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INTRODUCTION

The process for bringing a drug to US Food and Drug 
Administration (FDA) approval is long and expensive, often 
taking 8– 12 years, with a conservative success rate of 1 in 
5000.1 Even after approval, ~ 30% of new drugs are subject to 
a postmarket safety event (e.g., withdrawal, black box warn-
ing, and safety communication), and the median time for these 
events to occur is 4.2 years after approval.2 Therefore, there 
is a need for methods to quickly and safely identify useful 
therapeutics early in the discovery process. In silico systems 

pharmacology has been recognized as one such method to 
identify drugs. Structural modeling,3– 6 metabolic network 
modeling,7,8 and unbiased machine learning approaches that 
leverage large proteomic or expression datasets9– 11 have all 
been used to filter through long lists of chemicals to identify 
putative therapeutics with a higher likelihood of being useful 
against cancer or microbial infections. There is great poten-
tial for systems pharmacology approaches in development 
of treatments against heart failure and cardiac injury.12– 14 
Further, mechanistic models of cardiac signaling can make 
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Abstract
Cardiac fibrosis is a significant component of pathological heart remodeling, yet it is 
not directly targeted by existing drugs. Systems pharmacology approaches have the 
potential to provide mechanistic frameworks with which to predict and understand 
how drugs modulate biological systems. Here, we combine network modeling of the 
fibroblast signaling network with 36 unique drug- target interactions from DrugBank 
to predict drugs that modulate fibroblast phenotype and fibrosis. Galunisertib was 
predicted to decrease collagen and α- SMA expression, which we validated in human 
cardiac fibroblasts. In vivo fibrosis data from the literature validated predictions for 
10 drugs. Further, the model was used to identify network mechanisms by which 
these drugs work. Arsenic trioxide was predicted to induce fibrosis by AP1- driven 
TGFβ expression and MMP2- driven TGFβ activation. Entresto (valsartan/sacubitril) 
was predicted to suppress fibrosis by valsartan suppression of ERK signaling and 
sacubitril enhancement of PKG activity, both of which decreased Smad3 activity. 
Overall, this study provides a framework for integrating drug- target mechanisms with 
logic- based network models, which can drive further studies both in cardiac fibrosis 
and other conditions.
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detailed predictions about how and why specific drugs are 
effective, thereby facilitating rational drug development.15

Drugs to prevent or treat fibrosis are needed, as fibrosis 
is currently considered an end point of organ damage due to 
a lack of treatment options.6,16 Cardiac fibrosis— an increase 
in collagen and cross- linking— is associated with diastolic 
dysfunction, which can improve if fibrosis is limited.17– 19 
Myocardial infarction (MI) is an inciting event that can lead 
to cardiac fibrosis, and pathologic fibrosis post- MI is associ-
ated with worsening heart failure.20– 22 Given the importance 
of cardiac fibroblasts in post- MI remodeling, there are sur-
prisingly no drugs on the market that specifically target car-
diac fibroblasts’ post- MI behavior related to degradation and 
deposition of collagen. Current post- MI treatments include 
administration of drugs, such as ACE inhibitors,23,24 angio-
tensin receptor blockers, and β- blockers,25,26 whose impacts 
on collagen are still unclear.

In this study, we used a systems biology approach to 
screen for drugs effective against heart failure in the post- MI 
environment. We build on our previous literature- validated 
model of cardiac fibroblast signaling,27 which has predicted 
network mechanisms underlying fibroblast phenotype in vitro 
and during post- MI wound healing.28 In this study, we create 
a framework for integrating this fibroblast network model 
with the drug- target DrugBank database19 to perform an in 
silico screen for drugs that are profibrotic or antifibrotic. We 
validate the predicted drug effects on fibrosis with in vivo 
studies from the literature, and we further validate the pre-
dicted effect of Galunisertib on fibroblast phenotype in vitro. 
Finally, we use the model to predict pathways by which arse-
nic trioxide (ATO) is profibrotic and Entresto is antifibrotic.

METHODS

Cardiac fibroblast signaling model

Network model formulation and simulation

We used a previously published computational model of car-
diac fibroblast signaling.27,28 Node activity (y) is simulated 
by logic- based differential equations29 with Hill formalism 
and default parameters for the weight (w), Hill coefficient 
(n), and half- maximal effective concentration (EC50). Each 
node has yinit of 0, ymax of 1, and time constant, τ, that is 
scaled based on the type of reaction: 6 min for signaling, 1 h 
for transcription, and 10  h for translation reactions. Using 
this methodology, the equation governing the activity of 
TGFβ mRNA due to activation by the transcription factor 
AP1 (AP1 → TGFβ mRNA) would be modeled by Equation 
1 where f(AP1) is the activity of AP1, calculated using the 
normalized Hill equation, (w ∗ � ∗ xn )∕ (Kn + xn ), where “β” 
and “K” are parameters used to constrain the function such 

that f(0) = 0, f(EC50) = 0.5 and f(1) = 1, “x” is the normal-
ized activity of AP1, “w” is the weight of the appropriate 
reaction, and “n” is the Hill coefficient, which is set to 1.4 
in our model. Multiple nodes in the model are combined in 
reactions using “AND” and “OR” logic gates. Overall, this 
network model is composed of 106 nodes, with 9 paracrine 
inputs and 1 mechanical stretch input. Outputs include col-
lagen mRNA, EDAFN, α- SMA, and MMP9 activity.

Static drug simulations

Baseline paracrine input weights were set to 0.25, with the 
exception of input mechanical stimulus, which was set to 
0.85 to mimic in vitro stiffness of tissue culture plastic. We 
conducted static simulations by increasing the weights of ap-
propriate inputs from 0.25 to 0.6 and running the simulations 
to steady- state. The 106 ordinary differential equations are 
solved to steady- state in MATLAB using ode15s.

Simulation of in vivo fibroblast dynamics after 
myocardial infarction

To more accurately replicate in vivo conditions post- MI, we 
incorporated time- varying input curves for the nine paracrine 

(1)

dTGF�mRNA

dt
=

1

�TGF�mRNA

[ f (AP1) ∗ YMAX,TGF�mRNA − TGF�mRNA]

STUDY HIGHLIGHTS
WHAT IS THE CURRENT KNOWLEDGE ON 
THE TOPIC?
Current drugs do not adequately act against cardiac 
fibrosis, and some drugs exacerbate it.
WHAT QUESTION DID THIS STUDY 
ADDRESS?
Can a systems pharmacology model accurately sim-
ulate the effects of drugs that act on the fibroblast 
signaling network?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
The model predicts mechanisms by 36 drugs affect 
fibrosis, including more detailed mechanistic in-
sights into Entresto and arsenic trioxide.
HOW MIGHT THIS CHANGE DRUG 
DISCOVERY, DEVELOPMENT, AND/OR 
THERAPEUTICS?
This study provides a computational platform for 
testing new drugs against cardiac fibrosis.
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inputs in the model using post- MI data in the literature. The 
development of these idealized paracrine signaling curves 
was described previously.28 Briefly, we first used post- MI 
in vivo data from rats to inform idealized, time- dependent 
levels of each paracrine input to the model. Specifically, ex-
perimental time course data were used to define individual 
time- dependent input curves for nine paracrine signals: IL1, 
IL6, tumor necrosis factor α, angiotensin II (AngII), endothe-
lin- 1 (ET1), TGFβ, norepinephrine (NE), platelet- derived 
growth factor, brain natriuretic peptide (corresponding node 
in the model is natriuretic peptide [NP]). To mimic the in 
vivo, post- MI environment, these simulations were con-
ducted with mechanical stimulus set to 0.6. We then used 
the signaling network described above to predict fibroblast 
phenotype over time post- MI. These simulations were linked 
to a tissue- level model of fibrosis development that predicts 
the percent collagen area fraction over time post- MI.28 The 
tissue level model takes as inputs the collagen 1 mRNA and 
time- dependent functions for fibroblast proliferation and 
MMP activity. Simulations with the dynamic paracrine in-
puts accurately predicted collagen expression dynamics and 
fibrosis development, as shown in our previous publication.28 
Post- MI time course of this model is shown in Figure S5.

Drug simulations

Integration with DrugBank and identification of 
drug information

The simulated drugs were identified from DrugBank version 
5.0.3, a web database that lists pharmacokinetic information 

on over 8000 FDA approved, small molecule, biotech, ex-
perimental, nutraceutical, withdrawn, and investigational 
drugs.30– 32 DrugBank data were integrated with the fibro-
blast model by identifying drugs from DrugBank that tar-
geted nodes in the model, and then using a Python script to 
parse DrugBank to extract information about drug agonism 
(agonist or antagonist). Drug binding properties (competitive 
or noncompetitive) were manually curated from PubMed 
(Figure 1). In total, we identified 121 drugs with targets in 
our model, yielding 132 total and 36 unique drug- target inter-
actions (Table S1), where a unique interaction comprises of 
a unique drug, binding, agonism, and target(s) relationship. 
For example, one unique interaction set includes 25 drugs 
that are all competitive BAR antagonists, whereas another 
unique interaction set is for Amiodarone, a noncompetitive 
BAR antagonist.

Model of drug action based on 
binding mechanisms

Competitive- binding drugs were simulated by shifting the 
activity of nodes upstream of the target by the drug dose, “d.” 
Note the change in shifting direction depends on whether the 
drug target is part of an activation or inhibition reaction. As 
observed biologically, the competitive simulations do not 
change the maximum activation of the reaction, regardless of 
drug dose. Noncompetitive drugs were simulated by altering 
the activity of the drug target directly. As seen biologically, 
the noncompetitive simulations do not change the EC50 of the 
drugged reaction, regardless of drug dose. Unless specified 
otherwise, drugs were simulated at 85% of saturating dose. 

F I G U R E  1  Overview of in silico drug testing method. (a) Schematic of drug testing pipeline showing the use of both the fibroblast signaling 
network model and DrugBank repository to systematically test drug effects on cardiac fibroblasts. (b) A range of drug doses was simulated with 
85% activity highlighted as having a strong effect on the target for nearly all drugs. Note that the heatmap rows have been expanded to only include 
one target on each row
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Equations summarizing how these drugs were simulated are 
shown in Table S2.

Replicating galunisertib experiments in rat cardiac 
fibroblasts

Control simulations were run with baseline paracrine input 
weights set to 0.25 and input mechanical stimulus set to 0.85 
to mimic in vitro stiffness. The “+TGFβ” simulations were 
run by increasing the TGFβ input weight from 0.25 to 0.6 and 
running the simulations to steady- state.

Literature validation of simulated drug effects

The following four search terms were used to find post- MI, 
in vivo cardiac fibrosis validation papers: “DRUG NAME” 
+ (1) “cardiac fibrosis post myocardial infarction,” (2) “car-
diac collagen post myocardial infarction,” (3) “cardiac fibro-
sis post heart attack,” and (4) “cardiac collagen post heart 
attack.”

Determining mechanistic maps

We used the network structure as well as a series of knock-
down screens to determine a simple mechanistic map that 
shows how ATO and Entresto are predicted to affect colla-
gen expression. Post- MI simulations described above were 
performed under no drug, ATO, or Entresto conditions. For 
each condition, knockdown of each node was individually 
simulated by setting the ymax of that node to 0, and the change 
in collagen I mRNA, as compared with no knockdown, was 
recorded at the 7 day time point. A summary of these knock-
down screens is shown in Figure S3. If knockout of a node 
under a drug condition was predicted to reverse the drug’s 
effect on collagen mRNA activity, the network structure 
was used to confirm a connection between the drug’s target 
and the proposed mechanistic node. The knockdown screen 
under the control condition was used to exclude nodes that 
have a universal effect on collagen mRNA that is unrelated 
to the mechanism of the drug.

In vitro validation with human cardiac 
fibroblasts

The 96- well CellBind plates (Corning 3340) were pretreated 
with 20 µg/ml of Fibronectin (Millipore Sigma, F1141) for 1 
h, then rinsed and dried. HCFs (PromoCell, C- 12375) were 
seeded at a density of 5000 cells per well. After 24 h of plat-
ing, the fibroblasts were serum starved for 24 h. Fibroblasts 

were then treated with DMSO (Life Technologies, 
D12345), 20  ng/ml TGFβ (Cell Signaling Technology, 
8915LC), 5  µM Galunisertib (SelleckChem, LY2157299), 
or TGFβ + Galunisertib. After 4 days, cells were fixed and 
stained with collagen primary antibody (Abcam, ab34710), 
α- SMA preconjugated antibody (Millipore Sigma, C6198), 
Phalloidin (Santa Cruz Biotechnology, sc- 363797), and 
DAPI.

Plates were imaged using an Operetta CLS High- Content 
Analysis System. These images were then processed using 
CellProfiler,33 which used the DAPI signal to identify nuclei 
and the propagate algorithm to define cell borders. Collagen 
(or actin or αSMA) intensity per cell was background sub-
tracted. The mean measurement of each well was normalized 
for comparison across plates such that the mean of the me-
dians of negative control wells (DMSO) on each plate = 0, 
and mean of the medians of positive control wells (TGF- β) 
on each plate = 1.

Statistics

Statistical significance between control and all conditions or 
drug versus no drug was determined by t- test with Benjamini- 
Hochberg correction for multiple comparisons. Calculations 
were performed using statsmodels version 0.11.1.34

RESULTS

Virtual drug screen

We sought to develop a method by which publicly available 
drug datasets could be used in combination with a mecha-
nistic fibroblast signaling model to screen for drugs that 
can affect cardiac remodeling (Figure  1a). The previously 
published fibroblast signaling network27,28 incorporates 10 
signaling pathways involved in cardiac wound healing, and 
the nodes of this network (representing gene products) were 
used as potential targets. Using the DrugBank database ver-
sion 5.0.3, we identified 121 drugs that have targets within 
the fibroblast signaling network (Figure S1). Additionally, 
we added the combination drug Entresto (sacubitril/vals-
artan) because both component drugs target the fibroblast 
signaling network and the drug has recently shown promise 
in the management of heart failure. The identified drugs tar-
geted all of the major pathways in the fibroblast signaling 
network (Figure S2). After using published literature to iden-
tify the binding characteristics of each drug, we narrowed to 
36 unique drug- target interactions to model in a screen (see 
Methods and Figure S3).

We initially modeled different doses of each drug and pre-
dicted concentration- response relationship for target activity. 
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A normalized drug dose of 85% was used in all subsequent 
screens as this resulted in a strong but incomplete action on 
the targets for all drugs.

Virtual screen for modulation of fibroblast 
activity in a modeled in vitro context

Static application of individual paracrine stimuli or pairs 
of paracrine stimuli as would be seen in an in vitro experi-
ment was modeled, and administration of each drug category 
was simulated. These paracrine single or paired inputs were 
chosen based on our prior study showing that these parac-
rine stimuli are representative of different phases of infarct 
healing.28 The effect of each unique drug type on the target 

protein(s) was consistent with the known activity of the drug 
(agonist vs. antagonist), but the magnitude of the effect was 
dependent on the paracrine stimulus (Figure S4). As shown 
in Figure 2 and Figure S6, the effect of each drug on extracel-
lular matrix proteins is also dependent on the signaling con-
text. For example, many drug categories have the strongest 
effect in the context of a TGFβ + ET1 stimulus. The majority 
of the drug categories modeled decrease fibrosis- associated 
proteins (collagen, EDAFN, αSMA) in the signaling con-
texts shown. The effect of these drugs on MMPs is highly 
context- specific and often unique to the specific MMP. For 
example, Entresto upregulates MMP1 in the context of TGFβ 
or TGFβ + ET1 signaling, but it downregulates MMP1 in the 
context of AngII or AngII + NE signaling. This highlights 
the context- specific regulation of MMP1. Further, Entresto 

F I G U R E  2  In silico drug screen with static conditions mimicking an in vitro experiment. The predicted change in profibrotic phenotypic 
outputs (a) or MMPs (b) for each drug is shown under simulated conditions of different sustained paracrine inputs. White on the color scale refers 
to without drug treatment at the specified condition
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negatively regulates MMP2 in the context of TGFβ + ET1 
signaling, but it upregulates both MMP1 and MMP9 indi-
cating a specific action toward an antifibrotic MMP profile. 
This is supported by an Entresto- driven decrease in collagen 
expression predicted in that signaling context.

We experimentally validated the predicted effect of 
the ALK5 inhibitor Galunisertib. Our model predicted 
Galunisertib would decrease collagen expression in both 
control and TGFβ- treated conditions, and we validated this 
prediction in cultured human cardiac fibroblasts, as shown in 
Figure 3. Additionally, cytoskeletal proteins were downregu-
lated by Galunisertib in all conditions, which is in agreement 
with model predictions (Figure S3).

Virtual screen for modulation of fibroblast 
activity during post- MI wound healing

We next modeled the effects of these drugs within a dynamic 
post- MI signaling environment, which was previously de-
scribed.28 For collagen, proliferation, and EDAFN, the pre-
dicted effect of each drug at the different phases of infarct 
healing (Figure 4a) was similar to the predicted effect shown 
in the static paracrine contexts that are representative of those 
phases (Figure 2). The strongest effect of most drugs is pre-
dicted to occur at day 7, when collagen expression is high-
est. This highlights the phase- specificity of drugs, such as 
Glucosamine or Sacubitril. However, in the dynamic post-
 MI model, drugs, such as TGFB mRNA inhibitors that up-
regulated some MMPs in some contexts, are now primarily 
downregulating all MMPs. More broadly the in vitro, static 
simulations had more upregulation events compared with 
the in vivo, dynamic simulations. For example, Triflusal, an 
NF- κB antagonist, upregulates collagen in all in vitro con-
texts, but not at any post- MI time point in the in vivo simula-
tion. Another such example to note is the effect of IL1 and 

IL1R1 inhibition on proliferation. Inhibition of these nodes 
is predicted to increase proliferation in vitro, but decrease it 
in vivo. This behavior could perhaps be explained by an ab-
sence of additional cytokine inputs that would better fully 
mimic the in vivo environment. Additionally, we used the 
dynamic model to predict percent collagen area fraction post-
 MI. We found that ATO has a strong profibrotic effect and 
is predicted to dramatically increase the collagen area frac-
tion in a short time post- MI. In contrast, Entresto is predicted 
to decrease the collagen area fraction post- MI. Post- MI time 
courses are shown for untreated, ATO, and Entresto treat-
ments in Figure S5.

We validated many of the predictions from our in silico 
screen against previously published in vivo post- MI data 
(Table 1), and found that our predictions aligned with exper-
imental data for 10 out of the 14 drug- target interactions that 
have generated consistent results in the literature. Further, the 
model predicted antifibrotic roles for BAR antagonists and 
ETAR antagonists, which is consistent with some but not all 
of the literature.

Mechanistic and context- dependent effects of 
specific drugs

We sought to predict the mechanisms by which two drugs of 
interest, ATO and Entresto, affect fibroblast phenotype post-
 MI. Therefore, we performed simulated knockdown screens 
in the post- MI context with both drugs (Figure S6). We fur-
ther combined this information with the network topology 
of the manually curated fibroblast signaling network topol-
ogy to identify mechanisms by which they affect fibroblast 
phenotype.

Cardiac fibrosis is a known side effect of ATO, which 
is used clinically as a chemotherapeutic. In model simu-
lations, ATO enhanced collagen, AP1, TGFβ, and MMP2 

F I G U R E  3  Experimental validation of predicted effect of galunisertib on collagen expression by cardiac fibroblasts. (a) Predicted collagen 
expression in control or TGFβ stimulated network model with and without galunisertib simulation. (b) Collagen production by cultured human 
cardiac fibroblasts under control or TGFβ- treated conditions with and without galunisertib with representative images (c). N = 9 wells, error bar 
indicates SEM, * p < 0.05 comparing no drug vs. drug, # p < 0.05 comparing to control
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activity. As shown in Figure 5, the fibrosis induced by ATO 
could be partially blocked by either knockdown of TGFβ or 
by knockdown of MMP2. TGFβ mRNA and MMP2 both 
affected TGFβ expression and downstream collagen ex-
pression. Therefore, the profibrotic effect of ATO is likely 
due to a feed- forward circuit in which ATO stimulates two 
separate mechanisms that converge to enhance TGFβ activ-
ity and collagen expression. Additionally, cotreatment of 
ATO with Marimastat (a pan- MMP inhibitor) is predicted 
to partially rescue the fibroblast phenotype and block the 
increase in collagen expression.

The combination drug valsartan/sacubitril (commercially 
known as Entresto) is currently used to improve cardiac 
function in patients with heart failure. The model predicts 
that the valsartan component reduces ERK activity, which is 
an indirect activator of smad3, whereas sacubitril activates 
PKG, which inhibits smad3 activity (Figure 6a). As shown 
in Figure 6, these two mechanisms work together to reduce 
collagen expression. The antifibrotic effects of valsartan/
sacubitril were predicted to be partly reversed by either ERK 
overexpression or PKG knockdown. In contrast, the effect 
of valsartan/sacubitril on collagen expression could be fully 

F I G U R E  4  In silico drug screen with dynamic paracrine signaling mimicking the post- myocardial infarction (MI) environment. The predicted 
change in profibrotic phenotypic outputs (a) or MMPs (b) for each drug is shown for specific days post- MI representative of the different phases of 
wound healing (inflammatory = 1 day, reparative = 7 day, and mature = 42 day). White on the color scale refers to without drug treatment at the 
specified timepoint
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mimicked by smad3 knockdown, indicating it as a key inte-
gration point for the ERK and PKG effects.

DISCUSSION

Fibroblasts are highly plastic cells that respond to injury, but 
overactive fibroblast activity can result in fibrosis. Although 
there are medications that have an antifibrotic effect clini-
cally (e.g., RAAS inhibitors), some patients will still develop 
fibrosis on these medications, indicating a need for more 
therapeutic options.23 Therefore, in this study, we devel-
oped a method for screening drugs that could increase the 
risk of fibrosis or decrease post- MI fibrosis with a mecha-
nistic model of cardiac fibroblast signaling. Using the data-
base from DrugBank, we identified 36 unique drug- target 
interactions. The computational model of fibroblast signal-
ing was used to predict each drug sets’ effect on fibroblast 
phenotype in paracrine signaling contexts representative of 
in vitro treatment or post- MI wound healing. We validated 
our predictions against published literature, and found that 
our predictions aligned with the bulk of experimental data. 
Our screen correctly identified a known profibrotic drug, 
ATO, and predicted 35 putative antifibrotic drug sets, in-
cluding combination valsartan- sacubitril (Entresto). We used 
the network structure and knockout screens to map the net-
work mechanism by which ATO and Entresto affect collagen 
expression.

Mechanisms of profibrotic and 
antifibrotic drugs

TGFβ is known to be a strong profibrotic regulator of fibro-
sis, but it is not likely to be a good pharmacologic target due 
to its critical role in regulating integral cellular processes.35,36 
Activation of the TGFβ pathway is a strong self- inducing 
fibrotic stimulus. ATO is one of many cancer drugs with 
cardiotoxicity— namely QT prolongation, which is associ-
ated with increased fibrosis.37,38 Our model predicts ATO 
activates the TGFβ pathway via AP1, which is a hub of fibro-
blast signaling27 and increases both expression and activation 
of TGFβ, that induces a strong positive feedback loop. ATO 
has been shown to upregulate TGFβ and MMPs in cardiac 
fibroblasts, and it increases cardiac fibrosis in vivo in guinea 
pigs and in humans.38,39 The results of our model prediction 
here raise the possibility that an MMP inhibitor, such as ma-
rimastat or glucosamine, could protect the heart from ATO- 
induced fibrosis. In fact, MMP inhibition has been shown to 
decrease TAC- induced fibrosis in mice.40,41

Entresto (sacubitril- valsartan) has an indirect effect on the 
TGFB pathway via both ERK inhibition and PKG activation, 
which decreases smad3 complex activation without fully 
eliminating cardiac fibrosis. Simulated knockdown screens 
and the structure of the signaling network indicate the NP 
pathway is the major effector of this drug, as ERK overex-
pression was predicted to only partially rescue collagen ex-
pression. Entresto has been shown to decrease TAC- induced 

T A B L E  1  Validation of model predictions against in vivo literature data

Drug category Predicted Measured PMID

Arsenic trioxide: competitive AP1, ERK agonist ↑ ↑ 22853924

25 drugs: competitive BAR antagonist − − / ↓ 10898446

Amiodarone: noncompetitive BAR antagonist − − 27652141

Urokinase: noncompetitive PAI1 antagonist − ↑ 15297377, 20380835

13 drugs: competitive ACE antagonist ↓ ↓ 11851355, 9593063, 10993857, 9330127, 10898446

9 drugs: competitive AT1R antagonist ↓ ↓ 25823960, 22128836, 28656296, 14516412, 
9349385, 28656296, 23429590, 23727946

2 drugs: noncompetitive PDGFR antagonist ↓ ↓ 17161265

Sorafenib: noncompetitive PDGFR, Raf antagonist ↓ − 24718482

Cobimetinib: competitive MEK1 antagonist ↓ ↓ 27936014

Thalidomide: noncompetitive NF- κB, TNFa antagonist ↓ ↓ 16549389

2 drugs; competitive TNFa antagonist ↓ ↓ 15949474

4 drugs: competitive ETAR antagonist ↓ ↓ / ↑ 12738614, 12061394 / 11179039

Marimastat: competitive MMP1, MMP2, MMP9, 
MMP14 antagonist

↓ ↑ 12658202

24 drugs: competitive BAR agonist ↓ ↑ 31615408, 2527639, 28549109

Entresto: competitive AT1R antagonist, competitive 
NPRA agonist

↓ ↓ 25362207

Isosorbide Dinitrate: NPRA agonist ↓ ↓ 28810603

Abbreviation: PDGFR, platelet- derived growth factor receptor.
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cardiac fibrosis in rats,42,43 and it has been shown to decrease 
profibrotic biomarkers in patients with heart failure.44

These results cannot necessarily be generalized to modu-
lation of fibrosis in any organ. For example, ATO has been 
shown to have an antifibrotic effect in lung fibroblasts and in 
the lungs of bleomycin- treated mice,45 which highlights the 
organ- specificity of fibrosis and the focus of this study on 
cardiac fibroblasts. Further studies that specifically charac-
terize fibroblasts in other organs could use the same method 
described here to screen for drugs likely to result in damage 
to that organ.

Developing a method for mechanistic in silico 
drug screening

Due to the expense and time necessary to bring a new ther-
apeutic into clinical use, there is a need for in silico or ex 
vivo screening processes that can filter putative targets ear-
lier in drug development.1,46,47 Fibrosis in any organ is an 
indicator of end- stage organ failure due to the lack of useful 
therapeutic options. There have been efforts to perform broad 
searches for organ- specific anti- fibrotic therapies. For exam-
ple, FIBROTARGETS is a consortium focused on rational 
design of antifibrotic drugs based on clinical biomarkers and 

high- throughput in vitro screening supplemented with pro-
tein structural modeling.6,16 Although that study is a prom-
ising approach to find antifibrotic drugs, our method offers 
a tool for in silico screening against well- studied biological 
signaling networks. This allows for mechanistic predictions 
of how a drug affects fibroblast phenotype that can be easily 
translated into experimental validation. Indeed, we identified 
30 putative antifibrotic therapies among our list of 121 of 
drugs in DrugBank’s dataset of over 8000 drugs, all of which 
could be tested experimentally and, if successful, repurposed 
into clinical use post- MI at a much lower cost than testing 
the entire list.

One benefit to our approach is that, due to the use of de-
fault parameters, this model can incorporate data as it be-
comes available, such as more detailed signaling connections, 
half- maximal inhibitory concentration (IC50) for all drugs or 
expression levels of each gene modeling in the signaling net-
work. In this way, the model can be continuously improved 
for better predictions or adapted to specific testing beyond 
the broad screen we showed here (e.g., creating models based 
on patient expression data).

Another strength of this platform is its ability to mech-
anistically simulate drug combinations. Six of the modeled 
drugs exhibit polypharmacology, or have multiple targets 
within this network. The model predicted that Entresto had 

F I G U R E  5  Mechanism of profibrotic effect of arsenic trioxide (ATO). (a) Mechanistic map of major effectors of ATO in the fibroblast 
signaling network. (b) Predicted effect of knockdown of effectors of ATO activity on collagen mRNA and collagen area fraction at day 7 and day 
42 of post- myocardial infarction simulation
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actions distinct from its components sacubitril or valsar-
tan alone. The effect of Entresto was closer to sacubitril 
for suppressing collagen, and closer to valsartan for sup-
pressing proliferation and EDAFN. More systematic simu-
lations of drug combinations may be warranted to optimize 
fibrosis.

Additionally, this approach could be applied to other 
models or drug datasets. DrugBank has datasets of investi-
gational or experimental drugs and academic or corporate 
investigators have proprietary drug datasets, all of which 
could be used separately or together in the method outlined 
here. There are large scale, logic- based models of cardiomyo-
cytes,48,49 hepatocytes,50 and inflammatory cells,51,52 among 
others.53 This pipeline could be applied to these models as a 
cell- specific screen.

Limitations and future directions

The main limitation of this approach is the limited data 
available to incorporate in the fibroblast model. Although 
we outlined major, well- studied pathways involved in car-
diac fibroblast signaling in the signaling network,27 further 
pathways or more specific interactions could be outlined. 
Additionally, data such as cardiac bioavailability and IC50 
were not available for a majority of the drugs involved in 

the screen. Therefore, we limited our characterization of each 
drug to the reported binding characteristics. However, the 
methodologies presented here could easily incorporate such 
data as it becomes available.

The dynamic paracrine signaling profile that defines the 
post- MI simulations described here allows for phase- specific 
modeling,28 which could predict effective timing of post- MI 
therapeutics. The timing of administration of a therapeutic 
to target post- MI remodeling is likely important,54– 56 but 
designing such an onerous experimental investigation could 
benefit from prior in silico testing. This model is uniquely 
suited to answer such a question. Other interesting future di-
rections include modeling feedback with immune cells and 
cardiomyocytes, integration with pharmacokinetics to model 
dosing regimens, simulation of drug combinations, and ret-
rospective analysis of failed clinical trials. Multiscale exten-
sions of this model including immune cells and mechanics 
may be needed to predict transitions between fibrosis, tran-
sient wound healing, and cardiac rupture. It may also be 
possible to use network states as biomarkers of specific cell 
phenotypes or disease progression.

In order to apply the findings from this study to clinical 
practice, the putative antifibrotic drugs would need to be 
tested experimentally and clinically. We do not expect this 
model to predict drug effects with 100% accuracy, but rather 
intend the model to be used as a tool for narrowing from a 

F I G U R E  6  Mechanism of antifibrotic effect of valsartan/sacubitril (Entresto). (a) Mechanistic map of major effectors of val/sac in the 
fibroblast signaling network. (b) Predicted effect of knockdown of effectors of val/sac activity on collagen mRNA and collagen area fraction at day 
7 and day 42 of post- myocardial infarction simulation
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large list of drugs to one drug that is experimentally feasible. 
Overall, this study provides a framework with which to in-
tegrate drug- target interaction mechanisms with large- scale 
signaling networks, which is needed both for fibrosis and 
other syndromes.
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