basis of transcriptome diversity through RNA-sequencing of 922 individ-
uals. Genome Res. 24, 14–24. https://doi.org/10.1101/gr.155192.113.

14. Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen, P.A.C., Monlong, J., Rivas,
M.A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P.G., et al. (2013).
Transcriptome and genome sequencing uncovers functional variation in humans.
Nature 501, 506–511. https://doi.org/10.1038/nature12531.

15. Bell, J.T., Pai, A.A., Pickrell, J.K., Gaffney, D.J., Pique-Regi, R., Degner, J.F., Gilad, Y.,
and Pritchard, J.K. (2011). DNAmethylation patterns associate with genetic and gene
expression variation in HapMap cell lines. Genome Biol. 12, R10. https://doi.org/10.
1186/gb-2011-12-1-r10.

16. Gibbs, J.R., van der Brug, M.P., Hernandez, D.G., Traynor, B.J., Nalls, M.A., Lai, S.-L.,
Arepalli, S., Dillman, A., Rafferty, I.P., Troncoso, J., et al. (2010). Abundant quanti-
tative trait loci exist for DNA methylation and gene expression in human brain.
PLoS Genet. 6, e1000952. https://doi.org/10.1371/journal.pgen.1000952.

17. Park, E., Jiang, Y., Hao, L., Hui, J., and Xing, Y. (2021). Genetic variation and
microRNA targeting of A-to-I RNA editing fine tune human tissue transcriptomes.
Genome Biol. 22, 77. https://doi.org/10.1186/s13059-021-02287-1.

18. Cuddleston, W.H., Li, J., Fan, X., Kozenkov, A., Lalli, M., Khalique, S., Dracheva, S.,
Mukamel, E.A., and Breen, M.S. (2022). Cellular and genetic drivers of RNA editing
variation in the human brain. Nat. Commun. 13, 2997. https://doi.org/10.1038/
s41467-022-30531-0.

19. Cuddleston, W.H., Fan, X., Sloofman, L., Liang, L., Mossotto, E., Moore, K.,
Zipkowitz, S., Wang,M., Zhang, B.,Wang, J., et al. (2022). Spatiotemporal and genetic
regulation of A-to-I editing throughout human brain development. Cell Rep. 41,
111585. https://doi.org/10.1016/j.celrep.2022.111585.

20. Zhou, X., Mitra, R., Hou, F., Zhou, S., Wang, L., and Jiang, W. (2023). Genomic
Landscape and Potential Regulation of RNA Editing in Drug Resistance. Adv. Sci.
10, 2207357. https://doi.org/10.1002/advs.202207357.

21. Wong, T.-L., Loh, J.-J., Lu, S., Yan, H.H.N., Siu, H.C., Xi, R., Chan, D., Kam, M.J.F.,
Zhou, L., Tong, M., et al. (2023). ADAR1-mediated RNA editing of SCD1 drives drug
resistance and self-renewal in gastric cancer. Nat. Commun. 14, 2861. https://doi.org/
10.1038/s41467-023-38581-8.

22. Wang, Y., Song, X., and Xu, T. (2021). Identification and Analysis of RNA Editing
Events in Ovarian Serous Cystadenoma Using RNA-seq Data. Curr. Gene Ther.
21, 258–269. https://doi.org/10.2174/1566523221666210211111324.

23. Mansi, L., Tangaro, M.A., Lo Giudice, C., Flati, T., Kopel, E., Schaffer, A.A.,
Castrignanò, T., Chillemi, G., Pesole, G., and Picardi, E. (2021). REDIportal: millions

http://metascape.org/
https://doi.org/10.1016/j.omtn.2024.102127
https://doi.org/10.1016/j.omtn.2024.102127
https://doi.org/10.1038/s41591-019-0422-6
https://doi.org/10.1038/s41420-023-01527-6
https://doi.org/10.1038/s41420-023-01527-6
https://doi.org/10.1159/000479006
https://doi.org/10.1038/s41416-023-02263-5
https://doi.org/10.1038/s41416-023-02263-5
https://doi.org/10.1007/s00428-012-1203-5
https://doi.org/10.3390/diagnostics7010012
https://doi.org/10.3390/diagnostics7010012
https://doi.org/10.1371/journal.pmed.0050232
https://doi.org/10.1038/nrm.2015.4
https://doi.org/10.1186/s13059-019-1873-2
https://doi.org/10.1186/s12967-019-2071-4
https://doi.org/10.1186/s12967-019-2071-4
https://doi.org/10.1038/nature08903
https://doi.org/10.1038/nature08903
https://doi.org/10.1038/nature08872
https://doi.org/10.1101/gr.155192.113
https://doi.org/10.1038/nature12531
https://doi.org/10.1186/gb-2011-12-1-r10
https://doi.org/10.1186/gb-2011-12-1-r10
https://doi.org/10.1371/journal.pgen.1000952
https://doi.org/10.1186/s13059-021-02287-1
https://doi.org/10.1038/s41467-022-30531-0
https://doi.org/10.1038/s41467-022-30531-0
https://doi.org/10.1016/j.celrep.2022.111585
https://doi.org/10.1002/advs.202207357
https://doi.org/10.1038/s41467-023-38581-8
https://doi.org/10.1038/s41467-023-38581-8
https://doi.org/10.2174/1566523221666210211111324


www.moleculartherapy.org
of novel A-to-I RNA editing events from thousands of RNAseq experiments. Nucleic
Acids Res. 49, D1012–D1019. https://doi.org/10.1093/nar/gkaa916.

24. Chauhan, S.C., Singh, A.P., Ruiz, F., Johansson, S.L., Jain, M., Smith, L.M., Moniaux,
N., and Batra, S.K. (2006). Aberrant expression of MUC4 in ovarian carcinoma: diag-
nostic significance alone and in combination with MUC1 and MUC16 (CA125).
Mod. Pathol. 19, 1386–1394. https://doi.org/10.1038/modpathol.3800646.

25. Espenschied, C.R., LaDuca, H., Li, S., McFarland, R., Gau, C.-L., and Hampel, H.
(2017). Multigene Panel Testing Provides a New Perspective on Lynch Syndrome.
J. Clin. Oncol. 35, 2568–2575. https://doi.org/10.1200/JCO.2016.71.9260.

26. Eggington, J.M., Greene, T., and Bass, B.L. (2011). Predicting sites of ADAR editing in
double-stranded RNA. Nat. Commun. 2, 319. https://doi.org/10.1038/ncomms1324.

27. Vacic, V., Iakoucheva, L.M., and Radivojac, P. (2006). Two Sample Logo: a graphical
representation of the differences between two sets of sequence alignments.
Bioinformatics 22, 1536–1537. https://doi.org/10.1093/bioinformatics/btl151.

28. Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
https://doi.org/10.1093/nar/gkq603.

29. Jiang, H., Xi, Q., Wang, F., Sun, Z., Huang, Z., and Qi, L. (2015). Increased expression
of neuropilin 1 is associated with epithelial ovarian carcinoma. Mol. Med. Rep. 12,
2114–2120. https://doi.org/10.3892/mmr.2015.3580.

30. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinf. 9, 559. https://doi.org/10.1186/1471-2105-9-559.

31. D’Andrilli, G., Kumar, C., Scambia, G., and Giordano, A. (2004). Cell Cycle Genes in
Ovarian Cancer: Steps Toward Earlier Diagnosis and Novel Therapies. Clin. Cancer
Res. 10, 8132–8141. https://doi.org/10.1158/1078-0432.CCR-04-0886.

32. Barnaba, N., and LaRocque, J.R. (2021). Targeting cell cycle regulation via the G2-M
checkpoint for synthetic lethality in melanoma. Cell Cycle 20, 1041–1051. https://doi.
org/10.1080/15384101.2021.1922806.

33. Cunningham, J.M., Vierkant, R.A., Sellers, T.A., Phelan, C., Rider, D.N., Liebow, M.,
Schildkraut, J., Berchuck, A., Couch, F.J., Wang, X., et al. (2009). Cell cycle genes and
ovarian cancer susceptibility: a tagSNP analysis. Br. J. Cancer 101, 1461–1468. https://
doi.org/10.1038/sj.bjc.6605284.

34. Li, X., Wang, C., Wang, S., Hu, Y., Jin, S., Liu, O., Gou, R., Nie, X., Liu, J., and Lin, B.
(2021). YWHAE as an HE4 interacting protein can influence the malignant behav-
iour of ovarian cancer by regulating the PI3K/AKT and MAPK pathways. Cancer
Cell Int. 21, 302. https://doi.org/10.1186/s12935-021-01989-7.

35. Itamochi, H., Oishi, T., Oumi, N., Takeuchi, S., Yoshihara, K., Mikami, M., Yaegashi,
N., Terao, Y., Takehara, K., Ushijima, K., et al. (2017). Whole-genome sequencing re-
vealed novel prognostic biomarkers and promising targets for therapy of ovarian clear
cell carcinoma. Br. J. Cancer 117, 717–724. https://doi.org/10.1038/bjc.2017.228.
36. Alsamman, K., and El-Masry, O.S. (2018). Staurosporine alleviates cisplatin chemo-
resistance in human cancer cell models by suppressing the induction of SQSTM1/
p62. Oncol. Rep. 40, 2157–2162. https://doi.org/10.3892/or.2018.6615.

37. Berek, J.S., and Bast, R.C. (2003). Epithelial Ovarian Cancer. In Holland-frei Cancer
Medicine, 6th edition (BC Decker).

38. Prat, J. (2012). New insights into ovarian cancer pathology. Ann. Oncol. 23, x111–
x117. https://doi.org/10.1093/annonc/mds300.

39. Zhang, Y., Zou, D., Zhu, T., Xu, T., Chen, M., Niu, G., Zong, W., Pan, R., Jing, W.,
Sang, J., et al. (2022). Gene Expression Nebulas (GEN): a comprehensive data portal
integrating transcriptomic profiles across multiple species at both bulk and single-cell
levels. Nucleic Acids Res. 50, D1016–D1024. https://doi.org/10.1093/nar/gkab878.

40. Zhang, Y., Parmigiani, G., and Johnson, W.E. (2020). ComBat-seq: batch effect
adjustment for RNA-seq count data. NAR Genom. Bioinform. 2, lqaa078. https://
doi.org/10.1093/nargab/lqaa078.

41. Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat.
Biotechnol. 37, 907–915. https://doi.org/10.1038/s41587-019-0201-4.

42. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup
(2009). Genome Project Data Processing Subgroup (2009). The Sequence
Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.
org/10.1093/bioinformatics/btp352.

43. Picardi, E., and Pesole, G. (2013). REDItools: high-throughput RNA editing detection
made easy. Bioinformatics 29, 1813–1814. https://doi.org/10.1093/bioinformatics/
btt287.

44. Tran, S.S., Zhou, Q., and Xiao, X. (2020). Statistical inference of differential RNA-ed-
iting sites from RNA-sequencing data by hierarchical modeling. Bioinformatics 36,
2796–2804. https://doi.org/10.1093/bioinformatics/btaa066.

45. Shabalin, A.A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix oper-
ations. Bioinformatics 28, 1353–1358. https://doi.org/10.1093/bioinformatics/bts163.

46. Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N.,
Beare, D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of Drug Sensitivity in
Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
Nucleic Acids Res. 41, D955–D961. https://doi.org/10.1093/nar/gks1111.

47. Ruan, H., Li, Q., Liu, Y., Liu, Y., Lussier, C., Diao, L., and Han, L. (2022). GPEdit: the
genetic and pharmacogenomic landscape of A-to-I RNA editing in cancers. Nucleic
Acids Res. 50, D1231–D1237. https://doi.org/10.1093/nar/gkab810.

48. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O.,
Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented
resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523. https://
doi.org/10.1038/s41467-019-09234-6.
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 13

https://doi.org/10.1093/nar/gkaa916
https://doi.org/10.1038/modpathol.3800646
https://doi.org/10.1200/JCO.2016.71.9260
https://doi.org/10.1038/ncomms1324
https://doi.org/10.1093/bioinformatics/btl151
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.3892/mmr.2015.3580
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1158/1078-0432.CCR-04-0886
https://doi.org/10.1080/15384101.2021.1922806
https://doi.org/10.1080/15384101.2021.1922806
https://doi.org/10.1038/sj.bjc.6605284
https://doi.org/10.1038/sj.bjc.6605284
https://doi.org/10.1186/s12935-021-01989-7
https://doi.org/10.1038/bjc.2017.228
https://doi.org/10.3892/or.2018.6615
http://refhub.elsevier.com/S2162-2531(24)00014-3/sref37
http://refhub.elsevier.com/S2162-2531(24)00014-3/sref37
https://doi.org/10.1093/annonc/mds300
https://doi.org/10.1093/nar/gkab878
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btt287
https://doi.org/10.1093/bioinformatics/btt287
https://doi.org/10.1093/bioinformatics/btaa066
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gkab810
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
http://www.moleculartherapy.org

	Global characterization of RNA editing in genetic regulation of multiple ovarian cancer subtypes
	Introduction
	Results
	Subtype-specific characteristics of RNA editing patterns in OV
	Differential expression patterns of ADAR in OV subtypes
	Distinct patterns of differential editing in OV subtypes
	Co-editing network modules and their correlation with OV
	Association of RNA editing with genetic variants
	RNA editing as a potential therapeutic target for OV

	Discussion
	Materials and methods
	Data sources for OV subtypes
	RNA editing identification and annotation
	Overall RNA editing
	DRE
	WGCNA
	edQTL analysis
	RNA editing events related to drug response
	Function and pathway enrichment analysis

	Data and code availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


