
‘‘Self-Assisted’’ Amoeboid Navigation in Complex
Environments
Inbal Hecht1*, Herbert Levine2, Wouter-Jan Rappel2, Eshel Ben-Jacob1,2*

1 The Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel, 2 Center for Theoretical Biological Physics, University of California San Diego, La Jolla,

California, United States of America

Abstract

Background: Living cells of many types need to move in response to external stimuli in order to accomplish their functional
tasks; these tasks range from wound healing to immune response to fertilization. While the directional motion is typically
dictated by an external signal, the actual motility is also restricted by physical constraints, such as the presence of other cells
and the extracellular matrix. The ability to successfully navigate in the presence of obstacles is not only essential for
organisms, but might prove relevant in the study of autonomous robotic motion.

Methodology/Principal Findings: We study a computational model of amoeboid chemotactic navigation under differing
conditions, from motion in an obstacle-free environment to navigation between obstacles and finally to moving in a maze.
We use the maze as a simple stand-in for a motion task with severe constraints, as might be expected in dense extracellular
matrix. Whereas agents using simple chemotaxis can successfully navigate around small obstacles, the presence of large
barriers can often lead to agent trapping. We further show that employing a simple memory mechanism, namely secretion
of a repulsive chemical by the agent, helps the agent escape from such trapping.

Conclusions/Significance: Our main conclusion is that cells employing simple chemotactic strategies will often be unable
to navigate through maze-like geometries, but a simple chemical marker mechanism (which we refer to as ‘‘self-assistance’’)
significantly improves success rates. This realization provides important insights into mechanisms that might be employed
by real cells migrating in complex environments as well as clues for the design of robotic navigation strategies. The results
can be extended to more complicated multi-cellular systems and can be used in the study of mammalian cell migration and
cancer metastasis.
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Introduction

Cellular migration has been an intriguing phenomenon for

many years. From wound healing and immune response of

mammalian cells, to chemotaxing bacteria and amoeba, living

cells exhibit a variety of motility abilities [1–3].

Most motile cells attempt to follow external directional signals

(in the form of chemical or mechanical gradients) while moving in

a complex environment. For example, immune system cells follow

chemical gradients as they leave the vascular system and migrate

through cellular tissues towards the site of an inflammation [1–3],

and metastasizing cancer cells invade through the surrounding

tissues to form secondary tumors [4,5]. These processes require

transiting through an environment consisting of other cells and

extracellular matrix (ECM). The chemotactic process therefore

involves both a response to the external signal, and the handling of

mechanical constraints on the motion.

From the computational point of view, much research has been

devoted to the study of autonomous motion planning [6]. An

important part of autonomous taxis is the ability to independently

navigate, namely to find a path to a defined target under possible

constraints. This ability, which is essential for cellular translocation

[7–10] and for the study of animal behavior [11], is also important

for successful robotic exploration. For individual agent-based

navigation, one obvious way of encoding target information is by

having the target emit a signal (steady or dynamic), which allows

the agent to determine a locally favorable direction. But, it is clear

that the locally best direction may not be the overall best choice, as

this may lead to trapping of the agent by large obstacles.

Optimally, the agent should balance this target-based information

with local structural information so as to navigate around these

traps. The conceptual view that cells should integrate multiple

sources of information can lead to new predictions regarding

cellular chemotaxis; this will be seen below.

In this work, we will study these questions by use of a simplified

model of cellular navigation capabilities. Efforts in the biological

and biophysical community have elucidated the basic elements

underlying how cells are able to navigate via chemical gradients.
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First, the external signal influences the cell orientation by various

signal transduction pathways, highly conserved between different

cell types. Consequently, the cell polarizes and different chemicals

accumulate at the front versus the back of the cell. Motility is

typically obtained by f-actin polymerization at the cell’s front,

leading to membrane protrusions such as pseudopods, lamellipods

and ruffles. Beyond individual propulsion, the cell interacts with its

environment by various passive as well as active processes: The cell

can adhere or de-adhere to the extra -cellular matrix or to

neighboring cells [12,13], apply forces and even actively degrade

the ECM by proteases [14].

Many attempts have been made to model different aspects of

directed migration and chemotaxis. Most models to date have

addressed distinct parts of motility, including retraction and

protrusion [15], but are unable to describe the entire motility

process; other models use ad-hoc rules to describe the motion [16].

Many studies, both theoretical and experimental, have also been

devoted to the question of collective motion and how it emerges

from individual interactions [17–19], from the cellular to the

animal scale. In this work we focus on single cell motility, but our

results can be extended to the case of collective motion by adding

intra-cellular interactions.

Here, as a first step in the study of navigation in complex media,

we study the ability of a moving cell to navigate between obstacles.

We isolate the sensing and motility from adhesion and proteolysis

and focus on the strategies needed by the cell so as to find its way

under environmental constraints. We do so by using a simulated

amoeboid, crawling in different environments according to an

external signal. We first study the characteristics of free motion in

a chemoattractant gradient, then turn to the effects of obstacles in

the medium, and finally to the more challenging case of navigation

in a maze. In the case of a maze, motion according to the local

chemical direction can cause the cell to become trapped by the

maze walls. When this occurs, the cell needs to retrace its steps,

moving away from the optimal chemical direction, in order to find

a new pathway and resume its motion towards the target.

We demonstrate that memory-less navigation yields very low

success rates, and that in most cases the cell becomes stuck in a

maze corner or dead end, and cannot reach its goal. We then show

that a simple memory effect mediated by a chemical marker

secreted and detected by the cell, can lead to much higher success

rates. We propose to term this type of behavior ‘‘self-assisted’’

navigation since the cell by virtue of the marker emission is able to

recognize that it is trapped and thereby alter its behavior so as to

assist itself in trying to escape. We hypothesize that navigation

based on this type of mechanism is a likely possibility for

chemotaxis in complex environments; this can obviously be tested

in, for example, microfluidics devices where flow can be used to

interfere with marking strategies. Finally, this finding provides

insights into needed components for successful robotic motion

planning.

Results

Amoeboid motion
Amoeboids, unlike bacteria, can directly detect spatial gradients

in chemical concentration, responding to as low as a 2% difference

in concentration between the cell’s front and back [20–22].

Chemotaxis, i.e. motion according to the gradient direction, is

then achieved by sending out membrane protrusions (pseudopods),

with a typical life time. Pseudopods are mostly created in the

leading edge of the cell (cell’s front), but some pseudopods may

emerge also from the sides, depending on the gradient strength

and cell polarization [23,24]. The overall cellular motion is

achieved by retraction of the cell’s rear towards the advancing

front. Pseudopods typically exhibit complex behavior of bifurca-

tion and retraction, with some periodicity of right-left split

directions [25].

The formation of pseudopods is accompanied by accumulation

of various effectors on the membrane, in the form of ‘‘patches’’

with limited lifetime [26]. These patches were shown to spatially

correlate with the location of pseudopods [27,28]. Genetic studies

have verified that these effectors are controlled by the external

chemical signal and in turn are responsible for activating the

machinery that drives the extensional dynamics.

Amoeboid directional motion: Model
In our model, the internal direction of the cell (the cell

polarization axis) is determined by the external gradient of the

signaling field with some added noise. This simple mechanism is

intended to mimic the gradient sensing process, without explicitly

dealing with receptor occupancies. And indeed, in our previous

work [29] we have shown that such a ‘‘noisy compass’’ mechanism

can produce pseudopod statistics and overall directional motion

which closely resemble real cell’s behavior.

The compass noise is drawn from a Gaussian distribution, and

the distribution width is inversely related to the steepness of the

gradient: A steep gradient yields more accurate directional sensing,

and hence there is less noise (and vice versa); this was chosen so

that our model would be in agreement with experimental data

comparing response at different gradient strengths [29]. The

membrane point which is the closest to the internal gradient vector

is chosen to be the new cell front. This directional sensing process

takes place every few minutes and has no hysteresis.

After determining the new front position, a patch of activation is

created on the membrane. This patch determines the membrane

area that will be pushed outward to create a pseudopod. The size

and lifetime of the patch are randomly drawn from a given range,

fitted to experimental data (See Supporting Table S1 for more

details). After this lifetime, the patch is gradually degraded and a

new patch is created. Other forces acting on the cell membrane

include cortical tension, constant area constraint and friction (see

Supporting Text S1 for more details). The forward front pushing

and back retraction, due to the constant area constraint, lead to

net forward motion. The cortical tension determines the width of

membrane protrusions and influences the shape of the cell (e.g.

round or slender). Once all the forces are calculated, we determine

the velocity change at each membrane point and advance the

membrane simultaneously. Technical and computational details,

and the form of each of the forces, are given in detail in

Supporting Text S1.

Freely moving amoeboid
When no obstacles are present, the cell motion and shape

dynamics depend on the internal parameters such as the activation

patch size, patch lifetime and the ratio between the protruding

force and the cortical tension, as well as on the steepness of the

gradient. Generally, a cell can have several, independent areas of

activation (‘patches’), and the number of protrusions will vary

accordingly. In Fig. 1 we show the simulated movement of two

typical model cells, one with a single activated patch (Fig 1.(a) – (b))

and one with two activated patches (Fig. 1(c) – (d)). Different types

of cells exhibit different numbers of protrusions, and the number

of patches in the model can be tuned to match a specific cell type.

In this work we focus on the case of a single protrusion, mostly for

simplicity and to save computation time.

The chemotactic index (CI) of the cell is defined as the ratio

between the distance traveled in the direction of the signal and the
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overall distance traveled by the cell, and experimentally was found

to depend on the gradient steepness [24]. In our model, steepness

lowers the noise variance and for a narrower noise distribution, the

CI increases and the cell path becomes more accurate. In Fig. 2 we

show typical paths for the cases of low versus high noise levels. It is

easy to see that the path to the target is more accurate when the

noise level is low, namely when the gradient is steeper. This has

been studied in detail elsewhere, using a more complex reaction-

diffusion model for generating the patches [24].

Navigation between obstacles
Amoeboid-like motion is directly advantageous in the presence

of obstacles. When the cell encounters an obstacle directly ahead,

it cannot continue to move in the direction of the protrusion, but

can still move in other directions. As a result, the cell slides along

the walls of the obstacle, as the points adjacent to the obstacle are

stuck while points slightly away are free to move. When a new

activation patch is created, it will typically not be centered at a

point that is attached to the obstacle; rather it will be shifted to a

free point. This simple mechanism yields an efficient obstacle-

passing mechanism, as can be seen in Fig. 3. It also creates an

impression of the obstacles ‘‘guiding’’ the motion, as seen in

experiments [29,30]. It is the nature of amoeboid motion, i.e. the

creation of stochastic and recurring protrusions, as well as a

flexible cell shape, that allows for this efficient obstacle

circumvention. Ongoing directional change is a constant feature

of amoeboid motion, and thus the process of bypassing an obstacle

does not demand any additional special mechanism or procedure.

It should be noted, though, that this notion only applies to

obstacles of the amoeboid’s size or less, as will be shown in the next

section. Navigation between obstacles is mostly a question of

locally bypassing one obstacle at a time. As long as the cell is

flexible enough and the obstacles are not too large, the cell can fit

between the obstacles and proceed forward without the need for

sophisticated longer-range analysis, memory or ‘‘intelligence’’.

Navigation in a maze
The situation changes when the cell is exposed to a complex

terrain with obstacles larger than the cell size. In this case the cell

may spend a long time in attempts to bypass the obstacles,

especially when they happen to be perpendicular to the direction

of the chemical gradient. We have chosen to illustrate this situation

by considering navigation in a maze, as the cell can now be

trapped by the maze walls. The example shown in Fig. 4 presents a

case in which the chemical gradient points to the central top area

of the maze, with several possible pathways from the starting point

to this target. Importantly, signaling molecules can freely diffuse

through the maze walls (see also the Discussion section below), and

as a result, there are points inside the maze where the local

direction of the gradient leads to a corner or a dead end (marked

with asterisks in Fig. 4). A chemotaxing amoeboid that precisely

follows the signal may therefore get stuck in such a local trap.

Escaping the trap demands motion in a direction different from

the one dictated by the signal. This poses a challenge that may

demand more than the simple chemotaxis capability that is

sufficient in the case of small obstacle circumvention.

When the noise distribution width is taken to be large

(corresponding in our model to the case of a small gradient) and

fixed, the cell’s path is curved and the cell can indeed explore

different paths in the maze; this is shown in Fig. 5(a) – (b). With

high noise the cell may get off the trail, but it can also overcome a

local barrier by moving in an opposite direction for a short while.

Figure 1. Model cells. The number of active protrusions varies
between different cell types, and is a parameter of the model. (a) – (b) A
cell with a single active protrusion (marked in red). Splitting of the front
occurs when a new protrusion is created. (c) – (d) A cell with two active
protrusions.
doi:10.1371/journal.pone.0021955.g001

Figure 2. Cell navigation in a gradient with no obstacles. The cell moves in a terrain with a constant gradient and no obstacles. The cell
detects the chemoattractant concentration (color coded from blue-low to red-high) and moves accordingly. (a) With low noise, i.e. narrow noise
distribution, the cell path is highly accurate. (b) With higher noise, i.e. wider noise distribution, the cell wanders around and its path is less accurate.
doi:10.1371/journal.pone.0021955.g002
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This behavior is not all that beneficial to the cell though, since the

search is inefficient; the cell spends a long time en route and

sometimes wanders far away from the well-defined external

direction. When the noise is lower, the cell always chooses the

shortest path and wanders around much less, as shown in Fig. 5(c),

but is also easily stuck (Fig. 5 (d)) as it obeys the external constraint

precisely and cannot move against the dictated direction

Adaptive noise
One possible strategy to evade traps is that of noise adaptation. In

our baseline model, the noise has a fixed value, set by the global

strength of the gradient. However, organisms moving in different

environments may need to adapt their noise level and adjust it to the

different terrains. In fact, chemotaxing amoebas such as Dictyostelium

automatically exhibit different noise levels when moving in different

strength local gradients [31], due to the underlying mechanism of

directional sensing by receptor occupancy differences. Following

this notion, we choose the noise distribution width to dynamically

depend on the relative difference in the chemoattractant concen-

tration between the cell’s front and back:

s~
Cmin

Cmax{Cmin

Figure 3. Navigation between obstacles. In the two different terrains, the cell slides along the obstacle and bypasses it, according to the general
direction of the gradient (color coded as inFig. 2). (a) A terrain with a constant gradient towards a point source. (b) A terrain with a fixed slope.
doi:10.1371/journal.pone.0021955.g003

Figure 4. The maze. The model cell is initially placed in the ‘‘Start’’ position (arbitrarily chosen). The cell moves according to the chemoattractant
concentration, as indicated in color code (blue-low to red-high). The arrows show the local gradient direction. In some sections of the maze, the
chemoattractant gradient leads to a corner, a wall or a dead end, as shown for example by the asterisks.
doi:10.1371/journal.pone.0021955.g004
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,where the minimal concentration defines the cell back and the

maximal concentration defines the cell front. A large difference

between the cell’s front and back results in a narrow noise

distribution, while a small difference between the front and the back

implies noisier directional sensing and a wider noise distribution.

This dynamic noise selection allows the cell to adjust to the varying

environment and partially optimize its search strategy.

However, even with this type of adaptive noise, chemotactic

navigation is not very successful. To estimate the efficiency and

success rate of each of the tested strategies, we repeated the

simulation in the same maze and with the same starting point.

Given the stochasticity of the patch generation process in the

model, a different path was obtained in each run. If the cell

managed to get to the defined ending point within the defined

simulation time limit, it is counted as successful. Out of

approximately 250 such runs, the computational cell was found

to become stuck in 70.1% of the cases and only 29.9% of the cells

could eventually reach the target (red zone). In two other maze/

signal configurations, 100% of the cells became stuck. An example

of a trapped cell and its path is shown in Fig. 6(a). Therefore,

navigating via the chemoattractant gradient by itself is insufficient

in the case of large obstacles that block the way. Motion against

the gradient on a scale larger than the cell’s length is needed.

The ‘‘self-assistance’’ strategy
To consider a possible new navigation strategy that can enhance

escape from traps, we add to our model a repulsive chemical field,

continuously secreted by the cell. When the cell is trapped in a

specific location, the level of this chemical increases and acts to

mask the external chemoattractant. For simplicity, we assumed

that the two chemicals (i.e. the external chemoattractant and the

secreted chemorepellent) have exactly opposite effects on the cell’s

navigation, so the cell observes an effective field given by:

Ceff ~Csig{Cchem;

where Csig is the concentration of the external signal,Cchem is the

concentration of the secreted chemical, and Ceff is the effective

concentration detected by the cell. The secretion and detection of

this chemical marker acts as a memory, which actively marks areas

in the maze that have already been visited. This chemical can

diffuse, with various possible choices for the diffusion rate; as we

will see, the only significant limitation is that it cannot diffuse too

quickly and thereby lose the information as to the cell’s recent

positions. We term this strategy ‘‘self-assistance’’, as the cell is able

to escape the trap without any external help. The effect of this

Figure 5. The cell’s path in the maze. The cell’s center of mass is plotted, from the maze start to the end. (a–b) When the cell is exposed to high
noise (i.e. wide noise distribution) it can explore different paths and exhibits a curved trail. (c) With a lower noise level, the path is more accurate and
the cell chooses the shortest path. (d) With low noise, the cell may get stuck behind a wall or a corner in the maze.
doi:10.1371/journal.pone.0021955.g005
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augmented navigation is demonstrated in Fig. 6(b) (the full list of

parameters values is given in Supporting Table S1). The cell is

initially trapped by the maze walls (as in Fig. 6(a)) but due to the

increasing level of secreted repulsive chemical, the cell eventually

selects a new direction that leads it out of the corner. Additional

details regarding this effect is shown in Fig. 6(c), where the

difference between the chemoattractant and the chemorepellent is

represented using a color code. The areas that had been previously

visited by the cell have a clearly lower effective concentration, and

the color roughly indicates the time spent in a specific location.

The success rate for this type of navigation is significantly higher

than that of simple chemotaxis – using around 250 runs on the

maze shown in Fig. 4, the success rate rose from 29.9% to as high

as 99%. For the other maze/signal configurations that were tested

we obtained an increase from zero success to 72% and 76% using

the ‘‘self-assistance’’ procedure (data not shown).

We specifically tested the effect of the repulsive chemical’s

diffusion on the success rates of the moving cell. As expected, the

success rate is high for low diffusivities, and falls significantly when

diffusion rate exceeds a threshold, as shown in Fig. 7. This is

reasonable, as fast diffusion blurs the spatial information needed to

make the correct decision and instead the cell actually responds

only to the external chemical gradient .

The passage time in the maze, namely the time it takes to reach

the target, is an indicator of search efficiency. The search time for

‘‘self-asssisted’’ navigation is significantly shorter than that of a

Figure 6. A cell navigating in the maze. (a) A stuck cell: The local chemoattractant gradient points towards a maze wall. When the cell reaches
the wall it moves around, as shown by the different contours, but is unable to bypass the local barrier. (b–c) A successful cell: (b) With a
chemorepellent secreted and detected, the cell can overcome the barrier and continue to move until the goal is reached. (c) The chemorepellent trail:
The color represents the difference between the chemoattractant and the chemorepellent, as actually detected by the cell, therefore the areas visited
by the cell have a lower concentration than their vicinity.
doi:10.1371/journal.pone.0021955.g006
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simple chemotactic navigation (see Fig. 8). Just as we found for the

success rate, the search time increases rapidly (namely the

efficiency is decreased) as the chemical diffusion rate exceeds the

threshold.

Discussion

Amoeboid motion is found in different biological systems, not

only in amoeba per se but also in migrating mammalian cells. For

example, metastasizing cancer cells are able to transform from the

mesenchymal mode of motion, in which they move by degradation

of the ECM, to the amoeboid mode, in which they move through

the ECM by cell shape deformations [24]. Invading cells, both

normal and cancerous, interact with the extracellular matrix

(ECM) in a two-fold manner. The ECM acts as a physical scaffold

that binds cells together into tissues and guides cellular migration

along matrix tracks, but it also presents a physical barrier that cells

need to overcome – either by proteolysis or by a shape change.

The roles of the ECM and the influence of its specific features

(such as pore size and density) on cellular invasion are in the focus

of current biomedical research, both in vivo and in vitro [6,32].

Importantly, the ECM also elicits biochemical and biophysical

signaling, which may influence cellular differentiation and

motility.

Migrating amoeboid cells are able to change their shape

drastically in order to adapt to encountered constraints and

thereby push through narrow places. These cells have low levels of

integrin expression, reduced focal contacts, a low degree of

adhesiveness and significantly higher motility velocities as

compared to mesenchymal cells [33,34]. Amoeboid shape-driven

migration allows cells to evade, rather than degrade, barriers, and

enables migration even when mesenchymal motility is impossible.

Recent experimental work has shown that cells that were restricted

to amoeboid motility, by inhibition of matrix metalloproteases

(MMPs) could still invade pores that were as small as the nuclear

size of the cell [35–40]. New evidence also supports a central role

for amoeboid motility in cell migration and cancer cell invasion

[41]. One consequence of this fact is that treatment by MMP

inhibitors was found to be of low effectiveness against cancer

metastases.

In order to gain a deeper understanding of amoeboid motion in

complex environments, we focused in this work on cellular

navigation between obstacles. We first examined the influence of

noise on cellular motion. In our stochastic compass model, the

internal direction (compass) of the cell reflects the external

gradient, with some added noise. The noise level scales inversely

with the external gradient strength. This model feature is based on

experimental results [42,43], showing increasing CI with increas-

ing gradient steepness. Different noise levels can also result from

internal cellular characteristics. For example, normal cells exhibit

a stronger response (i.e. less noise, higher motility and higher CI)

to specific growth factors compared to cancerous cells of the same

cell line [24]. This difference in gradient sensing between normal

and cancer cells can therefore influence their ability to migrate,

navigate and invade. By examining obstacle circumvention of

amoeboid cells we show that cells can easily bypass obstacles of

roughly their own size. This is a result of the noisy extension-

retraction dynamics of membrane protrusions, which is the main

characteristic of amoeboid motion.

To challenge the cell’s navigation ability, we placed the cells in a

maze with contradictory cues. In most biological systems, the

signaling molecules can diffuse through small pores in the tissue,

while the larger cells need to bypass the obstacles, for example

those posed by the ECM, as described above. This is the rationale

behind our choice of a signal that can diffuse through the maze

walls, rather than a signal that can only diffuse via the maze

openings. This is an important point, as the independent signal

and maze structure pose the challenges of dead ends and corners,

which the cell needs to overcome. Conversely, when the signal

diffuses only in the maze, the cell merely needs to follow the

chemoattractant concentration [44]. In some recent work of Sasai,

a somewhat similar challenge was posed, using a dead end that

forced the cell to change its direction. However, no long-term

success rates were measured, and the effects of memory were not

investigated.

Our maze simulations show that adaptive noise is insufficient for

efficient and successful navigation. In the different maze/signal

configurations that we studied, success rates varied from 0% (two

Figure 7. The effect of the secreted chemical on navigation
success. Maze success rates for regular chemotactic navigation (no
chemical secreted) and for bootstrapping navigation with different
chemical diffusivities. Bootstrapping navigation improves success rates
from 30% to 99%, as long as the chemical’s diffusivity is not too high.
Very high diffusivity blurs the spatial information and thus reduces
navigation success rates. About 250 independent runs on the same
maze were sampled for each case.
doi:10.1371/journal.pone.0021955.g007

Figure 8. Passage times. The time a successful cell travels from the
starting point to the ending point of the maze. Bootstrapping
navigation method reduces the passage time and thus improves the
cell’s performance, as long as the chemical’s diffusivity is not too high.
When the chemical diffuses too fast, the spatial information is blurred
and the passage time increases. About 250 independent runs on the
same maze were sampled for each case.
doi:10.1371/journal.pone.0021955.g008
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cases) to 29.9%, which means that most of the cells were unable to

successfully exit (or solve) the maze. These low success rates

suggest the hypothesis that real cells have more ‘‘intelligent’’ ways

to find their way than by simply obeying the external signal. After

adding a simple memory effect by a secreted chemical, success

rates in three separate mazes rose to 72%, 76% and 99%,

respectively. Our results should be thought of as ‘‘proof of

concept’’ that a simple self-employed memory effect can indeed

improve navigation ability significantly. Since our maze was

arbitrarily created, any similar maze with a contradictory

chemotactic signal should lead to qualitatively similar results.

Secreted and diffusible chemicals can be found in many biological

systems, for example in quorum sensing bacteria. The bacteria

secrete pheromones that diffuse in the colony and are detected by

the cells themselves, initiating, for example, stress response in a

crowded colony. In our simulation the chemical similarly diffuses

out of the secreting cell and in the surrounding environment. While

no specific biological components can yet be identified with this

hypothesized memory mechanism, some cells are known to leave

chemical traces behind them as they move [16,17]. In [45], a

migrating neutrophil encountered a path bifurcation, with two

different chemoattractant levels. While the first neutrophil chose the

path of higher concentration, the following neutrophil avoided that

path and surprisingly chose the other one. This behavior suggests

that the presence of a neutrophil masks the chemoattractant, thus

effectively redirects the second cell. In the case of metastasizing

cancer cells, a chemorepellent secreted by the cells may explain the

broad spatial distribution of cells that is typically seen in the tissue.

At the higher level of multi-cellular organisms, such as the carabid

beetle, conspecific avoidance mechanisms have been identified [46].

This mechanism is believed to lead to better exploration of sparsely

and randomly distributed prey resources

The existence of cells coping with both chemical signaling and

environmental barriers was demonstrated in the embryo of

medaka fish. Macrophages were often constrained within relatively

flat, peripheral zones [47], possibly due to high tissue density or

adhesiveness. However, macrophages were able to respond to a

wound signal while still respecting the tissue barriers, by taking a

longer path through areas that were easier to invade. How the two

contradicting signals (moving towards the wound and dealing with

barriers) are balanced in this example is currently unknown.

Our predictions could easily be tested by creating maze-like

geometries and allowing cells to migrate therein. In fact, two very

recent reports have shown how this can be done. In [5], a simple

set of path bifurcations were presented to neutrophils moving

under a chemokine gradient. The cells were able to successfully

choose the short path. However, this study did not investigate the

case where the local chemical cues are insufficient for proper

navigation, and the cells indeed followed the steeper gradient. The

‘‘frustrated’’ situation where this simple strategy would lead to

trapping is in our opinion more generic. In [46], paths were etched

in a collagen matrix as a way of creating a more faithful in vitro

analog of extracellular matrix (see also [48]); the authors then

studied the migratory capabilities of cancer cells in their construct.

Again, the questions of primary concern here were not specifically

addressed, as in this case there was no controlled gradient

providing directional information.

To summarize, we studied amoeboid motion using a compu-

tational model for cellular navigation. Our model shows that cells

moving in this manner can avoid being trapped at small but not

large obstacles. We then demonstrated that a simple marker

strategy can improve navigation in complex terrains. This

realization provides important clues into mechanisms that might

be employed by real cells’ migration in complex environments as

well as suggests that location memory should be incorporated into

robotic navigation designs. The results can be used in the study of

mammalian cell migration and cancer metastasis.

Methods

The model cell is represented by a list of connected nodes, with

a set of forces acting of them. The total force on each node

involves membrane protrusion force, cortical tension, friction and

an effective force resulting from a constant volume constraint. The

exact form of the different components is described in detail in

Supporting Text S1, and the used parameter values are given in

Supporting Table S1. The protruding force is localized at an

active area on the membrane, which we term ‘‘patch’’ (see [29] for

the biological context of these patches). The patch is localized at

the front of the cell with respect to the external direction, as

dictated by the chemoattractant gradient.

Once the total force acting on a node has been calculated, the

velocity change and the resulting translocation are simply

calculated using Newton’s law.

Supporting Information

Table S1 Parameter values.

(DOCX)

Text S1 Amoeboid motion: model description and computa-

tional details.

(DOCX)
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