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Abstract

The present study investigated differences in the pickup of information about the size and

location of an obstacle in the path of locomotion. The main hypothesis was that information

about obstacle location is most useful when it is sampled at a specific time during the

approach phase, whereas information about obstacle size can be sampled at any point dur-

ing the last few steps. Subjects approached and stepped over obstacles in a virtual environ-

ment viewed through a head-mounted display. In Experiment 1, a horizontal line on the

ground indicating obstacle location was visible throughout the trial while information about

obstacle height and depth was available only while the subject was passing through a view-

ing window located at one of four locations along the subject’s path. Subjects exhibited

more cautious behavior when the obstacle did not become visible until they were within one

step length, but walking behavior was at most weakly affected in the other viewing window

conditions. In Experiment 2, the horizontal line indicating obstacle location was removed,

such that no information about the obstacle (size or location) was available outside of the

viewing window. Subjects adopted a more cautious strategy compared to Experiment 1 and

differences between the viewing window conditions and the full vision control condition were

observed across several measures. The differences in walking behavior and performance

across the two experiments support the hypothesis that walkers have greater flexibility in

when they can sample information about obstacle size compared to location. Such flexibility

may impact gaze and locomotor control strategies, especially in more complex environ-

ments with multiple objects and obstacles.

Introduction

To successfully navigate through complex environments in the natural world, humans and

other animals must adapt their movements to the conditions that are encountered not only at

the present moment but also in the near future. For example, a safety conscious hiker faced

with a choice of which of two routes to follow may prefer the one that is initially more difficult

if the alternative option eventually leads to a steep slope that lacks secure footing. A hiker who

lacks the foresight to account for the dangerous terrain that lies farther ahead will eventually
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be faced with an unfortunate dilemma: to turn back, thus making an energetically costly cor-

rective adjustment, or to attempt to scale the unsafe slope without injury and at great energetic

cost. Similarly, anticipation plays an important role over shorter time-scales as the hiker

chooses where to place his or her feet. Sudden and unexpected changes to foot placement are

energetically costly, and introduce instability that could lead to falling. Avoiding these sudden

adjustments requires the advanced sampling of the visual information necessary for guiding

gait in the presence upcoming obstacles in a feedforward manner.

In the present study, we investigated the visual information that walkers use to guide the

placement and trajectory of the feet when approaching and stepping over an obstacle. The spe-

cific aim was to determine whether there are differences in when visual information about

obstacle location and visual information about obstacle size (i.e., height and depth) are needed.

We present the results of two experiments designed to test the hypothesis that there is a greater

flexibility in the time at which walkers must sample information about obstacle size compared

to obstacle location.

Walkers sample information about the upcoming terrain in advance

Perhaps the most clear-cut example of visual information sampled at one point in time being

used at a later time to negotiate obstacles is when guiding the trail foot over the obstacle [1].

Once the lead foot crosses the obstacle, both the trail foot and the obstacle fall outside of the

field of view and therefore must be guided based on information that was detected earlier.

Interestingly, walkers use visual information in a feedforward manner well before the obsta-

cle passes out of view. Despite the demands for precision in placement of the feet in front of

and behind the obstacle [2–4] and in the elevation of the feet over the obstacle [5], walkers

rarely look at the obstacle as they step over it. Instead, they typically glance at the obstacle and

the region in front of it two or more steps in advance and then shift their gaze to the regions

beyond the obstacle [6, 7]. Although peripheral vision plays a role in negotiating obstacles

[8–10], the evidence suggests that information from the lower visual field detected by periph-

eral vision is also used in a feedforward manner. This was demonstrated using goggles that

occlude a portion of the lower visual field (lvf) [4, 11–13]. Subjects can still sample information

about the obstacle when they are farther away, but the goggles occlude the obstacle once it is

within some range of the subject. In some more recent studies (e.g., [4, 11]), the goggles were

fitted with “smart glass” that could be made opaque or transparent with millisecond precision

and triggered by force sensors attached to the soles of the subjects’ shoes, which allows for pre-

cise control of the timing of lvf occlusion. Using such goggles, Timmis and Buckley [4] demon-

strated that occlusion of the lvf upon placement of the trail foot (i.e., the final step) before the

obstacle resulted in no changes in toe clearance during obstacle crossing, and no changes in

placement of the lead foot on the far side of the obstacle compared to when vision was unob-

structed. Similar findings were reported by [14] under conditions in which the entire visual

field was occluded at the final step, and by [11] in the context of descending a curb (but see

[15] for conflicting findings). This is consistent with the claim that continuous visual sampling is

not needed during obstacle crossing—that is, walkers are capable of guiding the feet over the

obstacle based on information that was sampled prior to the final step before the obstacle.

Although the act of moving the legs over the obstacle does not appear to require continuous

visual sampling, it remains possible that walkers rely on on-line control to guide placement of

the feet in front of the obstacle, especially given that variability in foot placement before the

obstacle can lead to an increase in the risk of tripping [2, 3, 16]. When lvf occlusion occurs

upon or prior to placement of the lead foot (i.e., the penultimate step) before the obstacle,

walkers tend to place their feet farther from the front of the obstacle and increase toe clearance
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compared to when vision is occluded [4, 12]. Likewise, when the lvf is occluded while negotiat-

ing an extended stretch of terrain with multiple variations in surface properties, subjects walk

slower, take shorter steps, and pitch their heads downward in an attempt to minimize lvf

occlusion [17]. These differences likely reflect the adoption of a cautious strategy due to uncer-

tainty about the locations of obstacles relative to the observer, which is important for proper

placement of the feet in front of the obstacle.

Although visual occlusion leads to differences in the kinematics of the approach to and step

over an obstacle, we contend that it would be premature draw the conclusion that walkers rely

on on-line rather than feedforward control to guide placement of the feet on the last step

before the obstacle for the following reasons. First, subjects were still capable of successfully

crossing the obstacle under such conditions. They simply adopted a more cautious strategy.

Second, Patla ([15], Exp 1) manipulated the visibility of an obstacle to be crossed at different

points during approach and found that even when the obstacle is made invisible upon place-

ment of the lead foot before the obstacle, there were no differences on key measures except for

a small increase in toe clearance (cf. [4, 12, 13]). Thus, the existing evidence is not sufficient to

conclude that placement of the trail foot before the obstacle requires continuous sampling.

The findings are also compatible with an account that relies on feedforward control.

Of course, there is a limit to how far in advance such information can be sampled. When

vision was occluded three steps before reaching the obstacle, subjects cleared the obstacle but

with a higher safety margin [14]. Occluding vision five steps in advance dramatically affected

the rate of successfully crossing the obstacle [15, 18].

For the purposes of the present study, there are two important points to take away from the

prior research. First, although it remains possible that visual information is used in an on-line

manner during some phases of obstacle crossing (e.g., possibly to guide placement of the feet

before the obstacle), the evidence also indicates that walkers are capable of guiding the lead

and trail legs over the obstacle without concurrent visual information. Second, walkers per-

form best when information about the obstacle is available up until (or shortly before) place-

ment of the trail foot before the obstacle.

Information about location or dimension?

The previous research summarized above suggests that walkers are most successful in obstacle

crossing when they are able to sample information about the obstacle at a particular point dur-

ing the approach—viz. while initializing and executing the last step before the obstacle. The

information that walkers sample at this time appears to be that which specifies the location of

the obstacle and is needed to guide placement of the trail foot before the obstacle. When cross-

ing obstacles that have non-negligible height and depth, however, the walker must adapt his or

her behavior to the dimensions of the obstacle as well as its location. Hence, in addition to

information about obstacle location, walkers must also pick up information about the extent

of the obstacle. That is, obstacle crossing requires the detection of both exproprioceptive infor-

mation (i.e., information about the relation of one’s body to the environment) and exterocep-

tive information (i.e., information about environmental properties, such as obstacle size)

[13, 15]. Whereas walkers are most successful when obstacle location information is sampled

at a particular time, it is possible that walkers have greater flexibility in terms of when informa-

tion about obstacle size can be sampled. This was our specific focus in the present study.

The present study

Aim and rationale. The primary aim of this study was to test the hypothesis that there is

flexibility in the time that information about obstacle size can be sampled. Studies of both
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humans [1] and non-human animals [19, 20] have demonstrated that walkers are able to retain

knowledge of obstacle characteristics such as height for an extended period of time. Although

memories of obstacle dimensions must be formed during the current approach to be useful

[21], this could enable walkers to sample information about obstacle size in advance and use

that information to properly elevate the feet during obstacle crossing. Indeed, Patla and Greig

[18] found that when vision was occluded five steps in advance of obstacle crossing, subjects

elevated their feet to the correct height to clear the obstacle. Although obstacle crossing was

unsuccessful on about 50% of trials, the primary cause of failure was an inability to properly

place the feet before the obstacle, not an inability to raise the feet to a sufficient height. This

suggests that while information about obstacle location must be available when the walker is

closer to the obstacle, information about obstacle height can be sampled in advance.

Walkers may also be able to pick up information about obstacle size later in approach.

Humans do not place their trailing foot closer or farther from the obstacle across variations in

obstacle height [22]. If other gait parameters are invariant across changes in obstacle size lead-

ing up to the step over the obstacle, then not knowing the dimensions of the obstacle prior ini-

tiation of the crossing step should not affect performance. In a pilot study using a real-world

setup similar to the virtual one used in the present study, Parade and Fajen [23] found no dif-

ferences in step length or walking speed across variations in obstacle height and depth until

the step over the obstacle. There were, however, small differences in trail foot placement before

the obstacle across variations in obstacle depth, suggesting that additional work is needed to

better understand how far in advance walkers need information about the dimensions of the

obstacle. Taken together, these findings suggest that walkers may indeed be able to sample

information about obstacle size early during the approach (when they are several steps away)

or much later (shortly before initiating obstacle crossing) with no significant consequences for

their ability to successfully cross obstacles of various sizes.

Approach. Our approach was to instruct subjects to step over obstacles in a virtual envi-

ronment viewed through a head-mounted display (HMD). To test the flexibility in when infor-

mation may be sampled, we manipulated the availability of visual information about the

obstacle’s size. In Experiment 1, the obstacle’s location was always visible by displaying a nar-

row line at the base of the front edge of the obstacle. In this regard, our approach is similar to

that in previous studies in which information about obstacle dimensions was removed while

information about obstacle location was made available throughout the approach (e.g., by plac-

ing a piece of tape on the floor [21] or adding vertical posts positioned beside the obstacle

[24]). However, in the present study, the obstacle itself (and therefore, information about its

height and depth) was only visible while the subject was within a narrow visibility window

approximately one step length long located roughly four, three, two, or one step(s) away. We

refer to these conditions as the VW-4, VW-3, VW-2, and VW-1 conditions, where VW stands

for “viewing window”.

If information about obstacle size can be sampled at any point prior to initiation of the step

over the obstacle by the lead foot, then there should be no differences in any behavioral or per-

formance measures between any of the first three viewing window conditions and the full

vision control condition. There may, however, be differences between the last viewing window

condition (VW-1) and the full vision control condition.

Experiment 1

Methods

Participants. Fifteen undergraduate students from Rensselaer Polytechnic Institute vol-

unteered to participate in the study. Subjects reported that they had normal or corrected-to-
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normal vision and did not have any visual or motor impairments. The protocol was approved

by the Institutional Review Board at Rensselaer Polytechnic Institute and all subjects gave

informed consent prior to participation.

Apparatus and virtual environment. The experiment was conducted in a 6.5 m × 9 m

laboratory. The HMD was an nVis SX111 stereoscopic head mounted display (nVis, Inc., Res-

ton, VA), with a resolution of 1280 pixels × 1024 pixels (nVis, Inc., Reston, VA) per eye and a

diagonal field of view of 111 degrees. Head position and orientation were tracked using an

Intersense IS-900 motion tracking system (Intersense, Billerica, MA). Data from the tracking

system were used to update the position and orientation of the simulated viewpoint. Move-

ments of the rest of the body were tracked using a 14 camera Vicon motion-capture system

running at 120 FPS. Subjects wore tight fitting, stretchable clothing to which 34 retro-reflective

markers were affixed in accordance Vicon full-body marker template. Subjects completed the

experiment barefoot in order to avoid any irregularities caused by differences in footwear. The

four Vicon markers normally used to record head position in the full-body template were

instead attached to the HMD. The cables from the HMD and tracking system were bundled

together and held by the experimenter, who walked alongside the participant as he or she

moved to ensure that the cables did not interfere with the subject’s movement.

The virtual environment was created using Vizard Virtual Reality Toolkit (WorldViz LLC,

Santa Barbara, CA) running on an Alienware Area-51 PC (Dell, Inc., Round Rock, TX), and

consisted of a flat, grass-textured ground plane underneath a black sky (Fig 1A). Bamboo posts

were randomly scattered across the ground plane, with the exception of the unmarked 1m-

wide path between the start and end positions. The start position on each trial was marked by

a translucent box 2 m tall and 0.2 m in width and depth, and the end position was marked by a

green cylindrical post positioned 5m from the start box. The end post was always positioned

far enough behind the obstacle to allow subjects to take at least one additional step after cross-

ing. When present, the virtual obstacle was a 1m wide red rectangle (see Fig 1A), with height

and depth that varied between trials. At certain times during the approach, the obstacle was

replaced with a thin red line 1 cm in height and depth and 1 m wide positioned on the ground

at the front edge of where the obstacle was located when it was visible (see Fig 1B).

Fig 1. Screenshots of the virtual environment seen through the head-mounted display. (a) The obstacle as seen during full-vision trials or from

inside the viewing window. (b) The thin, red line marking the location of the front edge of the obstacle as seen from outside the viewing window in

Experiment 1. When the subject was outside of the viewing window in Experiment 2, there was no line indicating the obstacle’s location. (c) The

subjects’ virtual feet were visible when the subject looked down.

https://doi.org/10.1371/journal.pone.0192044.g001
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Subjects’ feet were also rendered in the virtual environment and visible through the HMD

(see Fig 1C). The dimensions of the subject’s virtual feet were determined by the locations of

Vicon markers placed as close as possible to the front of the big toe, the back of the heel, and

on the outside of the foot, near to the ankle. The foot’s virtual volume was approximated using

a rectangular cuboid that was made coincident with the subject’s real-world foot through a cal-

ibration procedure. This procedure involved intentionally aligning the subject’s real-world

foot with the x-axis of the capture volume, and calculating the rotation that would subse-

quently align the foot’s local coordinate system to be in line with the virtual environment’s

global coordinate system.

Task and procedure. Prior to the beginning of each session, the subject’s leg length was

measured as the distance from the greater trochanter of the femur to the floor, and orientation

of the virtual foot was aligned to match that of the real-world foot. Subjects were instructed to

begin each trial by pressing a button on a hand-held wireless mouse while (1) standing within

the visually indicated start box and (2) facing the end post. If these two conditions were met at

the time of the button press, a virtual obstacle or line appeared along the subject’s walking

path. At the same time, an auditory go-signal indicated that the subject was to begin walking

towards the post at a comfortable speed, without stopping, and while stepping over the virtual

obstacle along the way.

On some trials, the obstacle was visible only when the subject’s head was within a spatially

defined viewing window. When the subject’s head was outside of the viewing window, the

obstacle was invisible and was replaced by a thin line on the ground at the location of the

obstacle’s front edge. Collisions between the virtual feet and the obstacle were continuously

monitored. If any part of either foot collided with any part of the obstacle, an auditory “thud”

was played through the speakers.

Design. The height, depth, and location of the obstacle were manipulated as independent

variables. The values of all three variables were specified in units of leg length (LL) to ensure

that the kinematic demands of obstacle crossing would be similar across subjects whose body

dimensions varied.

Each experimental session included 126 trials, 46 of which were full vision trials and 80 of

which were viewing window trials. Full vision trials varied in obstacle height (0.1, 0.175, 0.25

LL), depth (0.1, 0.2, 0.3 LL), and distance of the obstacle from the start box (3.2, 3.4, 3.6, 3.8,

4.0 LL). Subjects also performed an additional full vision trial to ensure an even number of tri-

als, which was necessary for us to run even and odd numbered trials in opposite directions in

the laboratory. On this additional trial, the obstacle was placed at 3.6 LL and had a height and

depth of 0.1 LL.

On viewing window trials, information about the obstacle’s dimensions was only available

when the subject’s head was inside one of four spatially defined windows. These windows

spanned increments of 0.7 leg lengths from the obstacle (i.e. 0-0.7 LL, 0.7-1.4 LL, 1.4-2.1 LL,

and 2.1-2.8 LL). Obstacle height (0.1, 0.25 LL), depth (0.1, 0.3 LL), and location (3.2, 3.4, 3.6,

3.8, 4.0 LL) also varied across trials. The selected values of height and depth correspond to the

extremes of the ranges used on full vision trials. All independent variables were manipulated

within-subjects. All trial types were pooled and presented in a different fully randomized order

to each subject. The entire experimental session lasted approximately 45 minutes.

Subjects completed two short practice blocks prior to beginning the experiment. The first

practice block comprised 20 full vision trials: 2 obstacle heights (0.1, 0.25 LL) × 2 obstacle

depths (0.1, 0.3 LL) × 5 obstacle locations (3.2, 3.4, 3.6, 3.8, and 4.0 LL). In the second practice

block, subject completed eight trials, two in each viewing window condition, with both obsta-

cle height and depth set to 0.1 LL. Practice trials were intended to provide familiarity with the

virtual environment, and were not included in the analysis.

The pickup of visual information about size and location during approach to an obstacle

PLOS ONE | https://doi.org/10.1371/journal.pone.0192044 February 5, 2018 6 / 26

https://doi.org/10.1371/journal.pone.0192044


Timing of the viewing window. In interpreting the findings below, it is often helpful to

know where the subject was in the gait cycle while the obstacle was visible in each viewing win-

dow condition. The size of the viewing windows (0.7 LL) was chosen to roughly match average

step length during steady state walking [25] so that the obstacle would be visible for approxi-

mately one step. Due to variability in step length, the obstacle appeared and disappeared at dif-

ferent points in the gait cycle on each trial. Nevertheless, there was a high degree of

consistency in the relationship between the viewing windows and the gait cycle. As shown in

Fig 2, in the VW-1 condition (orange box), the obstacle appeared shortly before heel-strike by

the trail foot on the last step before the obstacle and remained visible until shortly after mid-

swing of the crossing step by the lead foot. In each of the other VW conditions, the obstacle

generally appeared toward the end of each step and remained visible until shortly before the

end of the next step. Variability in the onset and offset of each viewing window is indicated by

the blue horizontal lines at the beginning and end of each colored bar.

Analysis. Subsequent to data collection, Vicon Nexus was used to convert marker posi-

tions into joint positions. Data were filtered using a seventh-order low-pass Butterworth filter

with a cutoff at 4 Hz. Steps were identified using a velocity based kinematic analysis presented

in [26] and used in several previous studies [27–29]. The position of toe, heel, and ankle mark-

ers on each foot were cast into a body-centered coordinate system by subtraction of the sacral

marker, which was placed at the base of the subject’s spine, halfway between the left and right

posterior iliac spines. The position of the ankle markers along the axis of locomotion was dif-

ferentiated to find a velocity signal in which zero-crossings were indicative of the ankle and

foot’s velocity relative to the sacral marker, which provided a rough indication of the subject’s

COM. These zero crossings were used as indication that the foot’s trajectory had changed

direction within the body-centered coordinate system. Transitions from negative to positive

velocity are marked as heel strikes, and transitions from positive to negative as toe-offs. The

identification of heel strikes had the additional requirement that ankle velocity in the vertical

direction was less than 0.5 meters per second. Steps in which the duration was less than

100 ms were removed, as were steps in which foot velocity does not exceed 0.75 m/s in the for-

ward direction. The results of this algorithm were visually inspected for accuracy.

We calculated two measures of obstacle crossing behavior: maximum foot elevation and

obstacle clearance. Maximum foot elevation was estimated based on the height of the toe

marker at the peak of its trajectory during the crossing step. Obstacle clearance was based on

Fig 2. The timing of visibility windows relative to the gait cycle in Experiment 1. Intervals along the x-axis correspond to toe-offs of each step

leading up to the step by the lead foot over the obstacle (step N). The left and right sides of each gray box correspond to toe-off and heel strike,

respectively, and the length of each box indicates the mean duration of the swing phase scaled to the duration of the step. The left and right sides of

each colored box indicate the beginning and end of each viewing window as a proportion of the corresponding step duration, with blue error bars

indicating +/- 1 SE. The vertical red line on the right side indicates the mean proportion of the step by the lead foot over the obstacle at which the lead

foot first crossed the front edge of the obstacle.

https://doi.org/10.1371/journal.pone.0192044.g002
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the distance from the toe marker to the top of the obstacle at the moment that the toe marker

crossed the front face of the obstacle.

Our approach to analyzing the data relied on mixed-effects regression modeling using the

“nlme” package in R. For each dependent measure, we built a set of linear models with various

combinations of the three independent variables (i.e., height, depth, viewing window) and in

some cases their interactions as predictors. To keep the number of levels of height and depth

consistent across all five viewing window conditions, we excluded data from the middle height

and middle depth conditions in the full vision condition. Decisions about which models to

build and compare were motivated by the theoretical predictions. For most dependent mea-

sures, we first compared a model with height as a predictor against the baseline (intercept-

only) model. If the height model is superior to the baseline model, this is equivalent to finding

that the main effect of height is statistically significant. To test the main hypothesis of the

study, we then compared the model with height against a model with both height and viewing

window (or a model with height, viewing window, and height × viewing window) as predic-

tors. If behavior (as measured by the dependent variable) is influenced by viewing window or

the height × viewing window interaction, the more complex model will be superior to the sim-

pler model. Thus, by comparing the two models, we can determine whether viewing window

influenced behavior or if the effect of height varied across viewing window.

Model fit alone is not an adequate metric for determining which of two models is better,

since more complex models always better fit the data. Instead, we compared models using the

log-likelihood ratio comparison (in the form of a chi-squared significant test) and the change

in Akaike Information Criterion (AIC). AIC is a widely used metric of the quality of a model

because it captures both the goodness of fit and the complexity of the model. When reporting

the difference in AIC (dAIC) between two models, negative values indicate that the model of

interest is superior to the comparison (usually less complex) model.

After analyzing the effects of height and viewing window, we repeated the process for depth

and viewing window. Thus, these were treated as separate analyses. Technically, it is possible

to combine height, depth, and viewing window into a single analysis for each dependent mea-

sure. However, such an approach would have required consideration of models with higher-

order interaction terms (e.g., height × depth, height × depth × viewing window). This was not

necessary because the height × depth interaction was not statistically significant for any of the

dependent measures.

Results and discussion

Approach phase. Number of steps On average, subjects took 5.59 (SE = 0.13) steps to

reach the obstacle in the full vision condition. The mean number of steps was slightly greater

in each of the viewing window conditions (M = 5.70 in VW-4, 5.69 in VW-3, 5.75 in VW-2,

5.71 in VW-1) compared to full vision. Indeed, the model with viewing window as a predictor

had a significantly lower AIC than the baseline model (χ2(4) = 13.83, p<.01, dAIC = -5.83).

Adding height (χ2(1) = 1.19, p = .28, dAIC = -.81) or both height and height × viewing win-

dow (χ2(5) = 1.53, p = .91, dAIC = 8.47) did not significantly improve the model. However,

the model with depth and viewing window was superior to the model with viewing window

(χ2(1) = 6.02, p<.05, dAIC = -4.02), reflecting a tendency to occasionally take an additional

step during approach to deep obstacles (M = 5.73) compared to shallow obstacles (M = 5.64).

We attribute this difference to the tendency (which we report in the analysis of foot placement

below) to place the feet slightly closer to the obstacle when it is deeper.

Walking speed In general, subjects gradually accelerated between steps N-4 and N-1,

reaching peak walking speed at step N-1 before decelerating on the step over the obstacle

The pickup of visual information about size and location during approach to an obstacle
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(Fig 3). The change in speed over steps was statistically significant, leading to an improve-

ment in the model with step number included as a predictor compared to the baseline model

(χ2(4) = 128.23, p<.01, dAIC = -120.28). Adding height (χ2(1) = 1.01, p = .31, dAIC = 0.97) or

depth (χ2(1) = 0.22, p = .64, dAIC = 1.78) did not improve the model relative to the step-num-

ber model, suggesting that subjects did not walk at different speeds in different obstacle condi-

tions. However, AIC decreased when viewing window and viewing window × step number

were included (χ2(20) = 98.01, p<.01, dAIC = 58.01). Inspection of Fig 3 suggests that forward

COM velocity did not vary much across VW conditions and was similar to forward COM

velocity in the full vision condition for steps N-4 and N-3. As subjects drew within two steps of

the obstacle, a trend began to emerge wherein subjects appeared to walk slower on trials in

which the obstacle became visible later. However, the magnitude of the difference in speed was

less than 0.1 m/s. Taken together, this analysis suggests that subjects were able to maintain

steady forward progress regardless of the viewing window within which information about

obstacle height and depth was available. This is consistent with the hypothesis that walkers can

sample information about obstacle size in a flexible manner. The small reduction in speed on

step N-1 is an exception, and suggests that if information is not made available before the trail

foot is placed in front of the obstacle, walkers alter their behavior, perhaps to be more cautious.

Foot placement before obstacle. Fig 4 shows mean foot placement distance in front of

the obstacle for both the lead and trail foot as a function of obstacle height (A) and depth (B).

The observed distances are similar to those reported in studies of obstacle crossing in the real

world, where lead foot placement ranges from 0.9 to 1.0 m [13–15] and trail foot placement

ranges from 0.2 to 0.25 m [4, 13–15, 22].

Obstacle height For lead foot placement, the model with height as a predictor was not sig-

nificantly different than the baseline model (χ2(1) = 0.21, p = .65, dAIC = 1.791) (see Fig 4A).

This is consistent with findings from previous studies in which the effect of obstacle height was

not significant [18, 22]. The quality of the model did not improve (relative to the baseline

model) when viewing window was added as a predictor (χ2(5) = 5.56, p = .35, dAIC = 4.44),

Fig 3. Mean forward velocity of the COM over steps in Experiment 1. Mean forward velocity of the subject’s center of mass as a function of step

number in the full vision and viewing window conditions. Error bars reflect 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0192044.g003
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nor did it improve when the model included height, viewing window, and the height × viewing

window interaction (χ2(9) = 15.46, p = .07, dAIC = 2.54). Although the difference between the

full model and the baseline model is close to statistically significant, the change in AIC is posi-

tive, consistent with a poorer model. Taken together, the analysis reveals no evidence that lead

foot placement was influenced by obstacle height, viewing window, or their interaction.

Similarly, there was no evidence that trail foot placement was affected by either variable or

their interaction. The model with the lowest AIC was the baseline model. Neither the model

with height (χ2(1) = 1.95, p = .16, dAIC = 0.05), nor the model with height and viewing win-

dow (χ2(5) = 3.40, p = .64, dAIC = 6.60), nor the model with height, viewing window,

height × viewing window (χ2(9) = 10.95, p = .28, dAIC = 7.05) was significantly better.

Obstacle depth For lead foot placement, the model with the lowest AIC included only

depth as a predictor (see Fig 4B). The depth-only model was significantly better than the base-

line model (χ2(1) = 13.13, p<.01, dAIC = -11.13). Adding viewing window did not signifi-

cantly improve the model (χ2(4) = 7.03, p = .13, dAIC = 0.97), nor did adding both viewing

window and the depth × viewing window interaction (χ2(8) = 8.96, p = .35, dAIC = 7.04).

Thus, subjects placed their lead foot closer to the obstacle when it was deeper, but lead foot

placement was not significantly affected by viewing window or the depth × viewing window

interaction.

A similar pattern of results was observed for trail foot placement. The model with the lowest

AIC was the one with depth as a predictor. This model was significantly better than the base-

line model (χ2(1) = 13.79, p<.01, dAIC = -11.79), but not significantly different from the

model with viewing window (χ2(4) = 1.48, p = .83, dAIC = 6.52) or the model with viewing

window and the depth × viewing window interaction (χ2(8) = 13.79, p = .09, dAIC = 2.22).

To summarize, positioning of the feet in front of the obstacle was consistent across varia-

tions in obstacle height (as in previous studies), but subjects tended to place their feet slightly

closer to the obstacle when it was deeper. However, neither lead nor trail foot placement were

affected by the viewing window manipulation or its interactions with height or depth. The fact

that subjects adapted foot placement to variations in obstacle depth in the VW-4 and VW-3

Fig 4. Placement of the lead and trail foot prior to the step over the obstacle in Experiment 1. Each panel presents the distance from the obstacle to

the toe marker on the planted lead foot and trail foot prior to the step over the obstacle. Error bars reflect 95% confidence intervals with between-

subjects variability removed. (A) Distance by obstacle height and viewing window. (B) Distance by obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g004
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conditions provides compelling evidence that walkers are able to adapt to variations in obstacle

dimensions even when the relevant information is sampled several steps in advance.

Obstacle crossing. The next set of analyses focuses on obstacle crossing and is organized

by foot (i.e., lead foot first followed by trail foot).

Lead foot elevation and clearance Let us first consider the effects of obstacle height and

viewing window on lead foot obstacle crossing (Fig 5A). The model of lead foot elevation with

height as a predictor was significantly better than the baseline model (χ2(1) = 15.47, p<.01,

dAIC = -13.47). This confirms that subjects were able to discriminate obstacles of different

heights in the virtual environment and adapt their behavior as they do in the real world. Had

subjects not been able to perceive variations in obstacle height (i.e., due to difficulty in VR),

they could have successfully performed the task by elevating their feet to the same height

(higher than the tallest obstacle). The increase in lead foot elevation with obstacle height sug-

gests otherwise.

However, the model with the lowest AIC was the full model that included height, viewing

window, and their interaction. This model was significantly better than the height-only model

(χ2(8) = 20.05, p<.05, dAIC = -4.05), which suggests that the manipulation of obstacle height

affected lead foot elevation differently depending on when the obstacle was visible. To unpack

the interaction, we conducted four 2 (VW-# vs. Full) × 2 (Short vs. Tall) interaction contrasts

using Dunnett’s correction. The interaction was significant (p< .05) in the VW-1 condition

but not in any of the other viewing window conditions. This likely reflects adoption of a cau-

tious strategy in the absence of information about obstacle height. If so, this would suggest that

walkers are most successful in obstacle crossing when they can sample information about

obstacle height prior to placement of the trail foot before the obstacle, which is consistent with

the results of the analysis of walking speed.

Although lead foot elevation increased with obstacle height, the change in elevation was less

than the change in obstacle height. As such, lead foot clearance decreased with obstacle height

(χ2(1) = 49.82, p<.01, dAIC = -47.82) (see lower half of Fig 5A). This differs from results

reported in studies of obstacle crossing in the real world, where foot clearance tends to remain

constant across obstacle height. One possible explanation for the difference is that there is

Fig 5. Maximum height and clearance of the lead foot in Experiment 1. Maximum step height and obstacle clearance of the toe marker placed on the

lead foot at the time it crossed over the front face of the obstacle. Error bars reflect 95% confidence intervals with between-subjects variability removed.

(A) By obstacle height and viewing window. (B) By obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g005
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greater uncertainty about the position and movement of one’s legs and feet relative to the

obstacle in the virtual environment, which could lead to more cautious behavior. Indeed, lead

foot clearances in the present study (20-30 cm) were slightly greater than those observed in

studies conducted in the real world (12-20 cm [2, 4, 5, 13–15]). Of course, there are limits to

how high subjects are able (or willing) to elevate their feet. Hence, maintaining the same clear-

ance for taller obstacles as for shorter obstacles may have required more effort than subjects

were willing to expend.

Next, we consider the effects of obstacle depth on lead foot crossing (Fig 5B). The model

of lead foot elevation with obstacle depth was significantly better than the baseline model

(χ2(1) = 26.18, p<.01, dAIC = -24.18), which is consistent with the findings of Patla and Riet-

dyk [5] showing that subjects elevate their feet to a greater height when crossing deeper obsta-

cles. Neither the model that included both depth and viewing window (χ2(4) = 8.77, p = .06,

dAIC = -0.77) nor the full model (χ2(8) = 15.26, p = .06, dAIC = 0.74) were significantly better

than the depth-only model. Thus, unlike the effect of obstacle height, the effect of obstacle

depth did not significantly vary across viewing window conditions. The pattern of results was

similar (compare Fig 5A and 5B), but in the case of obstacle depth, the interaction did not

reach statistical significance.

Trail foot elevation and clearance Subjects also elevated their trail foot to a greater height

when crossing taller obstacles (Fig 6A). This was corroborated by the model comparison analy-

sis, which revealed that the model with height was superior to the baseline model (χ2(1) = 6.42,

p<.05, dAIC = -4.42). As with the lead foot, the increase in trail foot elevation was less

than the change in obstacle height, resulting in a significant decrease in trail foot clearance

(χ2(1) = 33.81, p<.01, dAIC = -31.81). Mean trail foot maximum elevation was greater for tal-

ler obstacles in each of the viewing conditions except for VW-1, mirroring the pattern of

results observed with the lead foot. However, the model of maximum foot elevation with view-

ing window and height × viewing window was not significantly better than the height model

(χ2(8) = 9.86, p = .27, dAIC = 6.14). In other words, the effect of obstacle height did not vary

across viewing window conditions as it did for the lead foot. This is likely due to the greater

variability in trail foot elevation.

Fig 6. Maximum height and obstacle clearance of the trail foot in Experiment 1. Maximum step height and obstacle clearance of the toe marker

placed on the trail foot at the time it crossed over the front face of the obstacle. Error bars reflect 95% confidence intervals with between-subjects

variability removed. (A) By obstacle height and viewing window. (B) By obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g006
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Trail foot elevation also increased with obstacle depth (χ2(1) = 12.02, p<.01, dAIC = -10.02)

(see Fig 6B). The model of trail foot elevation with depth, viewing window, and depth × view-

ing window was significantly better than the depth-only model (χ2(8) = 18.22, p<.05,

dAIC = -2.22), suggesting that obstacle depth may have affected trail foot elevation differently

across viewing window conditions. Specifically, inspection of Fig 6B suggests that the obstacle

depth effect in the VW-3 condition may have differed from the effect in the other conditions.

We did not predict this interaction and do not have an explanation for it. Moreover, despite

the presence of a significant interaction, none of the follow-up 2 (VW-#) × 2 (Shallow vs Deep)

interaction contrasts with Dunnett’s correction were significant (p> .05). Thus, this could be a

spurious result.

Collision rates. Collision rates for the lead foot were below 2% on average and were

not significantly affected by obstacle height (χ2(1) = 3.60, p = .06, dAIC = -1.60) or viewing

window χ2(4) = 9.23, p = .06, dAIC = -1.24) (see Fig 7A). Subjects did, however, collide

with deeper obstacles (2.8%) significantly more often than with shallow obstacles (0.8%)

(χ2(1) = 4.09, p<.05, dAIC = -2.09) (see Fig 7B).

Fig 7. Collision rates for Experiment 1. The percentage of trials with a collision between the obstacle and the lead and trailing foot are presented by

obstacle height and depth. Error bars reflect 95% confidence intervals with between-subjects variability removed. (A) Collisions with the lead foot by

obstacle height. (B) Collisions with the lead foot by obstacle depth. (C) Collisions with the trailing foot by obstacle height. (D) Collisions with the

trailing foot by obstacle depth.

https://doi.org/10.1371/journal.pone.0192044.g007
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Trail foot collision rate increased with obstacle height (χ2(1) = 7.72, p<.01, dAIC = -5.72)

but was not significantly affected by viewing window (χ2(4) = 0.71, p = .95, dAIC = 7.29) or

depth (χ2(1) = 0.04, p = .84, dAIC = 1.96) (see Fig 7C and 7D). The rate of collisions involving

the trail foot (27.5% overall) is higher than that which has been reported in previous studies

conducted in the real world [14, 22]. For the purposes of the present study, however, the abso-

lute collision rate in the full vision condition is less important than the relative collision rate

between the visibility window conditions and the full vision condition. Thus, the fact that the

trail foot collided with the obstacle more often in the present study than in previous studies

does not change the interpretation of results.

Summary. Several conclusions can be drawn from these analyses. First, when the obstacle

was visible throughout the trial, subjects were able to adapt foot placement and trajectory to

variations in the position, height, and depth of the obstacle, much like they do in the real

world. The only measures on which performance noticeably differed were foot elevation dur-

ing obstacle crossing and the frequency of collisions involving the trailing foot.

Second, for most dependent variables, adding viewing window, height × viewing window,

and/or depth × viewing window did not improve the model, suggesting that walking behavior

was at most weakly affected by the absence of obstacle dimension information during most of

the approach. The largest effects were observed when such information was not made available

until subjects were within one step length of the obstacle. In this condition (i.e., VW-1), the

obstacle first appeared on average shortly before placement of the trailing foot before the

obstacle (see Fig 2). The fact that subjects tended to exhibit more cautious behavior (e.g., slow-

ing down, elevating the lead foot to a greater height) in this condition suggests that walkers

perform best when they are able to sample information about obstacle height and depth before

placement of the trailing foot. However, subjects were still able to cross the obstacle without an

increase in collision rate even if such information is made available later, by making subtle

changes to enact a more cautious strategy.

Third, there was no evidence that walking behavior or obstacle crossing performance were

affected when obstacle dimension information was available early in the approach and then

removed (i.e., in the VW-4 and VW-3 conditions). As in full vision, subjects adapted foot

placement to obstacle depth but not height, elevated their feet to a greater height for taller and

deeper obstacles, and maintained a comparable rate of collisions even in the VW-4 condition.

This provides compelling evidence that walkers are able to sample information about obstacle

size in advance and use that information several steps later to guide obstacle crossing.

Taken together, the findings of Experiment 1 support the hypothesis that walkers have con-

siderable flexibility in the timing of the sampling of information about obstacle size. Such

information can be sampled early when the walker is several steps from the obstacle, which

implies an ability to use information that was detected several steps earlier. Alternatively, infor-

mation about obstacle size can be sampled later, shortly before placement of the trail foot

before the obstacle, which reflects the fact that accommodating variations in obstacle size does

not require adjustments until shortly before the step over the obstacle is initiated.

Experiment 2

Introduction

In Experiment 1, our focus was on information about obstacle size and how such information

can be sampled in a brief glance at any point between two and four steps in advance. Our

hypothesis, which was motivated by previous research on obstacle crossing, is that such flexi-

bility in the timing of visual sampling is specific to information about obstacle size. That is,

information about obstacle location, unlike information about obstacle size, is most useful
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when it is sampled at a particular point in time during approach—shortly before placement of

the trail foot before the obstacle. However, the difference is likely to be a matter of degree; that

is, walkers may have some flexibility in terms of when they can sample information about

obstacle location, but less flexibility than is afforded for information about obstacle size.

The design of Experiment 1 does not allow us to compare such differences in flexibility

because information about obstacle location was continuously available in all five conditions.

The results of the previous studies summarized in the introduction provide some insight into

the range of distances within which location information is most useful. However, any conclu-

sions would be stronger if they were based on a more direct comparison using the same experi-

mental paradigm. To this end, we conducted a second experiment that was similar to

Experiment 1 but with the visibility manipulation applied to both size and location informa-

tion. In other words, the obstacle was either visible or not. There was no persistent line indicat-

ing the position of the front edge of the obstacle. If information about obstacle location is most

useful when it is sampled while the walker is within a narrow range of distances from the

obstacle, then unlike in Experiment 1, differences between the viewing window conditions and

the full vision condition should be widely observed.

Methods

Participants. Nine undergraduate students from Rensselaer Polytechnic Institute volun-

teered to participate in the study. Subjects reported that they had normal or corrected-to-nor-

mal vision and did not have any visual or motor impairments. The protocol was approved by

the Institutional Review Board at Rensselaer Polytechnic Institute and all subjects gave

informed consent prior to participation.

Apparatus, task, procedure, and design. The methods were identical to those of Experi-

ment 1, with the exception that the line at the front edge of the obstacle was removed in Exper-

iment 2. As such, information about obstacle location, height, and depth was only available

when the subject’s head was within the viewing window.

Timing of the viewing windows. As in Experiment 1, timing of the viewing windows was

determined by the position of the subject’s head from the obstacle, defined in units of leg

length. The actual time at which the appearance and disappearance of the obstacle were trig-

gered with respect to the events in the gait cycle is presented in Fig 8. Window onset is similar

to that in Experiment 1, with the one exception that viewing window VW-1 was triggered and

Fig 8. The timing of visibility windows relative to the gait cycle in Experiment 2. Intervals along the x-axis correspond to toe-offs of each step

leading up to the step by the lead foot over the obstacle (step N). The left and right sides of each gray box correspond to toe-off and heel strike,

respectively, and the length of each box indicates the mean duration of the swing phase scaled to the duration of the step. The left and right sides of

each colored box indicate the beginning and end of each viewing window as a proportion of the corresponding step duration, with blue error bars

indicating +/- 1 SE. The vertical red line on the right side indicates the mean proportion of the step by the lead foot over the obstacle at which the lead

foot first crossed the front edge of the obstacle.

https://doi.org/10.1371/journal.pone.0192044.g008
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extinguished earlier in the subject’s approach. As we show below, withholding information

about obstacle location led subjects to adopt a more cautious strategy across all trials. Often-

times, subjects took slightly smaller steps and needed to take an extra step before crossing the

obstacle. This had the effect of compressing the last viewing window when represented in

terms of gait cycle events.

Results

Approach phase. Whereas the viewing window manipulation had little effect on walking

behavior during the approach phase in Experiment 1, differences between the VW conditions

and the full vision condition were apparent in Experiment 2.

Number of steps The number of steps that subjects took before crossing the obstacle was

significantly affected by viewing window (χ2(4) = 95.77, p<.01, dAIC = -87.77). As depicted in

Fig 9, subjects took more steps in conditions in which the obstacle appeared later. This is con-

sistent with the analysis of walking speed (reported below), which shows that subjects tended

to walk slower in those conditions. Adding height as a predictor did not improve the model

(χ2(1) = 0.05, p = .82, dAIC = 1.95 compared to the model with viewing window), but adding

depth did (χ2(1) = 5.50, p<.05, dAIC = -3.50). As in Experiment 1, the mean number of steps

was slightly greater during approaches to deeper obstacles.

Walking speed The manipulation of viewing window also affected walking speed (see

Fig 10). The model of walking speed with the lowest AIC included step number, viewing win-

dow, and step number × viewing window (χ2(24) = 386.539, p<.001, dAIC = -338.539 com-

pared to the baseline model). Adding either height (χ2(1) = 0.15, p = .70, dAIC = 1.85) or

depth (χ2(1) = 1.30, p = .25, dAIC = 0.70) did not further improve the model. These analysis

suggest that walking speed was consistent across changes in obstacle dimension but that the

walking speed profile varied depending on when the obstacle was visible. As depicted in

Fig 10, mean walking speed on step N-4 was slower in each of the visibility window conditions

compared to the full vision condition. Shortly after the obstacle became visible in each condi-

tion, walking speed recovered to full vision levels. This occurred on step N-3, N-2, N-1, and N

in the VW-4, VW-3, VW-2, and VW-1 conditions, respectively. Thus, it appears that subjects

Fig 9. The number of steps prior to obstacle crossing for Experiment 2. Number of steps prior to obstacle crossing for full vision and each viewing

window condition. Error bars reflect 95% confidence intervals with between-subjects variability removed. (A) By Height. (B) By depth.

https://doi.org/10.1371/journal.pone.0192044.g009
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tended to walk at a reduced speed until the obstacle appeared. Upon obstacle appearance, they

accelerated within one step to the same speed as they walked in the full vision condition and

maintained that speed even after the obstacle disappeared.

On their own, these findings could be interpreted as evidence that subjects proceeded cau-

tiously due to the absence of information about obstacle size, obstacle location, or both. How-

ever, in Experiment 1, which differed from Experiment 2 only in that information about

obstacle location was visible throughout each trial, walking speed in the VW conditions was

nearly identical to full vision on each step with the exception of step N-1. This suggests that it

was the absence of obstacle location information (not size information) that led subjects in

Experiment 2 to walk initially at a slower speed.

Interestingly, walking speed was slower overall compared to Experiment 1 even in the full

vision condition. We attribute this difference to the adoption of a more cautious strategy in

the VW conditions of Experiment 2, and the fact that full vision trials were randomly inter-

leaved with and less frequent than trials in which obstacle visibility was manipulated. Thus, the

tendency to walk slower apparently carried over to full vision trials.

Foot placement before obstacle. Obstacle height As in Experiment 1, placement of the

lead and trail feet before the obstacle on the last step before crossing was consistent across

obstacle height (χ2(1) = 0.26, p = .61 dAIC = 1.74 for the lead foot; χ2(1) = 0.01, p = .96,

dAIC = 2.00 for the trail foot; see Fig 11A). Foot placement was also affected by viewing

window. Adding viewing window as a predictor to the height-only model resulted in a signifi-

cant improvement for both lead foot (χ2(4) = 116.51, p<.001, dAIC = -108.51) and trail foot

(χ2(4) = 72.70, p<.001, dAIC = -64.70) placement.

Contrasts with Dunnett’s correction between each VW condition and the full vision condi-

tion revealed significant differences (p< .05) in the VW-2 and VW-1 conditions for the lead

foot and in the VW-1 condition for the trail foot (see Fig 11). Thus, in the VW-4 and VW-3

conditions, when the obstacle was visible several steps in advance and then removed, subjects

Fig 10. Mean forward velocity of the subject’s center of mass in Experiment 2. Mean forward velocity of the subject’s center of mass is presented for

each step of the approach, for full vision and viewing window trials. Error bars reflect 95% confidence intervals with between-subjects variability

removed.

https://doi.org/10.1371/journal.pone.0192044.g010
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placed both feet in roughly the same location as they did in the full vision condition. At first

glance, this result seems at odds with results of studies showing that when vision was occluded

3-5 steps in advance, subjects were more cautious [4, 11–13]. The difference is likely due to the

fact that in our study, the obstacle disappeared but the surrounding environment, including

texture on the ground, remained visible. It is possible that subjects used texture elements near

the obstacle as landmarks to keep track of the obstacle’s location after it disappeared (see [30]

for a similar effect in the context of memory-guided reaching). The presence of a richly tex-

tured environment surrounding the obstacle may have also benefited subjects by enhancing

stability and postural control [31].

In the VW-2 condition, subjects placed their lead foot significantly closer to the obstacle

compared to full vision, but trail foot placement was not significantly different than full vision.

These effects were observed for each combination of obstacle height and depth. This makes

sense because in the VW-2 condition, the obstacle did not appear on average until shortly

before the end of the lead foot’s last step before the obstacle (see Fig 8). Thus, subjects did not

have sufficient time to fully adjust placement of the lead foot to the position of the obstacle.

However, trail foot placement in VW-2 was very similar to that in full vision, indicating that

subjects were able to adapt within about one step.

In the VW-1 condition, both the lead and trail feet were placed significantly closer to the

obstacle than in full vision. This also makes sense because in the VW-1 condition, the obstacle

did not appear until after placement of the lead foot and shortly before placement of the trail

foot.

Obstacle depth Lead foot placement was not significantly affected by obstacle depth

(χ2(1) = 2.41, p = .12, dAIC = -0.41) but trail foot placement was significantly closer when the

obstacle was deeper (χ2(1) = 9.64, p<.01, dAIC = -7.64) (see Fig 11B). Adding viewing window

as a predictor to the depth-only model resulted in a significant improvement for both lead foot

(χ2(4) = 110.00, p<.001, dAIC = -102.00) and trail foot (χ2(4) = 69.13, p<.001, dAIC = -61.13)

placement.

Contrasts with Dunnett’s correction between each VW condition and the full vision condi-

tion revealed significant differences (p<.05) in the VW-2 and VW-1 conditions for the lead

Fig 11. Placement of the lead and trail foot prior to the step over the obstacle in Experiment 2. Each panel presents the distance from the obstacle to

the toe marker on the planted lead foot and trail foot prior to the step over the obstacle. Error bars reflect 95% confidence intervals with between-

subjects variability removed. (A) Distance by obstacle height and viewing window. (B) Distance by obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g011
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foot and in the VW-1 condition for the trail foot. It is noteworthy that subjects placed their

trail foot closer to the obstacle when it was deeper in the VW-4 condition, as they did in the

full vision condition (see Fig 11B). This provides additional evidence that subjects were able to

sample information about obstacle depth when they were several steps from the obstacle and

use that information later to adapt foot placement.

The results of the analysis of foot placement before the obstacle are not particularly surpris-

ing. Nevertheless, the contrast with the results of the same analysis for Experiment 1 (Fig 4)

highlights how this key aspect of successful obstacle crossing is disrupted when information

about obstacle location is not available during approach.

Obstacle crossing. Lead foot elevation and clearance As shown in Fig 12, subjects

elevated the lead foot to a greater height when the obstacle was taller (χ2(1) = 4.60, p<.05,

dAIC = -2.60) and deeper (χ2(1) = 6.34, p<.05, dAIC = -4.34). The tendency for subjects to

increase the maximum foot elevation for taller and deeper obstacles was also found in Experi-

ment 1. However, foot elevation in Experiment 2 was consistently greater than it was in Exper-

iment 1 even in the full vision condition, despite the fact that trials in the full vision condition

were identical in both experiments. This clearly reflects the adoption of a more cautious strat-

egy due to the increased difficulty of the task in Experiment 2.

Adding viewing window as a predictor significantly improved the model of lead foot eleva-

tion relative to the height-only model (χ2(4) = 33.46, p<.001, dAIC = -25.46). Further adding

height × viewing window resulted in an increase in AIC, suggesting that the effect of obstacle

height did not significantly vary across VW conditions. Contrasts with Dunnett’s correction

between each VW condition and the full vision condition were significant (p<.05) only in the

VW-1 condition. Thus, subjects’ ability to elevate their lead foot over short and tall obstacles

was affected only when the obstacle did not become visible until the last step. This was also the

case in Experiment 1. However, whereas lead foot elevation in VW-1 was greater than or com-

parable to that in full vision in Experiment 1 (see Fig 5, it was significantly lower compared to

full vision in Experiment 2. This is likely a consequence of having insufficient time to properly

position the trail foot before the obstacle. By having to place their trail foot closer to the

Fig 12. Maximum height and clearance of the leading foot for Experiment 2. Maximum step height (top) and obstacle clearance (bottom) of the toe

marker placed on the foot at the time it crossed over the front face of the obstacle. Error bars reflect 95% confidence intervals with between-subjects

variability removed. (A) By obstacle height and viewing window. (B) By obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g012
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obstacle than normal, subjects had less time to elevate the lead foot to the same height as in full

vision (see [2] for a similar effect.)

Trail foot elevation and clearance Trail foot elevation was significantly affected by both

obstacle height and viewing window (χ2(5) = 25.93, p<.001, dAIC = -15.93 compared to the

baseline model) but the interaction between these two variables was not statistically significant

(χ2(4) = 8.09, p = .08, dAIC = -0.09) (see Fig 13A). Contrasts with Dunnett’s correction

between each VW condition and the full vision condition revealed significant differences

(p<.05) in the VW-4 and VW-1 conditions.

The analysis of the effects of depth and viewing window on trail foot elevation revealed a

similar pattern of results (see Fig 13B); that is, trail foot elevation was significantly affected by

both obstacle depth and viewing window (χ2(5) = 28.38, p<.001, dAIC = -18.38 compared to

the baseline model) but the interaction between depth and viewing window was not statisti-

cally significant (χ2(4) = 5.26, p = .26, dAIC = 2.74).

Taken together, this analysis suggests that walkers are able to properly elevate their trail foot

over obstacles of varying heights and depths as long as visual information about the obstacle

was available between roughly two and three step lengths in advance. If such information is

available before or after this portion of the approach phase, the walker’s ability to properly ele-

vate the trail foot will be degraded. Furthermore, because these effects were observed in Exper-

iment 2 but not in Experiment 1, we can conclude that the degradation is due to the absence of

information about obstacle location specifically.

Collision rates. As in the full vision condition of Experiment 1, collisions were rare

for the lead foot but more frequent for the trail foot (see Fig 14). Lead foot collision rate

was not significantly affected by either height (χ2(1) = 3.51, p = .06, dAIC = -1.51) or depth

(χ2(1) = 2.39, p = .12, dAIC = -0.39), but the addition of viewing window as a predictor did

improve the model (χ2(4) = 11.93, p<.05, dAIC = -3.93). This effect is likely to be a conse-

quence of the reduced foot placement distance before the obstacle in the VW-1 condition.

Trail foot collision rate was significantly greater for taller obstacles (χ2(1) = 5.49, p<.05,

dAIC = -3.49) but was not affected by the manipulation of obstacle depth (χ2(1) = 1.55,

p = .21, dAIC = 0.45). The manipulation of viewing window also affected trail foot collision

Fig 13. Maximum height and clearance of the trailing foot for Experiment 2. Maximum step height (top) and obstacle clearance (bottom) of the toe

marker placed on the foot at the time it crossed over the front face of the obstacle. Error bars reflect 95% confidence intervals with between-subjects

variability removed. (A) By obstacle height and viewing window. (B) By obstacle depth and viewing window.

https://doi.org/10.1371/journal.pone.0192044.g013
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rate (χ2(4) = 15.64, p<.01, dAIC = -7.64), in particular in the VW-1 and (to a lesser degree) the

VW-4 conditions.

Overall, the rate of trail foot collisions in the full vision condition was lower in Experiment

2. This may initially seem surprising given the greater difficulty of the task in Experiment 2 but

can be readily understood as a consequence of the cautious strategy that subjects adopted in

Experiment 2 when obstacle location information was not continuously available.

Summary. The results of Experiment 2 differed from those of Experiment 1 in two main

respects. First, subjects behaved more cautiously in Experiment 2 compared to Experiment 1.

They tended to walk slower during the approach phase and elevate their feet to a greater height

during obstacle crossing. These differences were observed even in the full vision condition of

Experiment 2, which was identical to that of Experiment 1. Second, the effects of the viewing

window manipulation were stronger and observed in more viewing window conditions (VW-

4 and VW-1) in Experiment 2 compared to Experiment 1. Taken together, the results indicate

that obstacle crossing performance degrades when information about obstacle location is not

Fig 14. Collision rates for Experiment 2. The percentage of trials with a collision between the obstacle and the lead and trailing foot are presented by

obstacle height and depth. Error bars reflect 95% confidence intervals with between-subjects variability removed. (A) Collisions with the lead foot by

obstacle height. (B) Collisions with the lead foot by obstacle depth. (C) Collisions with the trailing foot by obstacle height. (D) Collisions with the

trailing foot by obstacle depth.

https://doi.org/10.1371/journal.pone.0192044.g014
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available when it is needed to guide placement of the feet in front of the obstacle. This contrasts

with the information about obstacle size, which can be sampled at any point during the last

few steps before placement of the lead foot before the obstacle, as demonstrated in Experiment

1. Thus, walkers have less flexibility in when they can sample information about obstacle loca-

tion compared to information about obstacle size.

General discussion

Summary of main findings

To successfully cross an obstacle in the path of locomotion, humans must adapt their gait to

both the location of the obstacle and its dimensions (e.g., height, depth). Walkers are most suc-

cessful in obstacle crossing when they can sample information about location shortly before

placement of the trail foot in front of the obstacle, which makes sense given that precise foot

placement plays a key role in minimizing the risk of tripping [2, 3, 16]. The results of the pres-

ent study suggest that the success of obstacle crossing is less dependent on when information

about obstacle size is sampled. That is, walkers can accommodate variations in obstacle height

and depth when information about these properties is detected several steps in advance or

much later when such information is detected as late as the last step before obstacle crossing.

The ability to use information about obstacle size that was detected several steps in advance

was demonstrated in Experiment 1, in which behavior in the VW-4 condition was similar to

that observed in the full vision condition on measures of number of steps, walking speed, lead

and trail foot placement, maximum foot elevation, foot clearance, and number of collisions.

On measures where behavior was affected by manipulations of obstacle height and depth in

the full vision condition, behavior was similarly affected in the VW-4 condition. In both condi-

tions, subjects placed their feet slightly closer to the obstacle when it was deeper but not when

it was taller, and elevated their feet to a greater height when the obstacle was taller and when it

was deeper. Although behavior in the VW-4 condition was also similar to the full vision condi-

tion in Experiment 2, when the line marking obstacle location was absent, performance in

both conditions was degraded compared to the corresponding conditions in Experiment 1.

Thus, the ability to use information that was sampled in advance is specific to information

about obstacle size.

Why are walkers able to use information about obstacle size that is sampled in advance but

need information about obstacle location later during the approach? One possibility is that

size and position (relative to the walker) differ in their stability. Information about properties

that do not vary from moment to moment, such as obstacle size, may be sampled well in

advance because their stability makes it possible for that information to be useful at a later

time. In contrast, information about properties that vary from moment to moment, such as

the walker’s position relative to the obstacle, must be sampled around the time that it is needed

for making gait adjustments. A similar account has been proposed to explain why the transport

and manipulation components of reaching and grasping are affected differently when there is

a delay between viewing the object to be picked up and initiating movement of the hand (see

[32]). Of course, this is only true when the dimensions of the obstacle (or object to be picked

up, in the case of reaching and grasping) are actually stable. If the obstacle is a pet that may

decide to stand up just as the walker is stepping over it, information about height and depth

that is sampled in advance would be much less reliable.

The ability to use information about obstacle size later in the approach was apparent in the

similarity of behavior in the VW-2 and full vision conditions of Experiment 1. Although the

obstacle did not appear until shortly before placement of the lead foot, subjects generally ele-

vated their feet to a greater height for taller and deeper obstacles as they did in the full vision
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condition. Nevertheless, some of these effects were weaker than they were in the full vision

condition, suggesting that subjects’ ability to adapt to changes in obstacle dimensions was

slightly diminished in this condition. When the obstacle did not appear until the last step

before crossing (VW-1 condition), subjects were even less able to tailor foot elevation to varia-

tions in obstacle height and depth. Thus, the last point at which subjects are able to adapt gait

to obstacle size appears to be shortly before placement of the trail foot in front of the obstacle.

Why are walkers able to adapt to changes in obstacle size even when the relevant informa-

tion is not made available until shortly before obstacle crossing? Even when information about

obstacle size is available throughout the approach, walkers apparently do not make any adapta-

tions to gait that are specific to obstacle size prior to the step over the obstacle. (The one excep-

tion is the small change in foot placement in front of the obstacle as a function of obstacle

depth.) As such, not knowing the dimensions of the obstacle prior to the initiation of obstacle

crossing does not impair performance in the way that not knowing the location of the obstacle

does.

Broader significance

Functional significance. The findings of the present study demonstrate that walkers are

capable of adapting gait to variations in obstacle height and depth even if information about

these characteristics is sampled several steps in advance. One might wonder about the signifi-

cance of this ability during real-world obstacle crossing given that walkers must sample infor-

mation about obstacle location later during the approach anyway (to guide foot placement in

front of the obstacle), and could sample information about obstacle dimensions at the same

time. In other words, what is the functional significance of estimates of obstacle dimension

based on information that is detected well in advance if those estimates are updated later dur-

ing the approach, when information about obstacle location must be sampled?

Although walkers need information about obstacle location when they are closer to the

obstacle, they do not necessarily need to look at the obstacle to pick up that information. In

many complex environments, there are other objects that are visible in the upper visual field

that could be used to keep track of one’s position relative to the obstacle without actually look-

ing at it. For example, if the obstacle is a fallen branch that lies on a hiking path near the base

of a tree, the walker could perceive his or her changing position relative to the branch without

looking down or relying on peripheral vision by detecting information about the relative posi-

tion of the tree, much like subjects in the study by Rietdyk and Rhea [12] relied on vertical

posts when the lower visual field was occluded. Although the tree provides a reference for

tracking one’s position relative to the obstacle without looking down, it does not provide any

information about obstacle size. However, because walkers are able to sample information

about obstacle size and use that information later to guide the trajectory of the feet over the

obstacle, they can negotiate the obstacle by relying on the reference object (e.g., the nearby

tree) to track obstacle location and memory to adapt gait to obstacle dimensions.

This could be especially useful when there are multiple obstacles in the path of locomotion.

In such situations, walkers must shift their gaze to future obstacles before stepping over the

obstacle that is most immediately in front of them [6]. The ability to use information about

obstacle dimensions that is sampled in advance to guide obstacle crossing at a later time may

play a key role in negotiating such terrain. Future studies should investigate the robustness of

this ability in the context of multiple obstacles.

Methodological significance. The present study is one of a small number on obstacle

crossing to be conducted in a virtual environment (VE) viewed through a head-mounted dis-

play (HMD). VEs offer a potentially powerful tool for investigations of visually guided
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locomotion over complex terrain, as they enable researchers to manipulate visual information

in a manner that is not possible in the real world. Of course, there are also some drawbacks.

Misperceptions of size and egocentric distance (which are well documented in VEs; e.g.,

[33–35]), latency in updating images of the VE within the HMD following head movement,

the relatively small field-of-view of the HMD (76˚H x 64˚V per eye), and minor imprecisions

in the alignment of the real and virtual feet could lead to behavior that differs from that in the

real wold. This could explain why subjects in the present study behaved more cautiously when

stepping over the obstacle. Whereas lead foot clearance in previous studies of obstacle crossing

conducted in the real world was 12 to 20 cm [2, 4, 5, 13–15, 18, 36], subjects in Experiment 1

(full vision condition) of the present study cleared the obstacle by 20 to 30 cm on average. The

use of VE could also account for the elevated trail foot collision rate, which ranged from 20 to

30% in Experiment 1.

Despite these differences, subjects were consistent in the placement of their lead and trail

feet in front of the obstacle, elevated their feet to a greater height for taller and deeper obstacles,

and avoided making obstacle contact with the lead foot on the vast majority of trials. Thus, in

many respects, obstacle crossing behavior in the present study was similar to that observed in

the real world. Given the potential for using VEs in both basic research on locomotion as well

as in the diagnosis and treatment of disorders that affect mobility (e.g., gait training following

stroke), further research on obstacle crossing behavior in virtual environments, as well as com-

parisons of behavior in real and virtual environments, would make a valuable contribution.

Conclusions

Although walkers need information about both the location and size of an upcoming obstacle

to guide successful crossing, only information about obstacle location is needed at a specific

point in time during approach. The success with which walkers are able to negotiate obstacles

is less dependent upon when information about obstacle height and depth is sampled. They

can sample information about obstacle size several steps in advance and use that information

to adapt the placement and trajectory of the feet during obstacle crossing. Alternatively, they

can sample such information as late as the last step before obstacle crossing and still elevate

their feet to different heights depending on the dimensions of the obstacle.
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