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Abstract 

RNA–RNA interactions are a k e y feature of post-transcriptional gene regulation in all domains of life. While e v er more experimental protocols 
are being de v eloped to study RNA duple x f ormation on a genome-wide scale, computational methods for the analysis and interpretation of 
the underlying data are lagging behind. Here, we present ChimericFragments, an analy sis frame w ork f or RNA-seq e xperiments that produce 
chimeric RNA molecules. ChimericFragments implements a no v el statistical method based on the complement arit y of the base-pairing RNAs 
around their ligation site and provides an interactive graph-based visualization for data exploration and interpretation. ChimericFragments detects 
true RNA–RNA interactions with high precision and is compatible with se v eral widely used experimental procedures such as RIL-seq, LIGR- 
seq or CLASH. We further demonstrate that ChimericFragments enables the systematic detection of no v el RNA regulators and RNA–target 
pairs with crucial roles in microbial ph y siology and virulence. ChimericFragments is written in Julia and a v ailable at: https:// github.com/ maltesie/ 
ChimericFragments . 
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ase-pairing of two complementary RNA sequences is a fun-
amental principle of gene expression control in many, if
ot all, organisms. In eukaryotes, numerous different classes
f non-coding RNAs have been described (e.g. microRNAs,
ong non-coding RNAs, and circular RNAs) controlling tran-
cription, translation, or both ( 1 ,2 ). In bacteria, the majority
f base-pairing regulators classify as small RNAs (sRNAs),
hich are ∼50–250 nucleotides in length and typically act to-

ether with RNA chaperones to recognize target transcripts
hrough RNA duplex formation ( 3 ). The consequences asso-
iated with successful base-pairing range from translation in-
ibition and transcript degradation to translation activation
nd increased protein synthesis ( 4 ,5 ). 

Comparative genomics and global transcriptome analysis
ave uncovered thousands of non-coding RNAs with usually
nknown regulatory functions ( 6 ). To close this gap, vari-
us experimental protocols have been developed to capture
NA–RNA interactions at a transcriptome-wide scale ( 7–
0 ). These tools typically rely on proximity-based ligation of
wo RNAs followed by high-throughput sequencing of the
himeric RNA molecules, allowing to infer regulatory inter-
ctions for annotated, as well as newly identified transcripts.
or example, LIGR-seq (LIGation of interacting RNA fol-

owed by high-throughput sequencing) led to the discovery of
mall nucleolar (sno)RNAs interacting with mRNAs in hu-
an cells ( 11 ), whereas RIL-seq (RNA interaction by liga-

ion and sequencing) revealed novel RNA–RNA interactions
nd sRNA regulators in bacteria ( 12 ,13 ). Other key technolo-
ies for global RNA interactome analysis are CLASH ( 14 ),
PLASH ( 15 ), GRIL-seq ( 16 ) and PARIS ( 17 ), all of which
nable the genome-wide annotation of RNA–RNA pairs. 
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Although the above mentioned protocols differ in their ex-
perimental design, they all produce chimeric sequencing reads
that can be analyzed through various bioinformatic tools.
Previously, each method came with its own computational
pipeline to detect and quantify RNA duplex formation, how-
ever, several new tools now provide a generic platform for data
analysis. For example, the RNA NUE ( 18 ) platform relies on the
segemehl mapping tool ( 19 ) for split read alignment, groups
similar split alignments into clusters, and annotates these clus-
ters with overlapping genome features. The resulting interac-
tions are statistically evaluated based on their frequency and
the number of complementary bases as well as the hybridiza-
tion energy that is computed for every read. Similarly, ChiRA
( 20 ) enables RNA duplex detection with a two-pass mapping
strategy using bwa-mem ( 21 ), which aligns long segments with
high accuracy in a first run and deals with multi-mapped short
segments in a second run. ChiRA offers static plots summa-
rizing all results and base-pairing predictions for each read,
however, both tools do not allow interactive data visualiza-
tion. 

Here, we introduce ChimericFragments, a computational
platform for the analysis and interpretation of RNA–RNA in-
teraction datasets starting from raw sequencing files (Figure
1 ). Our platform enables rapid computation of RNA–RNA
pairs, RNA duplex prediction, and a graph-based, interac-
tive visualization of the results. ChimericFragments employs
a new algorithm based on the complementarity of chimeric
fragments around the ligation site, which boosts the identifi-
cation of bona fide RNA duplexes. When applied to a pub-
lished dataset, ChimericFragments allowed the discovery a
novel sRNA that controls virulence gene expression in the
major human pathogen, Vibrio cholerae . ChimericFragments
, 2024. Accepted: March 28, 2024 
enomics and Bioinformatics. 
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Figure 1. Graphical summary of the computational (top) and the visual component (bottom) of ChimericFragments. Different experimental procedures 
(e.g. RIL-seq, CLASH, LIGR-seq) produce chimeric RNA molecules and sequence reads. Alignments of those reads are collected and sorted according to 
the position on the read they belong to (top left). Alignments are classified to be single or chimeric and ligation points are sa v ed (top middle). For each 
ligation point, the complement arit y bet w een the corresponding fragments is computed. A null model is computed f or pairs of fragments from random 

positions on the genome and used to assign a p -value to ligated fragments (top right). The global RNA–RNA network can be explored in an interactive 
graph-based visualization with color-coded annotation types and complementarity strength. Edge thickness and node size relate to the number of 
represented reads (bottom middle). Each ligation e v ent can be inspected together with a base-pairing prediction (bot tom lef t). All base-pairing predictions 
for a selected transcript are visualized together and for each position, all partners are highlighted interactively (bottom right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Synthetic datasets to benchmark bw a-mem2 f or chimeric 
alignments 

Fragment length Sequencing error 

15 1 
30 1 
45 1 
Uniform random, 15–45 Uniform random, 0 or 1 

 

is implemented in Julia and available at: https://github.com/
maltesie/ChimericFragments . 

Materials and methods 

Complete genome annotation 

ChimericFragments tags each alignment with an annotation.
To capture all chimeras in a dataset, it relies on a fully anno-
tated genome for both forward and reverse strands. The qual-
ity of the results depends on the quality of the annotation, so it
is recommended to supply ChimericFragments with an accu-
rate annotation of non-coding RNAs and 5 

′ and 3 

′ UTRs. The
automatic annotation of the genome requires a set of coding
sequences (CDS) for which the regions up- and downstream
are extended up to a maximum length or until another anno-
tation is reached. The remaining regions of the genome will
then be annotated for each strand as IGRs named by their
flanking genes. 

Reads preprocessing 

As a first step in the analysis, ChimericFragments uses fastp
to preprocess the raw sequencing reads ( 22 ). fastp removes
adapters from the reads and read ends with low quality get

trimmed and short reads discarded. 
Chimeric alignments with bwa-mem2 

ChimericFragments uses bwa-mem2 ( 21 ) to map reads to the 
genome. Aligned fragments with alternative alignments (SAM 

format XA tag not set) are discarded. To benchmark bwa- 
mem2 in its ability to detect chimeric alignments, several syn- 
thetic datasets were generated from and aligned to a random 

sequence of 5 million nucleotides length with equal probabil- 
ity across the bases. All of them are comprised of chimeric se- 
quences of different length with a mutation at a random posi- 
tion or without. The datasets are summarized in Table 1 . To in- 
vestigate the effect of different TPRs and FPRs on the analysis 
results of ChimericFragments ( Supplementary Figure S5 d, e),
we created a library of 1 million chimeric reads randomly sam- 
pled with lengths from 15 to 40 and a probability of 0.5 of a 
randomly incorporated nucleotide substitution from 200 pairs 
of interacting regions in the genome of V. cholerae and applied 

ChimericFragments to it. 

https://github.com/maltesie/ChimericFragments
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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Table 2. Classification criteria for reads 

Class Criterion 

single single alignment (same location for PE) 
chimeric split alignment with at least 2 parts 
self-chimeric split alignment with parts mapping to same 

annotation 
multi-chimeric split alignment with at least 3 parts 
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nnotation of alignments 

very aligned fragment is annotated uniquely. To efficiently
nd the annotation with the largest overlap, a binary interval
ree is constructed to find m overlaps in a set of n annotations
n O ( m + log n ). The annotation overlapping the most with
he alignment is used to tag it with a name and a type and
n cases of tied overlaps, the annotation with the lowest left
oordinate on the genome is chosen. 

orting, merging and classification of alignments 

ll alignments are sorted first with respect to the read they
ome from and second to the order of their origin on the read
equence from 5 

′ to 3 

′ . This procedure results in an ordered
et of alignments necessary to detect ligation events between
djacent fragments. If paired end (PE) reads are analyzed, frag-
ents from read1 and read2 are merged if their alignment in-

ervals on the reference are within a specified distance in the
orrect order and if the same is true for all fragments that fol-
ow towards the 3 

′ end. The resulting set of merged alignments
s then classified into being of single or chimeric origin and
f classified as a chimera, further checked to be self-chimeric
r multi- chimeric according to the criteria listed in Table 2 .
eads which do not fall in any of the listed classes, e.g. if only
ne of two PE reads can be mapped, are discarded. 

igation points 

ach chimeric read is further analyzed and checked for liga-
ion events. A ligation event is defined as a split alignment of
wo adjacent chimeric fragments on the same read with a user-
pecified maximal distance of a few nucleotides. The coordi-
ates of the nucleotide closest to the partner fragment are de-
ned as the ligation points of those fragments (Figure 1 , top).
igation points always sit on the edge of an aligned fragment
n the side pointing towards the ligated partner. To identify
igation points, first, the read length chosen in the experiment
ust be sufficiently high to cover at least two fragments and

econd, the parameters for mapping the reads to the genome
ill define a lower boundary for the detection of fragments
n the reads. 

omputation of complementarity 

himericFragments computes the complementarity of two lig-
ted fragments as a local alignment using the Smith-Waterman
SW) algorithm with a substitution matrix. Instead of repre-
enting mutation probabilities with the scores, we designed
 matrix that roughly represents binding affinity between two
ucleotides (G-C: 5, A-U: 4, G-U: 0, other pairs: −7, open gap:
8, extend gap: −3). The parameterization of the matrix can
e chosen by the user. Predictions are made for two intervals
f specified length around each ligation point of a ligated pair
f fragments. To evaluate each base-pairing prediction, we as-
ign a score s to it. For this, we take the complementarity score
s c from the SW algorithm and subtract it by a weighted shift
score s s : 

s = s c − w s s s (1)

The shift score s s is defined as the absolute difference of
the ends of the complementarity regions found in the two se-
quences with respect to the observed intervals. This score can
be used to select for base-pairing predictions which end at sim-
ilar positions with respect to ligation points. The weight w s

can be defined by the user. It is set to 1 by default to facilitate
a moderate influence of shifted complementarity regions on
the total score. 

Statistical evaluation 

ChimericFragments implements two statistical evaluations of
chimeras. First, we construct a null model by sampling com-
plementarity scores s i between random patches on the genome
of specified length. The empirical cumulative density function
ECDF of those scores s is computed and a p -value can be at-
tributed to predictions: 

p = 1 − ECDF ( s ) (2)

In general, multiple ligation events are found for a given
pair of annotations. To summarize the events, we assess the
distribution of the p -values for each pair and combine them
by first computing the FDR with the method of Benjamini and
Hochberg ( 23 ). ChimericFragments offers multiple methods
to combine the p -values from ligation points of the same in-
teraction. Either by taking the minimum of the FDR values
of all sampled ligation points for one interaction as a com-
bined p-value to represent the probability of error when con-
sidering the strongest complementarity found, or by using the
methods proposed by Fisher ( 24 ) or Stouffer ( 25 ), which both
test against the null hypothesis of a uniform distribution of
p -values in the null model they are derived from. The FDR re-
ported in the results tables is based on all combined p -values
and is used to select interactions shown in the graph. To assess
the possibility of detecting RNA–RNA interactions merely be-
cause both partners are close to each other or the chaperone
protein of interest by chance, each pair gets assigned a statis-
tical significance using Fisher’s exact test according to ( 26 ).
The Fisher exact test queries a hypergeometric distribution
to evaluate a contingency table of the two binary variables
RNA1 and RNA2, which are true if the respective part of a
chimeric pair or a single alignment map to the region of the
corresponding annotation, and false otherwise. This behavior
is adjustable in the configuration file to exclude single align-
ments from the background or ignore the order in which the
fragments are present on a read. 

Comparison of ChimericFragments with RNA NUE 

We collected 93 published and experimentally verified
RNA–RNA interactions (56 for E. coli and 37 for V.
cholerae ( 27 ,28 ). The complementary regions computed by
ChimericFragments in two published RIL-seq experiments
( 13 ,27 ) were compared to this reference set and for each val-
idated interaction, the best overlap is reported. RNA NUE was
run with default parameters (params.cfg on https://github.
com/ ChristopherAdelmann/ RNAnue/ ) in paired-end mode.
The resulting set of interacting regions was compared to our
reference set and the best overlap was reported. 

https://github.com/ChristopherAdelmann/RNAnue/
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Visualization of RNA–RNA networks 

ChimericFragments visualizes the network of interactions as a
graph. The nodes in the graph correspond to annotations on
the genome, and an edge represents all chimeras associated
with the two annotations connected by the edge (Figure 1 ,
bottom). Edges are directed and the direction of the edge rep-
resents the order, in which the fragments are found on their
reads. An edge pointing from annotation A to annotation B
indicates the fragment mapping to A was found further up-
stream on the read(s) than the fragment mapping to B. In our
graphical representation of the network, the size of the nodes
and edges correspond to the share of reads within the selected
set of interactions. ChimericFragments is implemented as a
web application based on Dash and Dash Bio ( 29 ) to support
fast drawing and smooth repositioning of hundreds of nodes.

Node positioning in graph drawings 

To draw the RNA–RNA interaction network without any
prior positional information on the nodes of the graph, we
use a technique called stress majorization ( 30 ) and choose the
parameterization of this algorithm according to ( 31 ). Stress
majorization is applied to each connected component in the
graph and the components are then placed with a simple guil-
lotine bin packing algorithm ( 32 ) that fills a rectangle with
all connected components while minimizing empty space be-
tween them. Together, those two techniques lead to repro-
ducible graph drawings, which are similar for graphs with
similar sets of nodes and edges. 

Plotting ligation points 

Upon clicking on an edge in the graph, an interactive scatter
plot of the ligation points in the coordinate frame of the an-
notations (Figure 1 bottom left, Supplementary Figure S1 b) is
displayed. In this frame, +1 refers to the first nucleotide in the
annotation, counting from −1 down in the upstream direc-
tion and from +1 up in the downstream direction. For merged
annotations containing a CDS, +1 corresponds to the first nu-
cleotide in the CDS. Each dot in the scatter plot shows the
corresponding region of complementarity when hovered upon
and size and color of the dot correlate with the number of sup-
porting reads and the FDR associated with the prediction. An
FDR-cutoff can be set which applies to FDR values computed
from the p -values of the ligation points of currently selected
interactions. 

Plotting aggregated complementarity 

For every node in the graph, all predictions between the node
and all of its partners with an FDR below a specified cut-off
in the graph are aggregated in a summary plot (Figure 1 bot-
tom right, Supplementary Figure S1 c). To compute this sum-
mary, for every position in the annotation all ligation points
with overlapping regions of complementarity from all interac-
tions in the current selection are summed up. Hovering upon
the plotted data shows for every position in the correspond-
ing annotation all partners with a complementary site at this
position. 

Bacterial strains and growth conditions 

All strains used in this study are listed in Supplementary Table 
S3 . V. cholerae and E. coli strains were grown aerobically in LB
or AKI medium at 37 

◦C. Where appropriate, antibiotics were
used at following concentrations: 20 μg / ml chloramphenicol 
and 50 μg / ml kanamycin. 

Plasmid construction 

All plasmids and DNA oligonucleotide sequences used in this 
study are listed in Supplementary Tables S2 and S4 , respec- 
tively. GFP fusions were cloned as described previously ( 33 ) 
using previously determined transcriptional start sites ( 34 ,35 ).
Inserts were amplified from V. cholerae genomic DNA with the 
respective oligonucleotide combinations indicated and cloned 

into linearized pXG10 vectors (KPO-1702 / -1703) via Gibson 

assembly ( 36 ); pSM002 (KPO-5251 / -5252), pSM003 (KPO- 
5247 / -5248), pJR004 (KPO-2460 / -2462), pJG020 (KPO- 
8756 / -8757) and pAL069 (KPO-9358 / - 9359). For pNP040 

(KPO-1832 / -1833) and pNP045 (KPO-1838 / -1839), pXG10 

and respective inserts were digested with NsiI and NheI and 

ligated. The constitutive sRNA expression plasmid pAL062 

(KPO-9233 / -9234) was constructed by PCR amplification of 
the respective sRNA from V. cholerae genomic DNA and 

cloned into linearized pEVS143 vector ( 37 ) (KPO-0092 / - 
1397) via Gibson assembly. Site directed mutagenesis of 
pJR006 using KPO-9373 and -9374 resulted in pAL077. 

Fluorescence measurements 

To validate interactions captured by RIL-seq, GFP fluores- 
cence measurements were performed as described previously 
( 38 ) with E. coli Top10 cells cultivated overnight in LB 

medium. Cells were washed and resuspended in PBS and rel- 
ative fluorescence was measured with a Spark 10 M plate 
reader (Tecan). Control strains not expressing fluorescent pro- 
teins were used to subtract background fluorescence. 

RNA isolation and northern blot analysis 

Total RNA sample preparation and Northern blot analy- 
ses were performed as previously described ( 39 ). Membranes 
were hybridized in Roti-Quick buffer (Carl Roth) with [32P]- 
labelled DNA oligonucleotides at 42 

◦C. Signals were visu- 
alized using a Typhoon Phosphorimager (GE Healthcare).
Oligonucleotides for Northern blot analyses are listed in 

Supplementary Table S4 . 

Western blot analysis 

Total protein sample preparation and western blot analyses 
of 3XFLAG-tagged fusions were performed as previously de- 
scribed ( 40 ). 3XFLAG-tagged fusions were detected using a 
mouse anti-FLAG antibody (Sigma; F1804). RNAP α served 

as loading control and was detected using rabbit anti-RNAP α

antibody (BioLegend; WP003). Signals were visualized using 
a Fusion FX EDGE imager and quantified with BIO-1D soft- 
ware (Vilber Lourmat). 

Results 

ChimericFragments combines computational 
analysis and interactive visualization 

Experimental workflows such as RIL-seq ( 13 ), GRIL-seq ( 16 ),
CLASH ( 14 ), SPLASH ( 15 ) and PARIS ( 17 ) generate chimeric 
sequencing reads that are analyzed through tailored bioinfor- 
matics pipelines (Table 3 ). The resulting data are typically pre- 
sented as large tables providing information on the identity,
frequency and statistical significance of the detected RNA–

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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Table 3. Comparison of bioinformatics analyses of various RNA-interactome protocols 

Protocol Type of interactome Summary of bioinformatics analysis 
Improvements offered by 
ChimericFragments 

RIL-seq ( 13 ) Global RBP-licensed 
interactome 

Analysis with the RILseq package:1. 
Separate mapping of paired-end reads to 
detect chimeric reads.2. Detect interacting 
regions of the genome using Fisher exact 
test.3. Compare to total RNA and compute 
hybridization energy between full length 
transcripts. 

simplicity, complementarity-based 
statistics, interactive browser, accuracy of 
mapping 

GRIL-seq 
( 16 ) 

Enrichment of targets 
of single sRNA 

1. Select reads containing sRNA of 
interest.2. Generate coverage of the ligated 
targets.3. Compare with DGEs under 
overexpression of the sRNA, and compute 
base-pairing predictions with IntaRNA. 

simplicity, interactive browser 

SPLASH 

( 15 ) 
Global interactome 1. Map with bwa-mem, remove splice 

junctions, and detect intra- and 
inter-molecular interactions. 

simplicity, interactive browser, 
complementarity- and frequency-based 
statistics 

CLASH ( 14 ) Global RBP-licensed 
interactome 

Analysis with the hyb package:1. Mapping 
with several mappers possible.2. Detection 
of chimeras based on several filtering 
criteria. 

simplicity, interactive browser, 
complementarity- and frequency-based 
statistics 

PARIS ( 17 ) Global interactome Analysis with a very complicated set of 
scripts and commands:1. Map with STAR 

and detect intra- and inter-molecular 
interactions.2. Generate static plots per 
interaction showing dot-bracket-encoded 
base-pairing. 

simplicity, interactive browser, accessibility 
of results 

LIGR-seq 
( 11 ) 

Global interactome Analysis with the Aligater package:1. Map 
with bowtie, remove splice junctions, and 
detect chimeras.2. Test for significance 
with a binomial model based on relative 
abundance of mapping hits per transcript 
annotation. 

interactive browser, 
complementarity-based statistics 
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NA interactions. However, this type of tabular presentation
f the results fails to address the complex network structure
ssociated with global RNA interactome studies and does not
rovide information on the positions of the relevant RNA
uplexes ( 41 ). ChimericFragments closes both of these gaps
mploying six main features (summarized in Figure 1 ) and
s compatible with a wide range of experiments producing
himeric RNA sequences. 

The analysis of each dataset is split into three main cat-
gories: configuration, computation and visualization. The
onfiguration is set by defining the parameters in the template
onfiguration file and all parameters are outlined in the sup-
lied configuration template (default_config.jl). The compu-
ational part follows several main steps:(i) preprocessing, (ii)
eneration of a complete genome annotation, (iii) split read
lignment using bwa-mem2 ( 21 ,42 ), (iv) sorting, merging and
lassification of the produced alignments and (v) statistical
valuation of all interactions (Figure 1 , top). For the latter,
himericFragments captures ligation sites between two frag-
ents and computes the complementarity around them us-

ng a parameterized local alignment procedure, which is op-
imized for complementary pairs and penalizes gaps. The re-
ulting complementarity score is compared to a random model
o generate p -values (Figure 1 , top right). ChimericFragments
equires a single configuration file together with two scripts:
ne for the computational analysis and one to start the web
 

application, which hosts the interactive graphical browser and
allows sharing of experimental results online. 

The browser uses a graph-based visualization displaying
the annotated regions of the genome as nodes and the aggre-
gate of all chimeras mapping to the same two nodes as edges
(Figure 1 , bottom middle). Additional interactive plots enable
the prediction of RNA duplexes formation for every chimeric
sequence displaying the frequency of the interaction, as well
the position of RNA duplex formation relative to the anno-
tation of the genes involved (Figure 1 , bottom left). Finally,
the aggregate of all detected ligation sites is shown for each
interacting transcript, allowing for the identification of pre-
ferred base-pairing sequences in regulatory RNAs and their
targets (Figure 1 , bottom right). The visualization is imple-
mented as a web application and can be used to share exper-
imental results in the local network or over the internet. A
detailed description of the control elements and the multiple
data visualization modes in the graphical interface is provided
in Supplementary Figures S1- - S4 . 

Optimized mapping parameters increase the 

number of detected chimeras 

A key step in the detection and analysis of base-pairing in-
teractions from global RNA interactome studies is the map-
ping of chimeric sequencing reads to specific positions in the
genome. Bwa-mem2 is an architecture-aware implementation

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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of the bwa-mem algorithm, which can handle split alignments
( 21 ,42 ). We decided to use bwa-mem2 over other compara-
ble algorithms, such as bowtie2 or STAR, based on former
studies and due to its computational efficiency and precision
( 18 , 43 , 44 ). 

To determine the suitability of bwa-mem2 for our ap-
proach, we set up several benchmarks for the aligner. Specifi-
cally, we quantified the sensitivity and precision of bwa-mem2
with respect to the size of the sequencing read and putative
sequencing errors. We generated several synthetic sequence
libraries of different fragment lengths (15, 25 and 40 nu-
cleotides) with sequencing errors (Table 1 ). The libraries were
each aligned with different values for two limiting parameters,
i.e. seed length and minimum alignment score. bwa-mem2
aligns sequences of various lengths without sequencing error
to the correct position with a precision of ≥99% ( 45 ). A sin-
gle sequencing error per read resulted in a dependency of the
TPR and the FPR on the mapping parameters, as well as the
length of the aligned sequence ( Supplementary Figure S5 a).
We applied the same evaluation to another synthetic dataset
of mixed length and an error probability of 0.5 per sequence
( Supplementary Figure S5 b, c). For this dataset, up to 82%
of all chimeras were correctly aligned (highlighted in orange)
with a FPR of 0.0119, while other combinations of seed length
and minimum alignment score recovered 79%, 74% and 67%
of the chimeras with FPRs of 0.054, 0.0003 and 0.0002, re-
spectively (shown in red, violet and green). These findings
highlight the importance of the alignment parameters for the
detection of chimeric fragments, as well as a trade-off towards
false discovery, which comes with less stringent parameters. 

We next tested the impact of the selected TPRs and FPRs
on the analysis output. To this end, we generated a synthetic
dataset of 200 pairs of interacting regions and sampled one
million chimeras. We then analyzed this dataset using de-
fault parameters, only varying the seed length and the mini-
mum alignment score. For the TPRs, the number of recovered
chimeras per interacting pair almost perfectly matched the
TPR found before (compare Supplementary Figure S5 b and
d). For the FPRs, we detected a high number of false chimeras,
however, the vast majority came with drastically lower counts
than the true chimeras ( Supplementary Figure S5 e). Few sys-
tematically false chimeras occurred in duplicated regions of
the genome, which hindered bwa-mem2 to unequivocally map
these reads. This behavior will lead to falsely detected interac-
tions between repeated regions in the genome, such as multiple
copies of ribosomal or tRNA genes. When annotated accord-
ingly, these false hits are easy to remove by the user. Alter-
natively, alignments matching to repeated regions can be ex-
cluded from the analysis in the configuration of ChimericFrag-
ments. If repeats are masked properly, bwa-mem2 will not
map to the masked regions, also circumventing this problem.

To test our findings from the synthetic datasets with exper-
imental data, we applied ChimericFragments to a previously
published RIL-seq experiment containing two independent bi-
ological replicates ( 27 ). Since no ground truth is available for
these experiments, we used the correlation between the num-
ber of detected chimeric reads per interaction in the replicates
as an indicator for the frequency of random misalignment. The
Pearson correlation coefficient of the chimeric in the two repli-
cates was consistently high ( ≥0.9, Supplementary Figure S5 f).
To get a more sensitive measure of our results, we also com-
puted the rank correlation and found it to be very strong
( ≥0.9) for the top 10% fraction of the dataset, and decreasing
when more interactions with lower read counts were added 

( Supplementary Figure S5 g). All following analyses of exper- 
imental data were performed with a seed length of 12 and a 
minimum alignment score of 17, as this combination showed 

the best compromise between the TPR and the FPR in our syn- 
thetic benchmarks and was comparable to stricter parameters 
applied for the experimental data. 

ChimericFragments uses bwa-mem2 to compute chimeric 
alignments which have unique coordinates in the genome.
In contrast, ChiRA relies on the output-identical but slower 
bwa-mem and additionally considers alignments to multiple 
very similar locations in the genome. This can result in higher 
mapping rates for fragments shorter than 15 nucleotides ( 20 ).
RNA NUE computes alignments with segemehl and the tool’s 
higher precision should result in slightly increased detection 

rates for true chimeras and lower rates of false chimeras at 
the expense of the required computational resources. 

Ligation points serve as indicators for stable RNA 

duplex formation 

The above mentioned tools for global RNA interactome stud- 
ies ( e.g. RIL-seq, LIGR-seq, and CLASH) rely on the ligation 

of two proximal RNA molecules, resulting in the generation 

of chimeric sequencing reads ( 7 ,46 ). The general interpreta- 
tion associated with the detection of a chimeric read is that the 
detected sequences base-paired, however, it remains unclear if 
these events describe spurious interactions, or stable RNA du- 
plex formation. Previous work has addressed this problem by 
calculating the statistical significance of an interaction based 

on its frequency ( 18 , 20 , 26 , 47 ) and initial attempts have been
made to also consider additional parameters such as sequence 
complementarity and hybridization energy ( 18 ,20 ), however,
a statistical evaluation of those measures has not been per- 
formed. 

To close this gap, ChimericFragments collects information 

on the two positions closest to the ligation site in a chimeric 
sequence, which we call the ligation point (Figure 2 A). For 
each chimeric read with a ligation point, the complementarity 
of the two fragments around the ligation point is computed. A 

complementarity score gets assigned to every chimera and its 
significance is evaluated by comparison to a model computed 

from the complementarity scores of randomly selected pairs 
of fixed sequences length from the genome. The distributions 
from the random model and the selected RIL-seq experiment 
overlap, however, clearly differ from each other (Figure 2 B).
We next filtered our dataset based on the FDR assigned to 

each interaction and computed the correlation between the 
two biological replicates in the RIL-seq dataset. We observed 

a strong correlation ( ≥0.9) among the replicates for interac- 
tions with a FDR of 0.05 and decreasing correlation for less 
stringent FDR-cutoffs ( Supplementary Figure S5 h), which re- 
sembled our previous analysis ( Supplementary Figure S5 f). 

To further understand the effect of filtering interactions 
based on their complementarity score, we analyzed the dis- 
tribution of the complementary regions in their respective se- 
quences. In the random model, the ends of the interacting se- 
quences are distributed symmetrically (Figure 2 C). Using the 
significance of the complementarity score as a separation cri- 
terion (FDR < 0.25), the total distribution of predicted RNA 

duplexes around ligation points splits into two populations 
(Figure 2 D), with the non-significant part closely resembling 
the distribution in the random model (Figure 2 E). The dis- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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A B

C D

E F

Figure 2 Statistics of base-pairing predictions. ( A ) Schematics of expected base-pairing predictions between random (left, orange) and experimentally 
derived (right, green) sequence pairs ( B ) Densities of score distributions for complement arit y bet ween random sequences (orange) and sequences 
around ligation points (green) from a RIL-seq experiment, with a fixed length of 30 nucleotides. ( C ) Alignment ends histogram for alignments of random 

sequences of length 30. ( D ) Alignment ends histogram for all alignments in a RIL-seq experiment. ( E ) Alignment ends histogram for unsignificant 
(FDR > 0.25) alignments from panel D. ( F ) Alignment ends histogram for significant (FDR ≤ 0.25) alignments from panel D. RNA1 and RNA2 correspond 
to the first and second partner from 5 ′ to 3 ′ in a chimeric RNA. 
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ribution of the significant interactions shows a strong pref-
rence for RNA duplex formation close to the ligation point
position 30, Figure 2 F, right) and the left ends of comple-
entarity regions follow a left-tailed distribution with a peak

round position 15 (Figure 2 F, left). The distribution of the
ength of the complementarity regions also supports ranking
f a dataset according to the significance derived from the
andom model ( Supplementary Figure S6 a). The lengths of
ll complementary regions ( Supplementary Figure S6 b) split
nto non-significant ( Supplementary Figure S6 c) and signif-
cant ( Supplementary Figure S6 d) fractions, with the distri-
ution of non-significant regions closely resembling the ran-
om model (compare Supplementary Figure S6 a and S6 c).
n the fraction of significant regions, the average length is
3.6, compared to 8.0 in the random model. On average, ex-
erimentally supported interaction sites in our benchmarking
ataset are 12.7 base-pairs long, further supporting our pro-
osed model ( Supplementary Table S1 ). Lowering the FDR
ut-off to values < 0.25 excludes shorter complementary re-
ions and leads to the loss of several experimentally vali-
ated interactions such as between VqmR and aphA ( 48 ).
herefore, we used this level of significance for all follow-

ng analyses . In contrast, comparison of the significance values
rom our statistical evaluation and the commonly used Fisher
xact test showed no association between the two methods
( Supplementary Figure S7 a, b). The presented data indicate
that the ligation point of a chimeric sequence is a powerful in-
dicator for the identification of stable RNA duplexes in global
RNA interactome studies. 

To benchmark our approach, we applied ChimericFrag-
ments to seven published datasets, involving six different or-
ganisms and three different experimental pipelines, i.e. V.
cholerae (RIL-seq, ( 27 )), Escherichia coli ( E. coli , RIL-seq and
CLASH, ( 13 ,49 )), enteropathogenic E. coli (RIL-seq, ( 50 )),
Pseudomonas aeruginosa (RIL-seq, ( 51 )), Salmonella enter-
ica (RIL-seq, ( 52 )) and Bacillus subtilis (LIGR-seq, ( 53 )). In
all cases, ChimericFragments recovered significantly more in-
teractions than initially reported in the respective studies
( Supplementary Figure S7 c–i). Of note, although our results
are difficult to compare to the previously reported interac-
tions due to differences in the statistical methods to filter the
datasets, we discovered ligation points for the majority of
interactions in all studies. Except for the LIGR-seq dataset,
ChimericFragments revealed more interactions with signifi-
cant complementarity around the ligation points when com-
pared to the respective initial studies. 

We also analyzed two previously published RIL-seq
datasets ( 13 ,27 ) using the ChimericFragments pipeline. These
datasets were collected in two different model organisms
( E. coli and V. cholerae ), allowing us to compare our results

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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with 93 published and experimentally verified RNA–RNA
interactions (56 for E. coli and 37 for V. cholerae ( 27 ,54 )).
We detected relevant chimeras for 55 and 35 of these in-
teractions, respectively ( Supplementary Table S1 ). In E. coli ,
ChimericFragments successfully predicted the reported inter-
action in 40 cases ( ∼73%) and similar numbers were obtained
in V. cholerae (22 / 35, ∼63%). For comparison, RNAnue
detected 19 / 55 ( ∼35%) interactions in E. coli and 15 / 35
( ∼43%) interactions in V. cholerae ( Supplementary Table S1 ).
Of note, ChimericFragments also comes with an improved
runtime requiring 10 s / Mio. reads, whereas RNA NUE required
1290 s / Mio. reads ( Supplementary Figure S8 a). 

The computation of complementary regions done by
ChimericFragments is parameterized to match with the ex-
perimentally confirmed predictions of interaction sites listed
in Supplementary Table S1 . We expect the regions detected by
our approach to be similar to thermodynamically informed
predictions. ChimericFragments computes complementary re-
gions between sequences of a fixed length taken from the
genome, thus avoiding sequencing errors or short fragments
to interfere with the process. This behavior can result in more
detected interaction sites compared to RNA NUE ’s hybridiza-
tion of read sequences, as long as the interacting regions are
close to the ligation site between the RNA fragments. 

ChimericFragments reveals hidden sRNA–target 
mRNA pairs 

To evaluate the ability of ChimericFragments to predict un-
detected RNA duplexes in global RNA interactome studies,
we reanalyzed published RIL-seq datasets derived from V.
cholerae to search for unknown interaction with high com-
plementarity scores ( 27 ). Specifically, we allowed read counts
as low as 3 to apply our complementarity-based test of signif-
icance and investigated the complementarity in low frequency
interactions. When compared to the previous analysis (using
a minimal cut-off of 20 reads per interaction and a Fisher ex-
act test FDR < 0.05), our optimized mapping parameters in-
creased the number of RNA pairs by ∼12% (3580). Omit-
ting the Fisher exact test resulted in 8976 interactions ( ∼2.8-
fold increase), whereas of 32890 RNA pairs with read counts
of ≥3, 12917 ( ∼39.3%, ∼4.1-fold increase when compared
to our previous analysis) came with significant base-pairing
predictions with an FDR ≤ 0.25 (Figure 3 A). 

To investigate the effect of discarding unsignificant interac-
tions according to the Fisher exact test (FDR values > 0.05),
we selected 10 putative new targets of the well-studied Spot 42
sRNA ( 55 ), and tested their regulation using an in vivo post-
transcriptional reporter assay ( 33 ) (Figure 3 B). Eight of these
targets also showed significant RNA duplex formation and for
all these targets we confirmed a regulatory effect > 25% (Fig-
ure 3 C, dotted line). In contrast, the two remaining targets did
not display regulation by Spot 42. 

ChimericFragments provides insights into the 

mechanisms of sRNA-mediated gene regulation 

Bacterial sRNAs frequently employ multiple base-pairing se-
quences to interact with target mRNAs, which adds to their
function as global regulators of gene expression ( 4 ,56 ). How-
ever, the identification of base-pairing sequence elements in a
given sRNA is typically not straight-forward based on con-
servation analysis alone ( 28 , 57 , 58 ). ChimericFragments ad-
dresses this problem as it computes RNA duplexes for every 
chimeric RNA pair with a ligation point, which are visualized 

in a summary plot (Figure 1 , bottom right). Single peaks indi- 
cate one base-pairing sequence in the sRNA ( Supplementary 
Figure S8 b), or the target ( Supplementary Figure S8 c), whereas 
multiple peaks predict more than one base-pairing sequence 
(Figure 4 A). Using this strategy, we discovered 20 sRNAs with 

a single base-pairing sites in V. cholerae and 35 that contained 

two or more sites ( Supplementary Figure S8 d–f). 
The summary plots also classify the results depending on 

the position of a fragment in a sequencing read relative to 

its partner (RNA1 precedes RNA2; Figure 2 A). These data 
can inform a potential mode of regulation as targets pref- 
erentially occupy the first position, whereas regulators (e.g.
sRNAs) are frequently found in the second position ( 13 ,59 ).
Indeed, when analyzed by our ChimericFragments pipeline,
we confirmed that Hfq-binding sRNAs were more frequently 
recovered as RNA2, when compared to their target mRNAs 
( Supplementary Figure S8 g). 

To test if this information would allow us to discover new 

sRNA targets, we focused on the FarS sRNA, which was pre- 
viously shown to use a single base-pairing site to control two 

related fatty acid degradation genes ( 60 ). In contrast, our 
data suggested FarS regulates additional genes using two base- 
pairing sites (Figure 4 A). To validate these predictions, we fo- 
cused on two target mRNAs with high frequency exclusive to 

each region: vc1043 (encoding a fatty acid transporter ( 61 )),
which interacts with a novel base-pairing sequence in FarS 
and vca0848 (encoding a GGDEF family protein ( 62 )), em- 
ploying the previously reported base-pairing site (Figure 4 B,
C). Post-transcriptional reporter assays revealed that vc1043 

and vca0848 are both repressed by FarS and introduction 

of single nucleotide mutations (G34C and G54C; Figure 4 C) 
confirmed that base-pairing is specific to the predicted base- 
pairing site (Figure 4 D). Taken together, our analyses show 

that ChimericFragments generates testable hypothesis that en- 
able a better understanding of the molecular mechanisms un- 
derlying post-transcriptional gene regulation. 

Identification and characterization of novel 
regulatory RNAs using ChimericFragments 

Regulatory RNAs and target mRNAs have distinct proper- 
ties in global RNA networks. Whereas regulatory RNAs of- 
ten interact with hundreds of targets, mRNAs mostly inter- 
act with one or few sRNAs, but not with other mRNAs 
( 3 , 4 , 12 , 63 ). We used this difference in the local network struc-
ture to search for undiscovered sRNAs in intergenic regions 
(IGRs) of the genome. To this end, we computed the net- 
work of all interactions between CDSs and IGRs, reveal- 
ing two IGRs pairing with numerous putative target mRNAs 
( Supplementary Figure S9 ). We further analyzed the IGR with 

the highest number of targets (located between the vc0715 and 

vc0719 genes; Figure 5 A) and found that most targets shared 

a predicted binding site within the vc0715 :: vc0719 IGR (Fig- 
ure 5 B). To support our hypothesis for a regulatory function 

of the vc0715 :: vc0719 IGR, we inspected published transcrip- 
tome datasets for a potential sRNA transcript ( 34 ,35 ). Indeed,
these analyses revealed a ∼100 nt long transcript, which we 
named NetX (network derived RNA), and we validated its ex- 
pression by Northern blot analysis (Figure 5 C). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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A

B

C

Figure 3 Impro v ed characterization of known regulators. ( A ) Comparison of amounts of interactions reco v ered in the RIL-seq dataset with our previously 
published analysis and ChimericFragments. ( B ) Significance of base-pairing predictions for all interactions with more than 20 reads. Colors indicate 
interactions detected with our previous analysis (yellow) and additional interactions detected only with ChimericFragments (blue). Interactions picked for 
validation are highlighted with circles. Green circles indicate significant (FDR ≤ 0.25) base-pairing predictions and red circles no significant base-pairing 
predictions (FDR > 0.25). ( C ) Translational GFP reporter fusions were cotransformed with a constitutive Spot 42 expression plasmid or an empty control 
plasmid in E. coli Top10 cells and GFP production was measured. Green bars reflect significant (FDR ≤ 0.25) and red bars unsignificant (FDR > 0.25) 
base-pairing predictions. Bars show the mean of the measurements in three independent biological replicates. For each target, all measurements were 
divided by the mean of the control measurements and error bars are equal to the respective propagated uncert aint y. Significance (unpaired t -test) of the 
difference to w ards the control samples is indicated b y st ars: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.0 01. 
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We next focused on the regulatory role of NetX. According
o ChimericFragments the most abundant target mRNA of
etX is aphA , encoding a key regulator of quorum sensing,
iofilm formation, competence, and virulence in V. cholerae
 48 ,64–66 ). Our analysis predicted strong base-pairing be-
ween NetX and aphA (Figure 5 D) and Western blot analy-
is showed that over-expression of NetX resulted in reduced
phA protein levels in all stages of growth (Figure 5 E). Given

he documented role of AphA in virulence gene expression
nd pathogenesis of V. cholerae ( 67 ), we extended our analysis
nd monitored the effect of NetX expression on cholera toxin
CtxAB) production. In line with our previous data, NetX
trongly reduced CtxAB levels (Figure 5 F). Taken together, our
esults show that ChimericFragments allows the detection of
ovel RNA regulators and supports the hypothesis-driven re-
earch into their regulatory roles in the cell. 

iscussion 

ase-pairing between two RNA molecules often depends on
NA chaperones such as Hfq and ProQ in bacteria, or SM-

ike proteins from eukaryotic and archaeal organisms ( 68–70 ).
utation of their respective genes typically impairs RNA du-

lex formation and in the case of Hfq has been associated
ith pleiotropic phenotypic alterations, including defects in

irulence gene expression in pathogenic bacteria ( 71 ). There-
fore, studying the molecular processes underlying RNA chap-
erone activity and global RNA–RNA interactions patterns is
not only an important aspect of fundamental research, but
also has implications for medicine and public health ( 72 ). 

The past few years have brought a revolution in our under-
standing of how RNA–RNA interactions form at a global level
due to the development of various new sequencing-based tech-
nologies ( 7 , 9 , 10 ). In contrast to previous approaches, which
frequently relied on the identification of individual RNA du-
plexes and / or the characterization of single RNA regula-
tors, these technologies have paved the way to simultaneously
analyze the interactomes of dozens to hundreds of regula-
tory RNAs and thousands of RNA–RNA pairs ( 7 ). However,
computational pipelines addressing the complexity of these
datasets are scarce and it is often unclear how the detected
interactions translate into functionally important discoveries
( 6 ). 

ChimericFragments offers a computational framework that
can help to overcome these limitations (Figure 1 ). Specifi-
cally, the integrated graphical interface allows visualization of
global RNA-interactomes, which can provide important in-
formation on the relevance of individual regulators or RNA–
RNA interactions in the network. Previous work has shown
that cellular RNAs constantly compete for interaction with
RNA-binding proteins, shaping the biophysical and biochem-
ical parameters driving post-transcriptional gene regulation
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A B

C D

Figure 4 Impro v ed characterization of kno wn regulators. ( A ) Tw o seed regions in F arS (seed 1, dark green; seed 2, light green) detected b y aggregation 
of all base-pairing predictions of all its targets (FDR ≤ 0.25). ( B ) Counts of reads transformed by natural logarithm supporting complement arit y in seed1 
or seed2 in F arS f or all predicted targets (FDR ≤ 0.25, 1 pseudocount added). ( C ) Base-pairing prediction between FarS seed 1 and vc1043 (top) and FarS 
seed 2 and vca0848 (bottom) with bases for nucleotide exchange marked. ( D ) Translational GFP reporter fusions for vc1043 and vca0848 together with 
an empty control plasmid (p-ctr) or FarS expression plasmids (p-FarS, G34C and G54C) were cotransformed in E. coli Top10 and GFP production was 
measured. Bars show the mean of the measurements in three independent biological replicates and error bars represent the respective standard 
deviation. For both targets, all measurements were divided by the mean of the control measurements. Mutations G34C and G54C correspond to the 
seed regions marked with the respective color in panel A. Significance (unpaired t - test) of the difference towards the control samples is indicated by 
stars: ** P ≤ 0.01, *** P ≤ 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 73 ,74 ). Thus, to understand the regulatory principles under-
lying RNA network performance, it is crucial to determine the
structure of the network and key regulatory players involved
( 75 ). Of note, ChimericFragments also enables the compari-
son of two or more network states and the study of regulatory
features driving RNA network dynamics. 

The evolution of regulatory RNAs is highly dynamic and,
when compared to their protein counterparts, only poorly un-
derstood ( 56 ,76–78 ). Regulatory RNAs can be expressed from
IGRs, as well as from the 5 

′ - and 3 

′ UTRs of mRNAs, and
the CDS ( 79 ). In addition, RNA regulators can also originate
from stable transcripts, such as tRNAs ( 80 ,81 ). Therefore,
the identification of base-pairing regulators from the pool
of all cellular transcripts can be difficult based on standard
transcriptome data. ChimericFragments allows the discovery
of base-pairing regulators based on the number and quality
of the interactions (Figure 5 ). We showcased this feature of
ChimericFragments through the identification and character-
ization of NetX, which we demonstrate is a previously un-
known regulator of virulence gene expression in V. cholerae . 

Our approach also revealed a second new sRNA reg-
ulator, named NetY, which is expressed from the IGR
between the vcr069 and vc1803 genes ( Supplementary 
Figure S10 a). NetY accumulates as a ∼80 nucleotide long 
sRNA ( Supplementary Figure S10 b) and base-pairs, like 
NetX, with various transcripts ( Supplementary Figure S10 c).
However, in contrast to NetX (Figure 5 A), the majority of 
NetY’s interaction partners are other non-coding RNAs, sug- 
gesting that this sRNA might act as an RNA sponge. RNA 

sponges base-pair with and inhibit the activity of non-coding 
regulators and are ubiquitous in prokaryotic and eukaryotic 
systems ( 82 ,83 ). Further investigations towards the mecha- 
nism underlying NetY-mediated base-pairing supported its 
role as a sponge RNA as the vast majority of chimeras con- 
tained NetY at the first position of the sequencing read (indi- 
cated in blue; Supplementary Figure S10 c), which is a hall- 
mark of target mRNAs and sponge RNAs ( 13 , 26 , 59 ). In 

contrast, analogous analyses focusing on FarS and NetX re- 
vealed that their corresponding transcripts are typically found 

in the second position of the sequencing reads (indicated 

in red; Figures 4 A and 5 B), suggesting their primary func- 
tion is to regulate other transcripts. In the case of FarS, we 
also discovered that the sRNA contains two base-pairing se- 
quences to interact with target transcripts and we also dis- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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Figure 5 Identification and characterization of the NetX sRNA. ( A ) Graph of all interactions of NetX with more than 3 reads captured by RIL-seq. ( B ) 
Genomic context of the newly characterized sRNA NetX with aggregation of base-pairing predictions for NetX and flanking genes together with 
co v erage from a dRNA-seq experiment and a TERM-seq experiment at the same location. ( C ) Northern blot detecting a transcript made at the region 
shown in panel B. RNA samples from V. cholerae wild-type cells were collected at various stages of growth. 5S ribosomal RNA served as a loading 
control. ( D ) ChimericFragments plot of ligation points (bottom) between NetX and the interaction partner aphA with a selected base-pairing prediction 
shared by all ligation points in the lower left corner of the plot (top). ( E ) Quantification of Western blots comparing protein levels of AphA between WT 
and o v ere xpression of NetX. P rotein samples from V. c holerae wild-type cells carrying a c hromosomal 3XFLAG in the aphA gene were collected at 
various stages of growth. Western Blot analysis was performed to measure AphA levels. Bars show the mean of three independent biological replicates 
and error bars are equal to the respective standard deviation. Significance (unpaired t-test) of the difference towards the control samples is indicated by 
stars: * P ≤ 0.05, ** P ≤ 0.01 ( F ) V. cholerae wild-type cells carrying a chromosomal 3XFLAG-tag in the aphA gene were cultivated in AKI medium . 
Secreted protein, total protein and RNA samples were collected, and RNA and protein samples were monitored respectively by Northern and Western 
blot analysis. Coomassie st aining , RNAP and 5S ribosomal RNA served as a loading control for Western and Northern blots, respectively. 
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overed multiple base-pairing regions in various other sRNAs
 Supplementary Figure S8 e, f). 

These analyses also identified RNA regulators that carry
ignatures of both categories, i.e. they seem to act as sponges
hen base-pairing with one set of targets, while in other inter-
ctions they likely function as the regulator. Of note, the base-
airing sequence involved in these interactions can be either
verlapping ( e.g. see VSsrna24; Supplementary Figure S10 d)
r occupy separate segments of the sRNA (e.g. see GcvB;
upplementary Figure S10 e). The latter case could indicate a
witch in the regulatory function of an sRNA depending on
he use of a specific base-pairing sequence, which has not been
reviously observed. Again, these results highlight the strength
f ChimericFragments in generating data-driven hypotheses
hat can be tested experimentally. 

Finally, we designed ChimericFragments to be compatible
ith various experimental setups that have been used to detect
NA–RNA in bacteria (e.g. RIL-seq, CLASH, and LIGR-seq).
himericFragments can also analyze data from eukaryotic or-
ganisms, as we demonstrate for a CLASH experiment from
Saccharomyces cerevisiae ( Supplementary Figure S10 f; ( 84 )).
However, we note that larger genome sequences together with
the relatively small size of eukaryotic microRNAs, siRNAs,
and piRNAs will reduce the number of uniquely mapping
sequencing reads in our pipeline, which complicates down-
stream analysis. Therefore, a refinement of the mapping strat-
egy would be required to adjust ChimericFragments to these
alternative datasets. 

Data availability 

All datasets analyzed in this study are published and avail-
able online. Sequencing data of RNA interactome studies
are available under the following accession codes: RIL-
seq E. coli (ArrayExpress, E-MTAB-3910), RIL-seq V.
cholerae (GEO, GSE198671), RIL-seq EPEC (ArrayExpress,
E-MTAB-8806), RIL-seq S. enterica (GEO, GSE163336),

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae035#supplementary-data
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RIL-seq P. aeruginosa (GEO, GSE216135), CLASH E. coli
(GEO, GSE123050), LIGR-seq B. subtilis (ArrayEx-
press, E-MTAB-8490) and CLASH S. cerevisiae (GEO,
GSE114680). Term-seq and dRNA-seq sequencing data
can be found under the GEO accession codes ‘GSE144478‘
and ‘GSE62084’, respectively. The code to reproduce all
analyses done in this study is available in Github ( https:
// github.com/ maltesie/ ChimericFragmentsFigures ) and
Zenodo (ChimericFragments, https:// doi.org/ 10.5281/
zenodo.10664038 ; ChimericFragments Figures, https:
// doi.org/ 10.5281/ zenodo.10890087 ). A running instance of a
ChimericFragments visualization of the RIL-seq dataset from
V. cholerae is available at https://vch- interactome.uni- jena.de .

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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