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Abstract

RNA-RNA interactions are a key feature of post-transcriptional gene regulation in all domains of life. While ever more experimental protocols
are being developed to study RNA duplex formation on a genome-wide scale, computational methods for the analysis and interpretation of
the underlying data are lagging behind. Here, we present ChimericFragments, an analysis framework for RNA-seq experiments that produce
chimeric RNA molecules. ChimericFragments implements a novel statistical method based on the complementarity of the base-pairing RNAs
around their ligation site and provides an interactive graph-based visualization for data exploration and interpretation. ChimericFragments detects
true RNA-RNA interactions with high precision and is compatible with several widely used experimental procedures such as Rll-seq, LIGR-
seq or CLASH. We further demonstrate that ChimericFragments enables the systematic detection of novel RNA regulators and RNA-target
pairs with crucial roles in microbial physiology and virulence. ChimericFragments is written in Julia and available at: https://github.com/maltesie/

ChimericFragments.

Introduction

Base-pairing of two complementary RNA sequences is a fun-
damental principle of gene expression control in many, if
not all, organisms. In eukaryotes, numerous different classes
of non-coding RNAs have been described (e.g. microRNAs,
long non-coding RNAs, and circular RNAs) controlling tran-
scription, translation, or both (1,2). In bacteria, the majority
of base-pairing regulators classify as small RNAs (sRNAs),
which are ~50-250 nucleotides in length and typically act to-
gether with RNA chaperones to recognize target transcripts
through RNA duplex formation (3). The consequences asso-
ciated with successful base-pairing range from translation in-
hibition and transcript degradation to translation activation
and increased protein synthesis (4,5).

Comparative genomics and global transcriptome analysis
have uncovered thousands of non-coding RNAs with usually
unknown regulatory functions (6). To close this gap, vari-
ous experimental protocols have been developed to capture
RNA-RNA interactions at a transcriptome-wide scale (7-
10). These tools typically rely on proximity-based ligation of
two RNAs followed by high-throughput sequencing of the
chimeric RNA molecules, allowing to infer regulatory inter-
actions for annotated, as well as newly identified transcripts.
For example, LIGR-seq (LIGation of interacting RNA fol-
lowed by high-throughput sequencing) led to the discovery of
small nucleolar (sno)RNAs interacting with mRNAs in hu-
man cells (11), whereas RIL-seq (RNA interaction by liga-
tion and sequencing) revealed novel RNA-RNA interactions
and sRNA regulators in bacteria (12,13). Other key technolo-
gies for global RNA interactome analysis are CLASH (14),
SPLASH (15), GRIL-seq (16) and PARIS (17), all of which
enable the genome-wide annotation of RNA-RNA pairs.

Although the above mentioned protocols differ in their ex-
perimental design, they all produce chimeric sequencing reads
that can be analyzed through various bioinformatic tools.
Previously, each method came with its own computational
pipeline to detect and quantify RNA duplex formation, how-
ever, several new tools now provide a generic platform for data
analysis. For example, the RNANyg (18) platform relies on the
segemehl mapping tool (19) for split read alignment, groups
similar split alignments into clusters, and annotates these clus-
ters with overlapping genome features. The resulting interac-
tions are statistically evaluated based on their frequency and
the number of complementary bases as well as the hybridiza-
tion energy that is computed for every read. Similarly, ChiRA
(20) enables RNA duplex detection with a two-pass mapping
strategy using bwa-mem (21), which aligns long segments with
high accuracy in a first run and deals with multi-mapped short
segments in a second run. ChiRA offers static plots summa-
rizing all results and base-pairing predictions for each read,
however, both tools do not allow interactive data visualiza-
tion.

Here, we introduce ChimericFragments, a computational
platform for the analysis and interpretation of RNA-RNA in-
teraction datasets starting from raw sequencing files (Figure
1). Our platform enables rapid computation of RNA-RNA
pairs, RNA duplex prediction, and a graph-based, interac-
tive visualization of the results. ChimericFragments employs
a new algorithm based on the complementarity of chimeric
fragments around the ligation site, which boosts the identifi-
cation of bona fide RNA duplexes. When applied to a pub-
lished dataset, ChimericFragments allowed the discovery a
novel sSRNA that controls virulence gene expression in the
major human pathogen, Vibrio cholerae. ChimericFragments
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Figure 1. Graphical summary of the computational (top) and the visual component (bottom) of ChimericFragments. Different experimental procedures
(e.g. Rll-seq, CLASH, LIGR-seq) produce chimeric RNA molecules and sequence reads. Alignments of those reads are collected and sorted according to
the position on the read they belong to (top left). Alignments are classified to be single or chimeric and ligation points are saved (top middle). For each
ligation point, the complementarity between the corresponding fragments is computed. A null model is computed for pairs of fragments from random
positions on the genome and used to assign a p-value to ligated fragments (top right). The global RNA-RNA network can be explored in an interactive
graph-based visualization with colorcoded annotation types and complementarity strength. Edge thickness and node size relate to the number of
represented reads (bottom middle). Each ligation event can be inspected together with a base-pairing prediction (bottom left). All base-pairing predictions
for a selected transcript are visualized together and for each position, all partners are highlighted interactively (bottom right).

is implemented in Julia and available at: https://github.com/
maltesie/ChimericFragments.

Materials and methods

Complete genome annotation

ChimericFragments tags each alignment with an annotation.
To capture all chimeras in a dataset, it relies on a fully anno-
tated genome for both forward and reverse strands. The qual-
ity of the results depends on the quality of the annotation, so it
is recommended to supply ChimericFragments with an accu-
rate annotation of non-coding RNAs and 5" and 3' UTRs. The
automatic annotation of the genome requires a set of coding
sequences (CDS) for which the regions up- and downstream
are extended up to a maximum length or until another anno-
tation is reached. The remaining regions of the genome will
then be annotated for each strand as IGRs named by their
flanking genes.

Reads preprocessing

As a first step in the analysis, ChimericFragments uses fastp
to preprocess the raw sequencing reads (22). fastp removes
adapters from the reads and read ends with low quality get
trimmed and short reads discarded.

Table 1.
alignments

Synthetic datasets to benchmark bwa-mem2 for chimeric

Fragment length Sequencing error

15 1
30 1
45 1

Uniform random, 15-45 Uniform random, 0 or 1

Chimeric alignments with bwa-mem2

ChimericFragments uses bwa-mem2 (21) to map reads to the
genome. Aligned fragments with alternative alignments (SAM
format XA tag not set) are discarded. To benchmark bwa-
mem?2 in its ability to detect chimeric alignments, several syn-
thetic datasets were generated from and aligned to a random
sequence of 5 million nucleotides length with equal probabil-
ity across the bases. All of them are comprised of chimeric se-
quences of different length with a mutation at a random posi-
tion or without. The datasets are summarized in Table 1. To in-
vestigate the effect of different TPRs and FPRs on the analysis
results of ChimericFragments (Supplementary Figure S5d, e),
we created a library of 1 million chimeric reads randomly sam-
pled with lengths from 15 to 40 and a probability of 0.5 of a
randomly incorporated nucleotide substitution from 200 pairs
of interacting regions in the genome of V. cholerae and applied
ChimericFragments to it.
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Table 2. Classification criteria for reads

Class Criterion
single single alignment (same location for PE)
chimeric split alignment with at least 2 parts

self-chimeric split alignment with parts mapping to same
annotation

multi-chimeric split alignment with at least 3 parts

Annotation of alignments

Every aligned fragment is annotated uniquely. To efficiently
find the annotation with the largest overlap, a binary interval
tree is constructed to find m overlaps in a set of n annotations
in O(m + log n). The annotation overlapping the most with
the alignment is used to tag it with a name and a type and
in cases of tied overlaps, the annotation with the lowest left
coordinate on the genome is chosen.

Sorting, merging and classification of alignments
All alignments are sorted first with respect to the read they
come from and second to the order of their origin on the read
sequence from 5’ to 3'. This procedure results in an ordered
set of alignments necessary to detect ligation events between
adjacent fragments. If paired end (PE) reads are analyzed, frag-
ments from read1 and read2 are merged if their alignment in-
tervals on the reference are within a specified distance in the
correct order and if the same is true for all fragments that fol-
low towards the 3’ end. The resulting set of merged alignments
is then classified into being of single or chimeric origin and
if classified as a chimera, further checked to be self-chimeric
or multi- chimeric according to the criteria listed in Table 2.
Reads which do not fall in any of the listed classes, e.g. if only
one of two PE reads can be mapped, are discarded.

Ligation points

Each chimeric read is further analyzed and checked for liga-
tion events. A ligation event is defined as a split alignment of
two adjacent chimeric fragments on the same read with a user-
specified maximal distance of a few nucleotides. The coordi-
nates of the nucleotide closest to the partner fragment are de-
fined as the ligation points of those fragments (Figure 1, top).
Ligation points always sit on the edge of an aligned fragment
on the side pointing towards the ligated partner. To identify
ligation points, first, the read length chosen in the experiment
must be sufficiently high to cover at least two fragments and
second, the parameters for mapping the reads to the genome
will define a lower boundary for the detection of fragments
on the reads.

Computation of complementarity

ChimericFragments computes the complementarity of two lig-
ated fragments as a local alignment using the Smith-Waterman
(SW) algorithm with a substitution matrix. Instead of repre-
senting mutation probabilities with the scores, we designed
a matrix that roughly represents binding affinity between two
nucleotides (G-C: 5, A-U: 4, G-U: 0, other pairs: —7, open gap:
—8, extend gap: —3). The parameterization of the matrix can
be chosen by the user. Predictions are made for two intervals
of specified length around each ligation point of a ligated pair
of fragments. To evaluate each base-pairing prediction, we as-
sign a score s to it. For this, we take the complementarity score

sc from the SW algorithm and subtract it by a weighted shift
score sg:

S = Sc¢ — WiSs (1)

The shift score s¢ is defined as the absolute difference of
the ends of the complementarity regions found in the two se-
quences with respect to the observed intervals. This score can
be used to select for base-pairing predictions which end at sim-
ilar positions with respect to ligation points. The weight wy
can be defined by the user. It is set to 1 by default to facilitate
a moderate influence of shifted complementarity regions on
the total score.

Statistical evaluation

ChimericFragments implements two statistical evaluations of
chimeras. First, we construct a null model by sampling com-
plementarity scores s; between random patches on the genome
of specified length. The empirical cumulative density function
ECDF of those scores s is computed and a p-value can be at-
tributed to predictions:

p=1—ECDFs) (2)

In general, multiple ligation events are found for a given
pair of annotations. To summarize the events, we assess the
distribution of the p-values for each pair and combine them
by first computing the FDR with the method of Benjamini and
Hochberg (23). ChimericFragments offers multiple methods
to combine the p-values from ligation points of the same in-
teraction. Either by taking the minimum of the FDR values
of all sampled ligation points for one interaction as a com-
bined p-value to represent the probability of error when con-
sidering the strongest complementarity found, or by using the
methods proposed by Fisher (24) or Stouffer (25), which both
test against the null hypothesis of a uniform distribution of
p-values in the null model they are derived from. The FDR re-
ported in the results tables is based on all combined p-values
and is used to select interactions shown in the graph. To assess
the possibility of detecting RNA-RNA interactions merely be-
cause both partners are close to each other or the chaperone
protein of interest by chance, each pair gets assigned a statis-
tical significance using Fisher’s exact test according to (26).
The Fisher exact test queries a hypergeometric distribution
to evaluate a contingency table of the two binary variables
RNAT1 and RNA2, which are true if the respective part of a
chimeric pair or a single alignment map to the region of the
corresponding annotation, and false otherwise. This behavior
is adjustable in the configuration file to exclude single align-
ments from the background or ignore the order in which the
fragments are present on a read.

Comparison of ChimericFragments with RNAnUE

We collected 93 published and experimentally verified
RNA-RNA interactions (56 for E. coli and 37 for V.
cholerae (27,28). The complementary regions computed by
ChimericFragments in two published RIL-seq experiments
(13,27) were compared to this reference set and for each val-
idated interaction, the best overlap is reported. RNANyg was
run with default parameters (params.cfg on https:/github.
com/ChristopherAdelmann/RNAnue/) in paired-end mode.
The resulting set of interacting regions was compared to our
reference set and the best overlap was reported.


https://github.com/ChristopherAdelmann/RNAnue/

Visualization of RNA-RNA networks

ChimericFragments visualizes the network of interactions as a
graph. The nodes in the graph correspond to annotations on
the genome, and an edge represents all chimeras associated
with the two annotations connected by the edge (Figure 1,
bottom). Edges are directed and the direction of the edge rep-
resents the order, in which the fragments are found on their
reads. An edge pointing from annotation A to annotation B
indicates the fragment mapping to A was found further up-
stream on the read(s) than the fragment mapping to B. In our
graphical representation of the network, the size of the nodes
and edges correspond to the share of reads within the selected
set of interactions. ChimericFragments is implemented as a
web application based on Dash and Dash Bio (29) to support
fast drawing and smooth repositioning of hundreds of nodes.

Node positioning in graph drawings

To draw the RNA-RNA interaction network without any
prior positional information on the nodes of the graph, we
use a technique called stress majorization (30) and choose the
parameterization of this algorithm according to (31). Stress
majorization is applied to each connected component in the
graph and the components are then placed with a simple guil-
lotine bin packing algorithm (32) that fills a rectangle with
all connected components while minimizing empty space be-
tween them. Together, those two techniques lead to repro-
ducible graph drawings, which are similar for graphs with
similar sets of nodes and edges.

Plotting ligation points

Upon clicking on an edge in the graph, an interactive scatter
plot of the ligation points in the coordinate frame of the an-
notations (Figure 1 bottom left, Supplementary Figure S1b) is
displayed. In this frame, +1 refers to the first nucleotide in the
annotation, counting from —1 down in the upstream direc-
tion and from +1 up in the downstream direction. For merged
annotations containing a CDS, +1 corresponds to the first nu-
cleotide in the CDS. Each dot in the scatter plot shows the
corresponding region of complementarity when hovered upon
and size and color of the dot correlate with the number of sup-
porting reads and the FDR associated with the prediction. An
FDR-cutoff can be set which applies to FDR values computed
from the p-values of the ligation points of currently selected
interactions.

Plotting aggregated complementarity

For every node in the graph, all predictions between the node
and all of its partners with an FDR below a specified cut-off
in the graph are aggregated in a summary plot (Figure 1 bot-
tom right, Supplementary Figure S1c). To compute this sum-
mary, for every position in the annotation all ligation points
with overlapping regions of complementarity from all interac-
tions in the current selection are summed up. Hovering upon
the plotted data shows for every position in the correspond-
ing annotation all partners with a complementary site at this
position.

Bacterial strains and growth conditions

All strains used in this study are listed in Supplementary Table
S3. V. cholerae and E. coli strains were grown aerobically in LB
or AKI medium at 37°C. Where appropriate, antibiotics were
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used at following concentrations: 20 ug/ml chloramphenicol
and 50 pg/ml kanamycin.

Plasmid construction

All plasmids and DNA oligonucleotide sequences used in this
study are listed in Supplementary Tables S2 and S4, respec-
tively. GFP fusions were cloned as described previously (33)
using previously determined transcriptional start sites (34,35).
Inserts were amplified from V. cholerae genomic DNA with the
respective oligonucleotide combinations indicated and cloned
into linearized pXG10 vectors (KPO-1702/-1703) via Gibson
assembly (36); pSM002 (KPO-5251/-5252), pSM003 (KPO-
5247/-5248), pJR004 (KPO-2460/-2462), p]G020 (KPO-
8756/-8757) and pAL069 (KPO-9358/- 9359). For pNP040
(KPO-1832/-1833) and pNP045 (KPO-1838/-1839), pXG10
and respective inserts were digested with Nsil and Nhel and
ligated. The constitutive sSRNA expression plasmid pAL062
(KPO-9233/-9234) was constructed by PCR amplification of
the respective sSRNA from V. cholerae genomic DNA and
cloned into linearized pEVS143 vector (37) (KPO-0092/-
1397) via Gibson assembly. Site directed mutagenesis of
pJRO06 using KPO-9373 and -9374 resulted in pALO77.

Fluorescence measurements

To validate interactions captured by RIL-seq, GFP fluores-
cence measurements were performed as described previously
(38) with E. coli Top10 cells cultivated overnight in LB
medium. Cells were washed and resuspended in PBS and rel-
ative fluorescence was measured with a Spark 10 M plate
reader (Tecan). Control strains not expressing fluorescent pro-
teins were used to subtract background fluorescence.

RNA isolation and northern blot analysis

Total RNA sample preparation and Northern blot analy-
ses were performed as previously described (39). Membranes
were hybridized in Roti-Quick buffer (Carl Roth) with [32P]-
labelled DNA oligonucleotides at 42°C. Signals were visu-
alized using a Typhoon Phosphorimager (GE Healthcare).
Oligonucleotides for Northern blot analyses are listed in
Supplementary Table S4.

Western blot analysis

Total protein sample preparation and western blot analyses
of 3XFLAG-tagged fusions were performed as previously de-
scribed (40). 3XFLAG-tagged fusions were detected using a
mouse anti-FLAG antibody (Sigma; F1804). RNAP« served
as loading control and was detected using rabbit anti-RNAP«x
antibody (BioLegend; WP003). Signals were visualized using
a Fusion FX EDGE imager and quantified with BIO-1D soft-
ware (Vilber Lourmat).

Results

ChimericFragments combines computational
analysis and interactive visualization

Experimental workflows such as RIL-seq (13), GRIL-seq (16),
CLASH (14), SPLASH (15) and PARIS (17) generate chimeric
sequencing reads that are analyzed through tailored bioinfor-
matics pipelines (Table 3). The resulting data are typically pre-
sented as large tables providing information on the identity,
frequency and statistical significance of the detected RNA-
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Table 3. Comparison of bioinformatics analyses of various RNA-interactome protocols

Protocol Type of interactome

Summary of bioinformatics analysis

Improvements offered by
ChimericFragments

Global RBP-licensed
interactome

RIL-seq (13)

Analysis with the RILseq package:1.
Separate mapping of paired-end reads to
detect chimeric reads.2. Detect interacting

simplicity, complementarity-based
statistics, interactive browser, accuracy of

mapping

regions of the genome using Fisher exact
test.3. Compare to total RNA and compute
hybridization energy between full length

transcripts.

GRIL-seq Enrichment of targets
(16) of single sSRNA

1. Select reads containing sSRNA of
interest.2. Generate coverage of the ligated

simplicity, interactive browser

targets.3. Compare with DGEs under
overexpression of the SRNA, and compute
base-pairing predictions with IntaRNA.

SPLASH

Global interactome

1. Map with bwa-mem, remove splice
(15) junctions, and detect intra- and
inter-molecular interactions.

simplicity, interactive browser,
complementarity- and frequency-based
statistics

CLASH (14) Global RBP-licensed Analysis with the hyb package:1. Mapping simplicity, interactive browser,
interactome with several mappers possible.2. Detection complementarity- and frequency-based
of chimeras based on several filtering statistics
criteria.
PARIS (17) Global interactome Analysis with a very complicated set of simplicity, interactive browser, accessibility
scripts and commands:1. Map with STAR of results
and detect intra- and inter-molecular
interactions.2. Generate static plots per
interaction showing dot-bracket-encoded
base-pairing.
LIGR-seq Global interactome Analysis with the Aligater package:1. Map interactive browser,
(11) with bowtie, remove splice junctions, and complementarity-based statistics

detect chimeras.2. Test for significance
with a binomial model based on relative
abundance of mapping hits per transcript

annotation.

RNA interactions. However, this type of tabular presentation
of the results fails to address the complex network structure
associated with global RNA interactome studies and does not
provide information on the positions of the relevant RNA
duplexes (41). ChimericFragments closes both of these gaps
employing six main features (summarized in Figure 1) and
is compatible with a wide range of experiments producing
chimeric RNA sequences.

The analysis of each dataset is split into three main cat-
egories: configuration, computation and visualization. The
configuration is set by defining the parameters in the template
configuration file and all parameters are outlined in the sup-
plied configuration template (default_config.jl). The compu-
tational part follows several main steps:(i) preprocessing, (ii)
generation of a complete genome annotation, (iii) split read
alignment using bwa-mem?2 (21,42), (iv) sorting, merging and
classification of the produced alignments and (v) statistical
evaluation of all interactions (Figure 1, top). For the latter,
ChimericFragments captures ligation sites between two frag-
ments and computes the complementarity around them us-
ing a parameterized local alignment procedure, which is op-
timized for complementary pairs and penalizes gaps. The re-
sulting complementarity score is compared to a random model
to generate p-values (Figure 1, top right). ChimericFragments
requires a single configuration file together with two scripts:
one for the computational analysis and one to start the web

application, which hosts the interactive graphical browser and
allows sharing of experimental results online.

The browser uses a graph-based visualization displaying
the annotated regions of the genome as nodes and the aggre-
gate of all chimeras mapping to the same two nodes as edges
(Figure 1, bottom middle). Additional interactive plots enable
the prediction of RNA duplexes formation for every chimeric
sequence displaying the frequency of the interaction, as well
the position of RNA duplex formation relative to the anno-
tation of the genes involved (Figure 1, bottom left). Finally,
the aggregate of all detected ligation sites is shown for each
interacting transcript, allowing for the identification of pre-
ferred base-pairing sequences in regulatory RNAs and their
targets (Figure 1, bottom right). The visualization is imple-
mented as a web application and can be used to share exper-
imental results in the local network or over the internet. A
detailed description of the control elements and the multiple
data visualization modes in the graphical interface is provided
in Supplementary Figures S1--54.

Optimized mapping parameters increase the
number of detected chimeras

A key step in the detection and analysis of base-pairing in-
teractions from global RNA interactome studies is the map-
ping of chimeric sequencing reads to specific positions in the
genome. Bwa-mem?2 is an architecture-aware implementation


https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data

of the bwa-mem algorithm, which can handle split alignments
(21,42). We decided to use bwa-mem?2 over other compara-
ble algorithms, such as bowtie2 or STAR, based on former
studies and due to its computational efficiency and precision
(18,43,44).

To determine the suitability of bwa-mem2 for our ap-
proach, we set up several benchmarks for the aligner. Specifi-
cally, we quantified the sensitivity and precision of bwa-mem2
with respect to the size of the sequencing read and putative
sequencing errors. We generated several synthetic sequence
libraries of different fragment lengths (15, 25 and 40 nu-
cleotides) with sequencing errors (Table 1). The libraries were
each aligned with different values for two limiting parameters,
i.e. seed length and minimum alignment score. bwa-mem2
aligns sequences of various lengths without sequencing error
to the correct position with a precision of >99% (45). A sin-
gle sequencing error per read resulted in a dependency of the
TPR and the FPR on the mapping parameters, as well as the
length of the aligned sequence (Supplementary Figure S5a).
We applied the same evaluation to another synthetic dataset
of mixed length and an error probability of 0.5 per sequence
(Supplementary Figure SSb, ¢). For this dataset, up to 82%
of all chimeras were correctly aligned (highlighted in orange)
with a FPR of 0.0119, while other combinations of seed length
and minimum alignment score recovered 79%, 74% and 67%
of the chimeras with FPRs of 0.054, 0.0003 and 0.0002, re-
spectively (shown in red, violet and green). These findings
highlight the importance of the alignment parameters for the
detection of chimeric fragments, as well as a trade-off towards
false discovery, which comes with less stringent parameters.

We next tested the impact of the selected TPRs and FPRs
on the analysis output. To this end, we generated a synthetic
dataset of 200 pairs of interacting regions and sampled one
million chimeras. We then analyzed this dataset using de-
fault parameters, only varying the seed length and the mini-
mum alignment score. For the TPRs, the number of recovered
chimeras per interacting pair almost perfectly matched the
TPR found before (compare Supplementary Figure S5b and
d). For the FPRs, we detected a high number of false chimeras,
however, the vast majority came with drastically lower counts
than the true chimeras (Supplementary Figure S5e). Few sys-
tematically false chimeras occurred in duplicated regions of
the genome, which hindered bwa-mem?2 to unequivocally map
these reads. This behavior will lead to falsely detected interac-
tions between repeated regions in the genome, such as multiple
copies of ribosomal or tRNA genes. When annotated accord-
ingly, these false hits are easy to remove by the user. Alter-
natively, alignments matching to repeated regions can be ex-
cluded from the analysis in the configuration of ChimericFrag-
ments. If repeats are masked properly, bwa-mem2 will not
map to the masked regions, also circumventing this problem.

To test our findings from the synthetic datasets with exper-
imental data, we applied ChimericFragments to a previously
published RIL-seq experiment containing two independent bi-
ological replicates (27). Since no ground truth is available for
these experiments, we used the correlation between the num-
ber of detected chimeric reads per interaction in the replicates
as an indicator for the frequency of random misalignment. The
Pearson correlation coefficient of the chimeric in the two repli-
cates was consistently high (>0.9, Supplementary Figure S5f).
To get a more sensitive measure of our results, we also com-
puted the rank correlation and found it to be very strong
(>0.9) for the top 10% fraction of the dataset, and decreasing
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when more interactions with lower read counts were added
(Supplementary Figure S5g). All following analyses of exper-
imental data were performed with a seed length of 12 and a
minimum alignment score of 17, as this combination showed
the best compromise between the TPR and the FPR in our syn-
thetic benchmarks and was comparable to stricter parameters
applied for the experimental data.

ChimericFragments uses bwa-mem2 to compute chimeric
alignments which have unique coordinates in the genome.
In contrast, ChiRA relies on the output-identical but slower
bwa-mem and additionally considers alignments to multiple
very similar locations in the genome. This can result in higher
mapping rates for fragments shorter than 15 nucleotides (20).
RNANyue computes alignments with segemehl and the tool’s
higher precision should result in slightly increased detection
rates for true chimeras and lower rates of false chimeras at
the expense of the required computational resources.

Ligation points serve as indicators for stable RNA
duplex formation

The above mentioned tools for global RNA interactome stud-
ies (e.g. RIL-seq, LIGR-seq, and CLASH) rely on the ligation
of two proximal RNA molecules, resulting in the generation
of chimeric sequencing reads (7,46). The general interpreta-
tion associated with the detection of a chimeric read is that the
detected sequences base-paired, however, it remains unclear if
these events describe spurious interactions, or stable RNA du-
plex formation. Previous work has addressed this problem by
calculating the statistical significance of an interaction based
on its frequency (18,20,26,47) and initial attempts have been
made to also consider additional parameters such as sequence
complementarity and hybridization energy (18,20), however,
a statistical evaluation of those measures has not been per-
formed.

To close this gap, ChimericFragments collects information
on the two positions closest to the ligation site in a chimeric
sequence, which we call the ligation point (Figure 2A). For
each chimeric read with a ligation point, the complementarity
of the two fragments around the ligation point is computed. A
complementarity score gets assigned to every chimera and its
significance is evaluated by comparison to a model computed
from the complementarity scores of randomly selected pairs
of fixed sequences length from the genome. The distributions
from the random model and the selected RIL-seq experiment
overlap, however, clearly differ from each other (Figure 2B).
We next filtered our dataset based on the FDR assigned to
each interaction and computed the correlation between the
two biological replicates in the RIL-seq dataset. We observed
a strong correlation (>0.9) among the replicates for interac-
tions with a FDR of 0.05 and decreasing correlation for less
stringent FDR-cutoffs (Supplementary Figure SSh), which re-
sembled our previous analysis (Supplementary Figure S5f).

To further understand the effect of filtering interactions
based on their complementarity score, we analyzed the dis-
tribution of the complementary regions in their respective se-
quences. In the random model, the ends of the interacting se-
quences are distributed symmetrically (Figure 2C). Using the
significance of the complementarity score as a separation cri-
terion (FDR < 0.25), the total distribution of predicted RNA
duplexes around ligation points splits into two populations
(Figure 2D), with the non-significant part closely resembling
the distribution in the random model (Figure 2E). The dis-
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tribution of the significant interactions shows a strong pref-
erence for RNA duplex formation close to the ligation point
(position 30, Figure 2F, right) and the left ends of comple-
mentarity regions follow a left-tailed distribution with a peak
around position 15 (Figure 2F, left). The distribution of the
length of the complementarity regions also supports ranking
of a dataset according to the significance derived from the
random model (Supplementary Figure S6a). The lengths of
all complementary regions (Supplementary Figure S6b) split
into non-significant (Supplementary Figure S6c¢) and signif-
icant (Supplementary Figure S6d) fractions, with the distri-
bution of non-significant regions closely resembling the ran-
dom model (compare Supplementary Figure S6a and Séc).
In the fraction of significant regions, the average length is
13.6, compared to 8.0 in the random model. On average, ex-
perimentally supported interaction sites in our benchmarking
dataset are 12.7 base-pairs long, further supporting our pro-
posed model (Supplementary Table S1). Lowering the FDR
cut-off to values <0.25 excludes shorter complementary re-
gions and leads to the loss of several experimentally vali-
dated interactions such as between VgmR and aphA (48).
Therefore, we used this level of significance for all follow-
ing analyses. In contrast, comparison of the significance values
from our statistical evaluation and the commonly used Fisher
exact test showed no association between the two methods

(Supplementary Figure S7a, b). The presented data indicate
that the ligation point of a chimeric sequence is a powerful in-
dicator for the identification of stable RNA duplexes in global
RNA interactome studies.

To benchmark our approach, we applied ChimericFrag-
ments to seven published datasets, involving six different or-
ganisms and three different experimental pipelines, i.e. V.
cholerae (RIL-seq, (27)), Escherichia coli (E. coli, RIL-seq and
CLASH, (13,49)), enteropathogenic E. coli (RIL-seq, (50)),
Pseudomonas aeruginosa (RIL-seq, (51)), Salmonella enter-
ica (RIL-seq, (52)) and Bacillus subtilis (LIGR-seq, (53)). In
all cases, ChimericFragments recovered significantly more in-
teractions than initially reported in the respective studies
(Supplementary Figure S7c—i). Of note, although our results
are difficult to compare to the previously reported interac-
tions due to differences in the statistical methods to filter the
datasets, we discovered ligation points for the majority of
interactions in all studies. Except for the LIGR-seq dataset,
ChimericFragments revealed more interactions with signifi-
cant complementarity around the ligation points when com-
pared to the respective initial studies.

We also analyzed two previously published RIL-seq
datasets (13,27) using the ChimericFragments pipeline. These
datasets were collected in two different model organisms
(E. coli and V. cholerae), allowing us to compare our results
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with 93 published and experimentally verifited RNA-RNA
interactions (56 for E. coli and 37 for V. cholerae (27,54)).
We detected relevant chimeras for 55 and 35 of these in-
teractions, respectively (Supplementary Table S1). In E. coli,
ChimericFragments successfully predicted the reported inter-
action in 40 cases (~73%) and similar numbers were obtained
in V. cholerae (22/35, ~63%). For comparison, RNAnue
detected 19/55 (~35%) interactions in E. coli and 15/35
(~43%) interactions in V. cholerae (Supplementary Table S1).
Of note, ChimericFragments also comes with an improved
runtime requiring 10 s/Mio. reads, whereas RNANyg required
1290 s/Mio. reads (Supplementary Figure S8a).

The computation of complementary regions done by
ChimericFragments is parameterized to match with the ex-
perimentally confirmed predictions of interaction sites listed
in Supplementary Table S1. We expect the regions detected by
our approach to be similar to thermodynamically informed
predictions. ChimericFragments computes complementary re-
gions between sequences of a fixed length taken from the
genome, thus avoiding sequencing errors or short fragments
to interfere with the process. This behavior can result in more
detected interaction sites compared to RNAyyg’s hybridiza-
tion of read sequences, as long as the interacting regions are
close to the ligation site between the RNA fragments.

ChimericFragments reveals hidden sRNA-target
mMRNA pairs

To evaluate the ability of ChimericFragments to predict un-
detected RNA duplexes in global RNA interactome studies,
we reanalyzed published RIL-seq datasets derived from V.
cholerae to search for unknown interaction with high com-
plementarity scores (27). Specifically, we allowed read counts
as low as 3 to apply our complementarity-based test of signif-
icance and investigated the complementarity in low frequency
interactions. When compared to the previous analysis (using
a minimal cut-off of 20 reads per interaction and a Fisher ex-
act test FDR < 0.05), our optimized mapping parameters in-
creased the number of RNA pairs by ~12% (3580). Omit-
ting the Fisher exact test resulted in 8976 interactions (~2.8-
fold increase), whereas of 32890 RNA pairs with read counts
of >3, 12917 (~39.3%, ~4.1-fold increase when compared
to our previous analysis) came with significant base-pairing
predictions with an FDR < 0.25 (Figure 3A).

To investigate the effect of discarding unsignificant interac-
tions according to the Fisher exact test (FDR values >0.05),
we selected 10 putative new targets of the well-studied Spot 42
sRNA (55), and tested their regulation using an iz vivo post-
transcriptional reporter assay (33) (Figure 3B). Eight of these
targets also showed significant RNA duplex formation and for
all these targets we confirmed a regulatory effect >25% (Fig-
ure 3C, dotted line). In contrast, the two remaining targets did
not display regulation by Spot 42.

ChimericFragments provides insights into the
mechanisms of sSRNA-mediated gene regulation
Bacterial sSRNAs frequently employ multiple base-pairing se-
quences to interact with target mRNAs, which adds to their
function as global regulators of gene expression (4,56). How-
ever, the identification of base-pairing sequence elements in a
given sRNA is typically not straight-forward based on con-
servation analysis alone (28,57,58). ChimericFragments ad-
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dresses this problem as it computes RNA duplexes for every
chimeric RNA pair with a ligation point, which are visualized
in a summary plot (Figure 1, bottom right). Single peaks indi-
cate one base-pairing sequence in the sSRNA (Supplementary
Figure S8b), or the target (Supplementary Figure S8c), whereas
multiple peaks predict more than one base-pairing sequence
(Figure 4A). Using this strategy, we discovered 20 sSRNAs with
a single base-pairing sites in V. cholerae and 35 that contained
two or more sites (Supplementary Figure S8d-f).

The summary plots also classify the results depending on
the position of a fragment in a sequencing read relative to
its partner (RNA1 precedes RNA2; Figure 2A). These data
can inform a potential mode of regulation as targets pref-
erentially occupy the first position, whereas regulators (e.g.
sRNAs) are frequently found in the second position (13,59).
Indeed, when analyzed by our ChimericFragments pipeline,
we confirmed that Hfg-binding sSRNAs were more frequently
recovered as RNA2, when compared to their target mRNAs
(Supplementary Figure S8g).

To test if this information would allow us to discover new
sRNA targets, we focused on the FarS sRNA, which was pre-
viously shown to use a single base-pairing site to control two
related fatty acid degradation genes (60). In contrast, our
data suggested FarS regulates additional genes using two base-
pairing sites (Figure 4A). To validate these predictions, we fo-
cused on two target mRNAs with high frequency exclusive to
each region: vc1043 (encoding a fatty acid transporter (61)),
which interacts with a novel base-pairing sequence in FarS
and vca0848 (encoding a GGDEF family protein (62)), em-
ploying the previously reported base-pairing site (Figure 4B,
C). Post-transcriptional reporter assays revealed that vc1043
and vca0848 are both repressed by FarS and introduction
of single nucleotide mutations (G34C and G54C; Figure 4C)
confirmed that base-pairing is specific to the predicted base-
pairing site (Figure 4D). Taken together, our analyses show
that ChimericFragments generates testable hypothesis that en-
able a better understanding of the molecular mechanisms un-
derlying post-transcriptional gene regulation.

Identification and characterization of novel
regulatory RNAs using ChimericFragments
Regulatory RNAs and target mRNAs have distinct proper-
ties in global RNA networks. Whereas regulatory RNAs of-
ten interact with hundreds of targets, mRNAs mostly inter-
act with one or few sRNAs, but not with other mRNAs
(3,4,12,63). We used this difference in the local network struc-
ture to search for undiscovered sSRNAs in intergenic regions
(IGRs) of the genome. To this end, we computed the net-
work of all interactions between CDSs and IGRs, reveal-
ing two IGRs pairing with numerous putative target mRNAs
(Supplementary Figure S9). We further analyzed the IGR with
the highest number of targets (located between the vc0715 and
vc0719 genes; Figure 5A) and found that most targets shared
a predicted binding site within the vc0715::vc0719 IGR (Fig-
ure 5B). To support our hypothesis for a regulatory function
of the vc0715::vc0719 IGR, we inspected published transcrip-
tome datasets for a potential SRNA transcript (34,35). Indeed,
these analyses revealed a ~100 nt long transcript, which we
named NetX (network derived RNA), and we validated its ex-
pression by Northern blot analysis (Figure 5C).
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We next focused on the regulatory role of NetX. According
to ChimericFragments the most abundant target mRNA of
NetX is aphA, encoding a key regulator of quorum sensing,
biofilm formation, competence, and virulence in V. cholerae
(48,64-66). Our analysis predicted strong base-pairing be-
tween NetX and aphA (Figure 5D) and Western blot analy-
sis showed that over-expression of NetX resulted in reduced
AphA protein levels in all stages of growth (Figure SE). Given
the documented role of AphA in virulence gene expression
and pathogenesis of V. cholerae (67), we extended our analysis
and monitored the effect of NetX expression on cholera toxin
(CtxAB) production. In line with our previous data, NetX
strongly reduced CtxAB levels (Figure 5F). Taken together, our
results show that ChimericFragments allows the detection of
novel RNA regulators and supports the hypothesis-driven re-
search into their regulatory roles in the cell.

Discussion

Base-pairing between two RNA molecules often depends on
RNA chaperones such as Hfq and ProQ in bacteria, or SM-
like proteins from eukaryotic and archaeal organisms (68-70).
Mutation of their respective genes typically impairs RNA du-
plex formation and in the case of Hfq has been associated
with pleiotropic phenotypic alterations, including defects in
virulence gene expression in pathogenic bacteria (71). There-

fore, studying the molecular processes underlying RNA chap-
erone activity and global RNA-RNA interactions patterns is
not only an important aspect of fundamental research, but
also has implications for medicine and public health (72).

The past few years have brought a revolution in our under-
standing of how RNA-RNA interactions form at a global level
due to the development of various new sequencing-based tech-
nologies (7,9,10). In contrast to previous approaches, which
frequently relied on the identification of individual RNA du-
plexes and/or the characterization of single RNA regula-
tors, these technologies have paved the way to simultaneously
analyze the interactomes of dozens to hundreds of regula-
tory RNAs and thousands of RNA-RNA pairs (7). However,
computational pipelines addressing the complexity of these
datasets are scarce and it is often unclear how the detected
interactions translate into functionally important discoveries
(6).

ChimericFragments offers a computational framework that
can help to overcome these limitations (Figure 1). Specifi-
cally, the integrated graphical interface allows visualization of
global RNA-interactomes, which can provide important in-
formation on the relevance of individual regulators or RNA-
RNA interactions in the network. Previous work has shown
that cellular RNAs constantly compete for interaction with
RNA-binding proteins, shaping the biophysical and biochem-
ical parameters driving post-transcriptional gene regulation
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(73,74). Thus, to understand the regulatory principles under-
lying RNA network performance, it is crucial to determine the
structure of the network and key regulatory players involved
(75). Of note, ChimericFragments also enables the compari-
son of two or more network states and the study of regulatory
features driving RNA network dynamics.

The evolution of regulatory RNAs is highly dynamic and,
when compared to their protein counterparts, only poorly un-
derstood (56,76-78). Regulatory RNAs can be expressed from
IGRs, as well as from the 5’- and 3’'UTRs of mRNAs, and
the CDS (79). In addition, RNA regulators can also originate
from stable transcripts, such as tRNAs (80,81). Therefore,
the identification of base-pairing regulators from the pool
of all cellular transcripts can be difficult based on standard
transcriptome data. ChimericFragments allows the discovery
of base-pairing regulators based on the number and quality
of the interactions (Figure 5). We showcased this feature of
ChimericFragments through the identification and character-
ization of NetX, which we demonstrate is a previously un-
known regulator of virulence gene expression in V. cholerae.

Our approach also revealed a second new sRNA reg-
ulator, named NetY, which is expressed from the IGR

between the vcr069 and vc1803 genes (Supplementary

Figure S10a). NetY accumulates as a ~80 nucleotide long
sRNA (Supplementary Figure S10b) and base-pairs, like
NetX, with various transcripts (Supplementary Figure S10c¢).
However, in contrast to NetX (Figure 5A), the majority of
NetY’s interaction partners are other non-coding RNAs, sug-
gesting that this SRNA might act as an RNA sponge. RNA
sponges base-pair with and inhibit the activity of non-coding
regulators and are ubiquitous in prokaryotic and eukaryotic
systems (82,83). Further investigations towards the mecha-
nism underlying NetY-mediated base-pairing supported its
role as a sponge RNA as the vast majority of chimeras con-
tained NetY at the first position of the sequencing read (indi-
cated in blue; Supplementary Figure S10c), which is a hall-
mark of target mRNAs and sponge RNAs (13,26,59). In
contrast, analogous analyses focusing on FarS and NetX re-
vealed that their corresponding transcripts are typically found
in the second position of the sequencing reads (indicated
in red; Figures 4A and 5B), suggesting their primary func-
tion is to regulate other transcripts. In the case of FarS, we
also discovered that the sSRNA contains two base-pairing se-
quences to interact with target transcripts and we also dis-
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shown in panel B. RNA samples from V. cholerae wild-type cells were collected at various stages of growth. 5S ribosomal RNA served as a loading
control. (D) ChimericFragments plot of ligation points (bottom) between NetX and the interaction partner aphA with a selected base-pairing prediction
shared by all ligation points in the lower left corner of the plot (top). (E) Quantification of Western blots comparing protein levels of AphA between WT
and overexpression of NetX. Protein samples from V. cholerae wild-type cells carrying a chromosomal 3XFLAG in the aphA gene were collected at
various stages of growth. Western Blot analysis was performed to measure AphA levels. Bars show the mean of three independent biological replicates
and error bars are equal to the respective standard deviation. Significance (unpaired t-test) of the difference towards the control samples is indicated by
stars: *P < 0.05, **P < 0.01 (F) V. cholerae wild-type cells carrying a chromosomal 3XFLAG-tag in the aphA gene were cultivated in AKI medium.
Secreted protein, total protein and RNA samples were collected, and RNA and protein samples were monitored respectively by Northern and Western
blot analysis. Coomassie staining, RNAP and 5S ribosomal RNA served as a loading control for Western and Northern blots, respectively.

covered multiple base-pairing regions in various other sSRNAs
(Supplementary Figure S8e, f).

These analyses also identified RNA regulators that carry
signatures of both categories, i.e. they seem to act as sponges
when base-pairing with one set of targets, while in other inter-
actions they likely function as the regulator. Of note, the base-
pairing sequence involved in these interactions can be either
overlapping (e.g. see VSsrna24; Supplementary Figure S10d)
or occupy separate segments of the sSRNA (e.g. see GevB;
Supplementary Figure S10e). The latter case could indicate a
switch in the regulatory function of an sSRNA depending on
the use of a specific base-pairing sequence, which has not been
previously observed. Again, these results highlight the strength
of ChimericFragments in generating data-driven hypotheses
that can be tested experimentally.

Finally, we designed ChimericFragments to be compatible
with various experimental setups that have been used to detect
RNA-RNA in bacteria (e.g. RIL-seq, CLASH, and LIGR-seq).
ChimericFragments can also analyze data from eukaryotic or-

ganisms, as we demonstrate for a CLASH experiment from
Saccharomyces cerevisiae (Supplementary Figure S10f; (84)).
However, we note that larger genome sequences together with
the relatively small size of eukaryotic microRNAs, siRNAs,
and piRNAs will reduce the number of uniquely mapping
sequencing reads in our pipeline, which complicates down-
stream analysis. Therefore, a refinement of the mapping strat-
egy would be required to adjust ChimericFragments to these
alternative datasets.

Data availability

All datasets analyzed in this study are published and avail-
able online. Sequencing data of RNA interactome studies
are available under the following accession codes: RIL-
seq E. coli (ArrayExpress, E-MTAB-3910), RIL-seq V.
cholerae (GEO, GSE198671), RIL-seq EPEC (ArrayExpress,
E-MTAB-8806), RIL-seq S. enterica (GEO, GSE163336),


https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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RIL-seq P. aeruginosa (GEO, GSE216135), CLASH E. coli
(GEO, GSE123050), LIGR-seq B. subtilis (ArrayEx-
press, E-MTAB-8490) and CLASH S. cerevisiae (GEO,
GSE114680). Term-seq and dRNA-seq sequencing data
can be found under the GEO accession codes ‘GSE144478¢
and ‘GSE62084°, respectively. The code to reproduce all
analyses done in this study is available in Github (https:

//github.com/maltesie/ChimericFragmentsFigures) and
Zenodo  (ChimericFragments,  https://doi.org/10.5281/
zen0do.10664038;  ChimericFragments  Figures, https:

/1doi.org/10.5281/zenodo.10890087). A running instance of a
ChimericFragments visualization of the RIL-seq dataset from
V. cholerae is available at https://vch-interactome.uni-jena.de.

Supplementary data
Supplementary Data are available at NARGAB Online.
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