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Abstract

The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common ap-
proximation used in studying electrical dynamics of excitable cells is that the ionic concen-
trations inside and outside the cell membranes act as charge reservoirs and remain
effectively constant during excitation events. Research into brain electrical activity suggests
that relaxing this assumption may provide a better understanding of normal and pathophysi-
ological functioning of the brain. In this paper we explore time-dependent ionic concentra-
tions by allowing the ion-specific Nernst potentials to vary with developing transmembrane
potential. As a specific implementation, we incorporate the potential-dependent Nernst shift
into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from
a region in parameter space where self-sustaining oscillations occur without external forc-
ing. Studying the system close to the bifurcation boundary, we explore the vulnerability of
the system with respect to external stimulations which disrupt these oscillations and send
the system to a stable equilibrium. We also present results for an extended, one-dimension-
al cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to
complex spatiotemporal pattern formation. Potential applications to the emergence of neu-
ronal bursting in similar two-variable systems and to pathophysiological seizure-like activity
are discussed.

Introduction

Understanding neural activity is an endeavor spanning several decades of research. Promising
advances have been made in modeling both individual neurons as well as the combination of
neurons making up a network. The goal of such work is to understand how our brains store
and access information through identifying the internal and external factors which play impor-
tant roles in these processes. In particular, synchronization of the electrical disturbances in
neurons, or action potentials, is believed to play a crucial role in memory formation [1].

By introducing additional nonlinearities to the governing equations, a strong tendency toward
synchronization in one-dimensional cables was previously observed within the “soliton-like
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regime” of the Fitzhugh-Nagumo model [2]. Such examples of synchronization within simple
two-variable systems are of great interest for studying memory formation, and in this paper we
present a physiologically-motivated modification to a similar two-variable system: the Morris-
Lecar (ML) model [3, 4]. The ML model represents a reduced system based on the Hodgkin-
Huxley model [5], empirically obtained to describe the voltage dynamics in the squid giant axon.

Recently, Gonzalez-Perez and collaborators [6] presented an experimental study on the be-
havior of action potential propagation within invertebrates in which it was shown that contrary
to some well-known predictions of the Hodgkin-Huxley model, it is possible for action poten-
tial pulses to “pass through” each other instead of annihilating upon contact. This soliton-like
behavior motivated the authors to abandon a description of their results in terms of Hodgkin-
Huxley-like models and employ a model for action potentials in terms of soliton-like sound
pulses [6]. The authors did concede, however, that certain results [2] suggest Hodgkin-Huxley-
like models could support such soliton-like behavior with suitable modifications to parameters.
The present work serves as a bridge between recent experimental studies [6] and well-known
theoretical results involving these soliton-like regimes [2, 7] by demonstrating how the soliton-
like regime emerges within the Morris-Lecar model when leading-order effects due to small
neurons are included.

While the Morris-Lecar model is used as a particular example, the main goal of this paper is
to explore a technique for incorporating voltage-dependent Nernst potentials into Hodgkin-
Huxley-like models. The observation that a variable Nernst potential affects ionic relaxation
times has been stated previously by Cressman et al. [8, 9]. Due to the very small size of brain
axons, the cellular Nernst equilibrium potential is expected to change in response to consider-
able intracellular charge depletion [10]. Here, we wish to account for this effect in neurons with
radii several orders of magnitude smaller than that of the squid giant axon. Within this regime,
intracellular charge depletion becomes significant. Accounting for intracellular charge deple-
tion also helps to quantify variations in cell size due to cell swelling which has been observed
during epileptic seizures [8, 9].

The paper is organized as follows: The Analysis section provides context for our work, con-
taining a brief overview of Hodgkin-Huxley-like, reaction-diffusion models, as well as a discus-
sion of neuronal bursting and how our approach enables us to investigate this phenomenon. A
scheme for incorporating a voltage-dependent Nernst potential into models derivable from the
Hodgkin-Huxley system is proposed, and an explicit implementation in the Morris-Lecar
model is presented with a discussion of some of the immediate consequences of this generaliza-
tion. Detailed results from these investigations are reported. Finally, our conclusions are con-
tained in the Discussion.

Analysis

Memory formation [11] and memory retention have been linked to neural synchronization
since the introduction of the “binding problem,” [12] which concerns how the brain constructs
effective equivalence classes of objects deemed “similar.” Support for the link between memory
and neural synchronization has strengthened over the years, but the exact spatiotemporal dy-
namics and phase-locking characteristics have yet to be realized are expected to be extremely
complex. The system is quite delicate, as deviations from physiologically acceptable conditions
can result in memory distortion or impairment [13]. Understanding how these networks can
erode in time will help in developing proactive measures to prevent irreversible
network damage.

When building successful models, it is imperative to understand the fundamental constitu-
ents in great detail. Regarding electrical activity in the brain, the basic building blocks are
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excitable cells. Hodgkin and Huxley [5] pioneered significant progress in this realm with the in-
troduction of a semi-empirical set of differential equations describing the voltage dynamics in
a squid giant axon. The essential ingredients for generating an action potential in a single, ex-
citable cell are a fast inward ionic current followed by a slower outward ionic current. Addi-
tional physical currents may also exist, but the key feature is a “lumping” of the dominant
currents into “fast” and “slow” groups. This qualitative grouping of many different physical
processes into two groups is the basis for many of the two-variable systems which were later in-
troduced as qualitatively similar models [3, 14-16] whose technical simplicity allowed for so-
phisticated mathematical analysis.

There are many different techniques for extracting a short list of rules from the differential
equations governing single neurons which can be applied to a neural network representation
such as a cellular automaton [17] or mean-field model [18]. In retaining the full range of sin-
gle-cell dynamics one must choose between a discrete network representation or a continuous
network representation via reaction-diffusion theory. Reaction-diffusion systems provide a
universal network structure upon which one may unambiguously investigate various neural
coupling strengths via different diffusion profiles. Discrete networks provide a much wider
array of possible network structures, and this may naturally result in structurally-dependent
coupling profiles. However, it should be noted that, when discretized for numerical simulation,
continuous reaction-diffusion systems are nothing more than special cases of discrete net-
works, and the distinction between the two becomes less apparent. In the present work, our
focus will be in exploring the predictions of the continuum limit through numerical work in-
volving a discrete representation of a continuous system.

Network instabilities and abnormalities are thought to be critical features in any detailed ex-
planation of mental diseases such as epilepsy and Alzheimer’s disease. Research into seizure ac-
tivity [19] suggests that the slight variations of cellular resting potentials due to changes in
ionic concentrations during excitation events have observable consequences which are not pre-
dicted by conventional models employing static Nernst potentials.

Charge depletion

During the process of an action potential, charges move across the cell membrane through
ionic channels. If the fraction of total charge leaving the cell is substantial, the cell becomes sig-
nificantly charge-depleted. For large-diameter axons this effect is minimal. However, for
smaller neurons such as those in the neocortex, this effect may not be negligible. A substantial
charge depletion would dramatically affect the resting potential of the ionic channels [10]. We
quantify charge depletion J as the ratio of surface charge to the amount of internal charge at
some constant voltage V. It is useful to define,

Q = VC(ndl), (1)
o = (). @
5 = QJQ = B1/d), o)

where Q; is the amount of charge stored on the cell surface for a capacitance (per unit area) C,
Q; is the amount of intracellular charge found for an ionic concentration density [M], F is Fara-
day’s constant, d is the cell’s diameter, L is the length of the cell, and § = (4V C)/(F[M]). For
simplicity, we consider a cylindrical axon.
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The diameters of typical axons in the neocortex are roughly three orders of magnitude
smaller than the diameter of the squid giant axon [20, 21]. Therefore, 6 is not small and charge
depletion cannot be neglected. To take this into consideration we propose a method for intro-
ducing dynamical shifts in Nernst potential which are functions of the instantaneous trans-
membrane potential. While the cell membrane may contain many different ionic channels, we
model the shift in the effective Nernst potential of the entire membrane.

Nernst potential shift

Conventional modeling of neuronal excitation takes place on many different levels of detail
[22], from the physiologically-detailed and mathematically cumbersome models [23-25] to the
qualitatively accurate but mathematically transparent systems [14-16, 22]. A popular class of
models is based on the representation of the excitable cell as a circuit in which separate chan-
nels exist for each important group of charge-carrying ions. A few well-known examples are
the Hodgkin-Huxley [5] and Morris-Lecar [3] models. The fundamental equation of any
model representable as a circuit is conservation of charge, which may be written as a differen-
tial equation for membrane potential V as [20],

CV = GV = V,,), (4)

where the effective conductance G and the equilibrium membrane potential V4 are given by
Gy = ZGH (5)
i=1

v, = 236V, (6)

eq it
Geff i=1

with G; being the channel conductance of the i™ ionic channel, n being the total number of
ionic channels embedded within the cell membrane, and V; being the Nernst potential for the
i™ ionic channel.

For passive channels G; is a constant value, and the channel acts like a simple, Ohmic resis-
tor. When the i"™ ionic channel is active, G; becomes a function of one or more gating-variables,
each of which depends on the membrane potential. The quantity G.¢ is the total conductance
over all ionic channels, and V. is the average Nernst potential (weighted by channel conduc-
tance). In order for the Nernst potential of a particular ionic channel to remain constant, the
intracellular and extracellular ion concentrations must not change by a significant amount
over the course of an action potential (6 < 1). On the contrary, for substantial charge deple-
tion, & becomes on the order of unity.

Conventional Morris-Lecar model

In this paper, we will incorporate effects due to significant charge depletion into the two-vari-
able Morris-Lecar model [3, 4],

CV =[GV, W)(V =V (V, W) + L, (1), (7)

W= (W (V) = W)/t (V), (8)

originally obtained from the study of barnacle muscle fibers. Here, V'is the membrane poten-
tial, W is a dimensionless gating variable corresponding to the inhibitory response of the
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Table 1. Typical values for the Morris-Lecar model, Equations (7)—(8).

Parameter Value

o} 20 pF/cm?
¢ 0.04

Jca 4.4 uS/cm?
gk 8 uS/cm?
a9 2 uSlcm?
Vea 130 mV
Vi -84 mV

Ve -60 mV

Vi -1.2mV
Vs 18 mV

V3 2 mV

Vi, 30 mV

doi:10.1371/journal.pone.0122401.t001

potassium channel, and I,,,(¢) is an applied, stimulation current. In this two-variable system,
the calcium dynamics is assumed to act on such short timescales that the calcium channel in-
stantaneously finds its voltage-dependent equilibrium state, so M(V) has no intrinsic dynam-
ics. The potassium dynamics is modeled through the evolution of the dynamical gating
variable W. The explicit forms for the effective conductance, equilibrium potential and other
voltage-dependent functions are

Ga(V, W) = gM (V) +&W +81,, 9)
Vo(ViW) = (geM (V) Ve, + &WVi +8.V1)/Gars (10)
M_(V) = %<1+tanh[v‘;zvl]>, (11)

W (V) = ;(1+tanh {V‘_QV-*D, (12)
(V) = ;sech<v2_v4v3>. (13)

Typical values for the parameters are shown in Table 1. Using these dimensions, voltage is
measured in mV and time in ms. A typical action potential due to a short stimulation current
is shown in Fig. 1.

Bursting and synchronization in discrete and continuous networks

The term “bursting” typically refers to rapid voltage oscillations which are modulated by
lower-frequency oscillations. Of particular relevance to the present work, it was found recently
[26] that bursting may emerge in single-cell models when the extracellular ionic concentrations
are allowed to vary. Essentially, this variation in ionic concentrations gives rise to the low-fre-
quency oscillations which modulate the bursting. It should be noted that this variation in ionic
concentrations gives rise to a varying Nernst potential. Our approach can be viewed as an
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Fig 1. Action potential within Morris-Lecar model. A stimulus is applied to the resting cell at t = 400ms. Corresponding behavior of recovery variable W(t)

is shown in the inset.

doi:10.1371/journal.pone.0122401.g001

effective description in which the degrees of freedom corresponding to ionic concentrations
have been integrated out of the equations of ionic motion.

Extended systems of coupled neurons, or neural networks, allow for a transmembrane po-
tential difference to travel across multiple neurons by means of a propagating excitation wave.
This process may result in synchronized electrical activity for groups of neighboring neurons.
Such a synchronized excitation of neighboring cells is believed to play a central role in neural
communication [27].

Bursting has previously been observed in discrete networks of mutually inhibitory oscilla-
tors [28] and is responsible for pattern generation as seen within many different biological neu-
ral networks [29]. To investigate bursting, Skinner et al. used a Morris-Lecar-based network
and explored inhibition through synaptic coupling by introducing the following source
I, =mV)(V-V,), (14)

o o
where Iy, is the synaptic current provided by the inhibitory neuron, m(V) is a step-wise func-
tion which is zero below a particular voltage threshold and a positive constant above the
threshold, and V is the voltage of the inhibitory neuron. It was demonstrated that such a cou-
pling allows for frequency control analogous to a neuromodulator where synaptic currents af-
fect the intrinsic properties of single neurons as described in [30].

Unlike the work of Skinner et al. we will ultimately discover how bursting regimes for a sin-
gle cell can emerge through coupling to an extended system in a continuous reaction-diffusion
model, where coupling between neuronal cells is introduced by a diffusion term in a nonlinear
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diffusion equation

aV(x,t) O’V (x,1)
o =D +£(V), (15)

When a reaction-diffusion system is written in discrete form, suitable for numerical analysis,
the effective coupling term (to second order) can be written in the form,

L, - Dazch), (16)

— (Vi =2V, 4 V), (17)
- _Aix?(v" = Vi + Vi ]/2), (18)
= T(D)(V,- V). (19)

where I'(D) plays a role analogous to the quantity 7 (V) in Equation 14. If the model is extend-
ed to include nonlinear diffusion, D = D(u), then I'(D) acquires an implicit dependence on
membrane potential, though we will not consider nonlinear diffusion in this work. Further-
more, we note that the term “diffusion” in this continuum model is employed in a coarse-
grained sense. Within the network language, we are only considering synaptic coupling. From
the network point of view, diffusion of ions through extracellular space is seemingly absent.
However, at the level of complexity of this model, these effects could be studied by adjusting
the form of the effective diffusion profile.

Morris-Lecar model with adaptive Nernst potential

A variable Nernst potential across one or more ionic channels can be incorporated into Equa-
tion (4) by introducing a shift Vs as

CV = —Gu(V = [V, + V). (20)

The total trans-membrane potential difference from equilibrium, (V - V), can be considered
as the driving force of this nonlinear system. As the trans-membrane potential difference in-
creases, the amount of charge stored on the cell surface also increases. This causes the concen-
tration of intracellular jons to decrease, resulting in an elevated Nernst potential for positive
ions. Using the Nernst equation [10] one finds the leading-order correction to the Nernst po-
tential V; of a single channel due to significant charge depletion 6 = AQ;/Q; to be,

Av, ~ —RL (ﬂ) (21)
zZF \ Q

where AV is the Nernst shift for the ith ionic channel, R is the ideal gas constant, z; is the
charge value for the ith ionic channel, T'is temperature (assumed constant), and F is Faraday’s
constant. Any flux of charge leaving or entering through the cell membrane is a result of the
total potential difference across the membrane surface,

AQ, x (V — Ve)- (22)

Thus, for each ionic channel, the Nernst shift will be proportional to the total trans-membrane

PLOS ONE | DOI:10.1371/journal.pone.0122401 March 30, 2015 7/25



@' PLOS ‘ ONE

Bursting in RD Systems

potential difference. Because this is true for any ionic channel with variable Nernst potential,
the effective Nernst shift for the system as a whole, Vi, will also depend on the total trans-mem-
brane potential,

Vs =a(V, = V), (23)

where a and V are constant parameters. Letting { represent the ratio of the average Nernst
shift to the total trans-membrane potential,

V.

o

vy

(24)

we stress that the form for { is a consequence of the general considerations leading to Equation
(21). Our description consists of an effective feedback loop whereby variation in the Nernst po-
tentials for one or more cells is represented as a closed function of the instantaneous trans-
membrane potential. This minimally complex representation of { in Equation (24) allows us to
probe the qualitative effects that arise when considering small cells without restricting attention
to one type of ionic channel or a particular class of neurons. Interesting studies [26] have ob-
tained bursting in single cells by introducing dynamics to several ion concentrations in a Hodg-
kin-Huxley model. Here we will examine the effects of significant charge depletion in small
neurons. Furthermore, it should be noted that within our continuum description, a single fun-
damental “cell” corresponds to many individual neurons. Thus, while bursting of a single neu-
ron is physiological, bursting of a fundamental cell consisting of thousands of neurons is
potentially pathological.

Conservation of charge in a circuit-based model with variable Nernst potential in the form
described by Equation (20) and Equation(23) can thus be written as,

CV = (1= )[=Gu(V = V)l (25)

A similar type of modification has been studied in the Fitzhugh-Nagumo model, where a “soli-
ton-like regime” was discovered [7]. This soliton-like regime represents a region in parameter
space of a modified Fitzhugh-Nagumo model in which waves appear to reflect from no-flux
boundary conditions. This is to be distinguished from the “soliton model” which is discussed
in Ref. [6], which is based on different physical principles. The connection of the present work
to the soliton-like regime in the Fitzhugh-Nagumo model is explored in the next section. For
single-cell and network simulations in this paper, Equation (25) is applied to the two-variable
Morris-Lecar model [3]. When modified using Equation (25), the Morris-Lecar system given
by Equations (7)-(8) becomes,

cV = (1 - O[_Geff(v - Veq)]7 (26)
W= (W, —W)/ty, (27)

with V; given by
Vi = a(V,-V), (28)

with Equations (9)-(13) unchanged. Note that rather than being specific to the Morris-Lecar
model, Equation (25) represents a general framework for incorporating a voltage-dependent
Nernst equilibrium into any conductance-based, or Hodgkin-Huxley-like, model. We have
chosen to explore these effects using the Morris-Lecar model for its convenient balance be-
tween mathematical simplicity and biological relevance. While not as detailed as the Hodgkin-
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Huxley system, its parameters are based on biological quantities and not commonly viewed as
arbitrarily tunable parameters. However, as a two-variable system the Morris-Lecar model
shares a qualitative simplicity with other mathematically idealized models such as the Fitz-
hugh-Nagumo system.

Derivation of “Soliton-like regime” in Fitzhugh-Nagumo model

Mornev and collaborators [31] considered a modified form of the Fitzhugh-Nagumo equa-
tions,

du
5 = S (29)
% = e(w)[iu—vl, (30)

where f (1) = (u — mg) (u — m;) (u—m,), and € (u) = eog(u), with

u+0.04 u—0.75
=(1+4|2—tanh |——— h|——— 1
g(u) < + [ tan [ 001 }+tan [ 01 ”), (31)
for some constants ¢, and 1. Rescaling the time variable according to
dt = g(u(t))dt, (32)
Equations (30)-(31) become
du 1
& g [f () =1, (33)
dv .
Wl (34)

so that with rescaled time, the u-dependence introduced to ¢, responsible for the behavior char-
acterstic of the “soliton regime” examined in [31], can be recast in the form of an effective shift
in Nernst potential by the identification

1

g(—u)—>1—C7 (35)

where in the { is a ratio of two linear functions of u, according to Equations (23)-(24), and u
plays the role of V in the Fitzhugh-Nagumo system. Performing a Taylor expansion of the hy-
perbolic functions around u = —0.04 or u = 0.75 reduces g ' («) to the same functional form as
1 - {, indicating that the “soliton-like” effects previously observed can be understood from a
physiological perspective as a result of an adaptive Nernst potential which becomes more pro-
nounced in its effects for smaller neurons. We strongly emphasize that “soliton-like behavior”
is a term used by Mornev et al. to describe a dynamical regime within continuous reaction-dif-
fusion systems and is entirely distinct from the so-called “soliton model” used in Ref. [6],
which is a model for neural signals based on entirely different physical principles. Systematical-
ly incorporating further realistic complications such as nonlinear diffusion to our model is a di-
rection for future research.
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Results
Single-cell dynamics

In this section, we wish to explore some basic properties of the Morris-Lecar system with the
addition of an adaptive Nernst equilibrium by examining the equations governing a single, ex-
citable cell. While the context of the present work lies in studying behavior of neurons in the
brain, we shall employ the standard Morris-Lecar parameters as a way to demonstrate the sub-
stantial effects caused by the introduction of a variable Nernst potential while minimizing the
number of free parameters. The implications of our results outside of the usual domain of rele-
vance for the Morris-Lecar model are explored in the Discussion, but we note here that the
present goal is a demonstration of the wide variety of interesting behaviors that can be captured
with a continuous reaction-diffusion system which has been suitably modified to incorporate
the dominant physical effects due to smaller size of neurons.

As a starting point, we refer the reader to Fig. 1, which shows the generic behavior observed
in the conventional Morris-Lecar system. An external stimulation current can be applied to
raise the membrane potential V above the model’s threshold at which a rapid rise in potential
(the “upstroke”) occurs, causing an increase in the potassium current. This rising potassium
current brings the membrane potential back down (the “downstroke”), overshooting equilibri-
um and resulting in a recovery time (“refractory period”) during which no further stimulation
generates an action potential. This basic picture of an action potential event is characteristic of
virtually all common models used to study electrical activity in cardiac and muscular cells, and
we now wish to explore how this picture changes when the Nernst potential is allowed to vary
due to the charge depletion expected to occur within smaller neurons.

Our modified system contains two free parameters, namely  and V. Solving Equations
(26)-(27) at different points in (Vj, o) space reveals two qualitatively different regimes of be-
havior. A region exists where most initial conditions fall into a stable limit cycle without any
external stimulation current. In this regime, the system exhibits “autogeneration” of excita-
tions. Outside of this region, the system behaves qualitatively similarly to the standard Morris
Lecar model given in Equations (7)-(8). An example of the time-series V(t) and phase space
(V, W) is shown for each of these regimes in Fig. 2.

While a complete characterization of this modified system is beyond the scope of the pres-
ent work, we sketch a global aspect of the qualitative behavior in Fig. 3 where the natural reso-
nant frequency is shown as a function of position in (Vj, &) space. The actual resonant
frequencies depicted depend directly on the particular choices of parameters in Table 1, but the
for arbitrary choices of parameters, one may expect at least the order of magnitude in variation
of resonant frequencies as both @ and V|, are varied the range shown in Fig. 3.

The auto-generation of excitation pulses produced by Equations (26)-(27) is not entirely
different from the behavior produced by the standard Morris Lecar model (c.f., Equations (7)-
(8)) in the presence of a constant stimulation current. Indeed, a bifurcation diagram with re-
spect to either a or V; demonstrates the emergence of a stable limit cycle within a range of val-
ues. Fig. 4 depicts these bifurcation diagrams which may be compared to the standard
Andronov-Hopf bifurcation observed within the conventional Morris-Lecar model with re-
spect to a varying stimulation current. While mathematically similar, a distinguishing feature
of the particular model presented here is that this regime of auto-generation emerges naturally
within the extended parameter space of a model which includes the physical effects due to
smaller size of neurons. Specifically, these oscillations are driven by a Nernst potential which
adapts to the instantaneous charge depletion experienced by the cell during an excitation pulse
rather than an external current. Despite this difference in underlying mechanisms, the
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Fig 2. Time series and phase space diagrams for modified Morris-Lecar model. Upper left: Single neuron (a = 0.7, Vo = 6.2mV) firing once after stimulus
is applied at t = 0Oms and approaching a stable equilibrium. Upper right: Single neuron (a = 1 and V, = 6.2mV) entering a stable limit cycle after initial stimulus.
Phase space trajectories for each case are shown in the panel below the corresponding time-series plot.

doi:10.1371/journal.pone.0122401.9002

subcritical Hopf bifurcation that occurs as either a or Vj is varied shows no identifiable differ-
ences from the standard bifurcation one finds as an external stimulation current is varied.

The relevance of these findings to actual experimental systems warrants some discussion. A
small window of elevated extracellular potassium concentration has previously been discovered
through numerical experiments with the Hodgkin-Huxley model [2] in which action potential
pulses in a one-dimensional cable reflect rather than annihilate upon collision. This soliton-
like behavior is qualitatively similar to the dynamics produced by this model when an extend-
ed, one-dimensional cable is considered (see next section). However, we emphasize that the
present framework for incorporating an adaptable (averaged) Nernst potential probes some-
what more universal features than changing the concentration of a particular ionic species. The
behavior we find here should be characteristic of small neurons, regardless of the particular de-
tails regarding individual ionic concentrations.

As a last exploration of the single cell properties, we note that within the limit cycle, a range
of stimulation currents may be applied within a particular phase window to send the system to
a stable equilibrium point. That is, there is a small window of time during the oscillation for
which an applied stimulus can destroy the the sustaining oscillations. Fig. 5 depicts a stable
limit cycle for a particular choice of (Vj, &) and how this dynamical behavior may be modified
when a stimulation current is applied at a certain point in the cycle. Within this “vulnerable”
phase window, a sufficient stimulation current can prevent further excitation pulses and cause
the membrane potential to asymptotically approach a constant value, as shown in the right
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Fig 3. Map in (V,, a) space of resonant frequencies using typical parameters for Morris Lecar model.
Regions colored in white correspond to points where no stable limit cycles exist in the absence of a
stimulation current.

doi:10.1371/journal.pone.0122401.g003
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Fig 4. Bifurcation diagrams in extended parameter space. These diagrams, created using XppauT, depict the occurrence of stable, equilibrium points
(solid black line), unstable equilibrium points (dashed black line), stable limit cycle (thick green line) and unstable limit cycle (thin, red line) as a (left) and V,
(right) are varied. From left to right in the left panel, a stable equilibrium branches into an unstable limit cycle through a subcritical Hopf bifurcation point near a
~ 1. As ais increased, a stable limit cycle emerges which collapses into a stable equilibrium at the supercritical Hopf bifurcation point near a ~ 1.5.

doi:10.1371/journal.pone.0122401.g004
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Fig 5. Limit cycle and quiescent state achieved by stimulation. Left: Auto-generation of pulses in modified Morris-Lecar system with a=1, Vo = 6.2mV.
Right: An initial stimulus of 80 yA/cm? applied for 5ms is sufficient to pull the system off the limit cycle to a stable equilibrium.

doi:10.1371/journal.pone.0122401.g005

panel of Fig. 5. Such a scenario is only expected to occur for (Vy, ) chosen close to the bound-
ary depicted in Fig. 3, corresponding to the neighborhood of the subcritical Hopf bifurcation
where unstable limit cycles and stable equilibrium points coexist. No similar behavior was ob-
served in the vicinity of the super-critical Hopf bifurcation point (see caption of Fig. 4).

To fix this notion of a vulnerable window, we may repeat the calculation leading to Fig. 5
for a fixed stimulation current protocol while varying the point in phase space at which the
stimulation is applied. The range of phase space over which this particular stimulation protocol
is effective in stabilizing the system is shown in Fig. 6. This window is shown for several values

V, =6.25mV V,=6.2mV V,=6.15mV
0.4 0.4 0.4
0.35 0.35 0.35
= 03 = DA = 03
0.25 0.25 0.25
0.2 0.2 0.2

5| A %
2 —540 -20 0 20 0 -540 -20 0 20 0 -540 -20 0 20
V (mV) V (mV) V (mV)

Fig 6. Vulnerable window in the modified Morris Lecar model depicted in phase space. The system’s limit-cycle trajectory fora=1, Vo =6.2mV is
shown (thin black line) with the vulnerable region indicated by a thick red line for varying values of V, with a = 1. Within the vulnerable window, a short
stimulation takes the system from its stable limit cycle to a stable equilibrium point in phase space. The size of the vulnerable window increases as (Vy, a)
approaches the Hopf bifurcation point.

doi:10.1371/journal.pone.0122401.9006
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of Vj in the vicinity of the Hopf bifurcation while keeping « fixed. As should be expected, the
size of this vulnerable window depends greatly on the proximity of (Vo, ) from the Hopf bifur-
cation, with an increasing window size as one approaches the bifurcation point. This is consis-
tent with the lack of any vulnerable window for points inside the resonant region, since the
oscillations are robust to the perturbation of the stimulation current. Far from the boundary
outside the resonant region, the vulnerable window, as defined, encompasses the entire orbit
since only stable equilibrium points exist as long-time steady-state solutions. Fig. 6 essentially
depicts the crossover between these two extremes.

While we have chosen a particular stimulus protocol and varied phase, the general picture
of a “vulnerability window” is quite robust and emerges within a measurable fraction of the
phase space as a range of vulnerability with respect to variation in any particular parameter of
interest. Notably, this “vulnerable window” has been observed experimentally [32] within a
space-clamped squid giant axon due to calculations by Rinzel [33] using the Hodgkin-Huxley
model suggesting its existence within a particular parameter regime. In the next section, this
notion of vulnerability is extended to the context of a one-dimensional cable of excitable tissue
and explored as several size-related parameters are varied.

One-dimensional excitable cable

In this section, we investigate the consequences of the window of vulnerability, depicted in

Fig. 6, when the cell being stabilized is coupled to a chain of excitable cells by a diftusive term.
Formally, we are investigating a continuous, one-dimensional piece of spatially extended tissue.
After discretization for numerical investigations, this cable takes the form of a one-dimensional
chain of coupled nonlinear oscillators. Unless otherwise stated, the cable length is taken to be
N, = 119. However, our results are faithful representations of the continuum limit since a
change in N, can be supplemented by an appropriate rescaling of the spatiotemporal mesh to
obtain identical results, as discussed below.

As we shall demonstrate, this notion of “vulnerability” extends naturally to a one-dimen-
sional cable through a range of parameter values which allows a localized stimulation to stabi-
lize an entire, synchronized cable. Regarding the experimental relevance of such a vulnerability
window in extended systems, previous research has demonstrated the existence of a soliton-
like regime close to a subcritical Hopf bifurcation point. Analysis using the Hodgkin-Huxley
model predicts this regime to exist within a 0.1 mM concentration window of extracellular po-
tassium [2]. Below this concentration one generically observes standard action potential propa-
gation. Above this region one observes pulse trains of propagating action potentials, which are
likely contributors to seizure-like activity. A shift from the single-fire regime to the soliton-like
regime, with pulse trains of action potentials, is typically pathophysiological.

Given the clear role action potentials play in formation of memory [1], we are also interested
in the possible patterns one could find within this soliton-like regime, for which small diameter
axon activity would likely reside. Using the modified Morris-Lecar model, we present a funda-
mental, biologically-based mechanism for spatiotemporal pattern generation. For our investi-
gation of extended excitable media, we will consider a continuous cable of excitable tissue
governed by,

A%

CV = D—
Ox?

+ (1= 0[=6a(V = Vo)l + Ly (%, 1), (36)

app

W o= (W, —W)/1,. (37)
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Normally, the system of Equations (37, 38) has a simple excitation pulse solution in re-
sponse to an external stimulus. If & and Vj, are selected close to an Andronov-Hopf bifurcation
point we obtain one stable equilibrium and two limit-cycles (one stable, one unstable) simulta-
neously [34] for each cell in the cable, as shown in Fig. 4. A particular consequence of each cell
lying close to this bifurcation point is a global vulnerability of the entire cable with respect to
localized stimulations. To demonstrate this global vulnerability, we consider a cable of length L
undergoing synchronized oscillations (i.e., each cell in the cable is oscillating in phase with fre-
quency given by Fig. 3) and apply a short stimulation current near the center of the cable at a
particular phase of the oscillation. Henceforth, we fix our initial conditions to be V (¢t =0, x) =
Vo, W(t =0, x) = Wy, with

V, = —22.9764mV, (38)

W, = 0.1770. (39)

The diffusion constant is fixed to D = 0.01cm?/s unless otherwise noted, and we take L = N, Ax
to be the length of the cable, where N, is the number of spatial points considered. Here the spa-
tial mesh is taken as Ax = 0.1cm, and we employ a time step size At = 0.01ms. Fixing & = 1 and
Vo = 6.2mV as a representative point in (e, Vj) close to the system’s Andronov-Hopf bifurca-
tion point, we proceed to first demonstrate that a fixed stimulation current is able to de-syn-
chronize an entire, extended cable for a fixed range of cable lengths. Fig. 7 schematically
depicts this window of vulnerability by applying a stimulation current of amplitude i, = 80y A/
cm? for a duration Ty, = 1000A¢ to the center cell and its three nearest neighbors to the right
and left for a total of seven cells. For both sufficiently large and sufficiently small cables, a stim-
ulus able to stabilize a single cell is unable to counteract the cell’s coupling to its oscillating,
neighboring tissue (left and right panels of Fig. 7), and the system returns to a synchronized
limit cycle. However, for a range of cable lengths, the initial stimulus results in a fully quiescent

N, =141 (mV)

20 10
) 0
560
(0]
£ a0 -10

120

101 A X 119 A X 141 A X

Fig 7. Long-time steady states for cables of varying lengths. Fixing all parameters except cable length generically yields a region of vulnerability in
extended cables. For small (left) and large (right) cables, an initial stimulation sufficient to quiesce a single cell causes a transient quiescent region which
results in full synchronization. For a range of cable lengths (center) the stimulation results in the entire cable approaching an equilibrium state.

doi:10.1371/journal.pone.0122401.9007
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Fig 8. Variation of diffusion constant for fixed cable size. The similarity of these results to those in Fig. 7 shows results consistent with the

continuum predictions.

doi:10.1371/journal.pone.0122401.9008

region which eventually spreads throughout the entire length of the cable (center panel). This
resonant effect occurs for a small range in values of L given all other parameters fixed.

In the continuum limit, with which we are interested, the diffusion constant we have intro-
duced is scalable in the sense that a change in D for a system of length L = N,Ax,

D—D), (40)

should result in spatiotemporal dynamics equivalent to those in a system of size

D\ 2
v-i(p) (41)

with diffusion constant D. To demonstrate that we are considering discretized systems that ef-
fectively represent the continuum limit, we may test this scaling by holding L = N,Ax fixed and
varying D in a manner that should reproduce results equivalent to those depicted in Fig. 7. The
results of this variation in diffusion constant are shown in Fig. 8 and support the claim that, by
comparison to Fig. 7, these results genuinely represent an accurate description of the
continuum limit.

While adjusting the diffusion constant does not itself represent a truly independent varia-
tion of system properties, we can demonstrate the robustness of our results by modifying the
stimulation protocol. The nature of the window of vulnerability is fairly insensitive to changes
in the nature of the stimulation, provided the overall charge Q = ipAt is sufficiently large. Fig. 9
shows a picture qualitatively similar to that in Fig. 7, produced with a larger stimulation cur-
rent, iy = 800uA/cm?, applied for a shorter time T, = 50At.

The general behavior of the model within the regime we have focused is fairly straightfor-
ward. As with the single cell, when & and V, are chosen close to the Hopf bifurcation point
(close to the edge of the cloud showing nonzero resonant frequencies in Fig. 3) and a stimula-
tion is applied within the vulnerable phase region (see Fig. 6) in a localized region at the center
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Fig 9. Larger stimulation current (i, = 800uA/cm?) is used for a shorter time (T, = 50At) in the middle of the cable. The modified stimulation protocol
produces qualitatively similar results to those shown in Fig. 7

doi:10.1371/journal.pone.0122401.g009

of an extended, one-dimensional cable, there exists a range of lengths for which the entire cable
becomes quiescent due to the stimulation. Outside of this range, for both smaller and larger
cable lengths, the synchronized oscillations overtake any transient, locally quiescent behavior.
By varying the oscillation phase at which the stimulation is applied and holding all other pa-
rameters (cable length, stimulation strength, etc.) fixed, one may construct a global vulnerabili-
ty picture for the entire cable as was done for the single cell in Fig. 6.

The global vulnerability picture for N, = 119, iy = 100uA/cm?, Ty = 1000At is shown in
Fig. 10, and the basic picture is quite similar to that for a single cell. Specifically, a small window
of phases exists at which a stimulation may be applied resulting in the entire cable transitioning
from synchronized oscillations to a homogeneous, quiescent state. Note that in the case of
Fig. 10, this vulnerability refers to a localized stimulation being able to quiesce the entire cable.
Far away from this window, the effects due to the localized stimulation are transient, and the
entire cable returns to synchronized oscillations at long times. However, a new layer of compli-
cation is introduced by the spatial extension of the one-dimensional system. In the region of
the transition between these two types of long-time steady states, the system shows extreme
sensitivity to the particular details of stimulation. The complex behaviors which can emerge in
an extended PDE system have been recently emphasized [35, 36] in numerical studies of the
Hodgkin-Huxley system in which the role of noise was investigated when the stimulation cur-
rent was tuned to be very close to the value for which a subcritical Hopf bifurcation occurs in
the system. We emphasize that this proximity to a bifurcation point is likely what gives rise to
similarly complex effects in drastically different contexts. Moreover, numerical instabilities
arise that make an accurate description of the system at long times practically impossible. The
region of phase at which a stimulation gives rise to complex instabilities is shown by the dashed
blue line in Fig. 10.

As an example of the interesting types of behavior contained in this unstable regime, Fig. 11
depicts some extremely long-lived transient behavior. In this case, the cable is extremely sensi-
tive to the time T, during which the stimulation is applied with small changes in T,
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Fig 10. Vulnerable window of the one-dimensional cable shown in phase space. The system’s limit-
cycle trajectory for a =1, V, = 6.4mV is shown (thin black line) with the vulnerable region indicated by a thick
red line. Localized stimulations applied within this window result in a long-time quiescent state for the entire
system. Regions of instability are shown in dashed blue line. For all other points (thin black line), localized
stimulations only give rise to transient effects, and the entire cable eventually returns to

synchronized oscillations.

doi:10.1371/journal.pone.0122401.g010

T0 =10.95ms

time (ms)

119 Ax 119 A X

Fig 11. Complex spatiotemporal pattern generated with increased stimulation time near the crossover between quiescent and synchronized
steady-states. A standard, second-order stencil was used for evaluation of the spatial derivative.

doi:10.1371/journal.pone.0122401.g011
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Fig 12. Emergent bursting in the center cell. Time series for the membrane potential V at the center cell in
the one-dimensional cable shown in Fig. 11.

doi:10.1371/journal.pone.0122401.g012

corresponding to dramatic changes in the long-time steady state. The persistence of this tran-
sient spatiotemporal complexity for long times (tens of oscillations, as shown in Fig. 11) makes
an accurate investigation of the dynamics governed by the highly nonlinear partial differential
equations, Equations (37)-(38) practically quite difficult, and this sensitivity is discussed in
more detail in the following section.

The possibility of generating such complex spatiotemporal patterns as those shown in
Fig. 11 is intriguing in its own right. However, another interesting aspect of this complexity
may be seen by considering the time-series for the membrane potential of a single cell. Fig. 12
depicts the membrane potential as a function of time for the center cell in the right-hand panel
of Fig. 11. The shape of V() in Fig. 12 is remarkably similar to bursting behavior, which is typi-
cally obtained by introducing a third dynamical variable to a two-variable system such as the
Morris-Lecar model. Through the propagation of voltage through the extended medium and
the complex dynamics generated with the adaptive Nersnt-potential, our model shows the po-
tential to capture bursting. Abstractly, one may think of our (effective) “third equation” as the
integrated effects resulting from coupling the center cell to the rest of the cable. Unlike other
conventional models for bursting [37, 38], we find bursting to arise in this intrinsically two-var-
iable system through coupling of the cell to an extended system. Interestingly, it has previously
been pointed out that within a three-variable model bursting may emerge as a similarly tran-
sient phenomenon before the system settles into periodic spiking. [39]

Numerical Details

For numerical solutions of Equations (37)-(38), we discretize space and time by taking mesh
sizes of Ax = 0.1cm and At = 0.01ms for spatial mesh and time-integration step size,
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119 A X

respectively. Time integration is performed using an explicit, fixed step-size, fourth-order
Runge Kutta method [40]. The spatial derivative is approximated by the standard second-
order stencil,

>’V 1

o A (”m +u - 2”1‘)’ (42)

with a fourth-order, five-point stencil [41] used to confirm all results displayed in this section.
When using explicit integration schemes, the numerical stability of a linear diffusive system is
governed by the Courant-Friedrichs-Levy (CFL) number,

DAt

which should satisfy y < 1 to ensure a numerically stable solution. We find experimentally
that even for y < 1, the solution is extremely sensitive to changes in step sizes due to the non-
linear nature of the system which precludes a strict application of linear stability analysis. To
check the accuracy of solutions presented in this paper, all solutions were computed with a va-
riety of spatial and temporal step sizes, At and Ax, respectively, while holding cable length L
and overall integration time T fixed. Additionally, a fourth-order, five-point stencil was em-
ployed for the diffusive term in Equation (37) and compared to results obtained from a stan-
dard second-order, three-point stencil. Aside from Figs. 11-13, no difference was observed
when varying step sizes or spatial stencil. In the transitional regime, however, simply changing
the spatial stencil resulted in significantly different behavior. Qualitatively similar behavior to
that shown in Fig. 11 exists when the modified stencil is employed, but the particular value of
T, at which it occurs is slightly different when the higher-order stencil is used, as shown in
Fig. 13.

119 Ax

Fig 13. Complex spatiotemporal pattern generated with increased stimulation time near the crossover between quiescent and synchronized
steady-states. A fourth-order, five-point stencil was used for evaluation of the spatial derivative. Compare to Fig. 11.

doi:10.1371/journal.pone.0122401.9013
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Regardless of the particulars of the numerical parameters used to obtain approximate solu-
tions, the behavior depicted in Fig. 11 is robust in the sense that it can generated for some par-
ticular form of the stimulation protocol. While such delicate behavior is extremely difficult to
investigate rigorously within the context of a highly nonlinear, continuous reaction-diffusion
system, these results have immediate relevance to inherently discrete systems where the diffu-
sive coupling

ou AtD

AtD—

e Al w

= F(uj+1 +u - 2u].)7 (45)

becomes a synaptic coupling between discrete neurons with a well-defined value. In this con-
text, the numerical instability we see corresponds to a dramatic sensitivity of system behavior
on the particular coupling between neighboring cells.

Discussion

In this paper, we have presented a physically-motived modification to excitable models based
on the charge depletion which occurs in brain neurons. By incorporating this modification into
the conventional Morris-Lecar reaction-diffusion model, we have explored several examples of
the emergent complex behavior which have particular relevance to synchronization of neurons
in the brain and the relevance of synchronization to diseases such as epilepsy. The addition of a
variable Nernst potential creates a region in parameter space in which self-sustaining oscilla-
tions, or stable limit cycles, exist without requiring external driving or leakage currents. Typical
points on the boundary of this region correspond to Hopf bifurcations, and the neighborhoods
of these bifurcation points support the coexistence of stable equilibria as well as stable and un-
stable limit cycles. The results presented in this paper are largely due to the interplay between
these vastly different types of solutions.

Near the subcritical Hopf bifurcation boundary, an excitable cell firing on its stable limit
cycle is susceptible to transitioning to a stable equilibrium through the application of a carefully
timed stimulation current. We have demonstrated the existence of such a window of vulnera-
bility with respect to the instantaneous phase of the system at the time the stimulation is ap-
plied. The fraction of phase occupied by this window is a tremendously complicated function
of system parameters, but as depicted in Fig. 6, it may generally be expected to depend predict-
ably on the system’s distance in (¢, Vp) space from the subcritical Hopf bifurcation, with closer
points having larger windows.

By probing this vulnerability in a one-dimensional cable, we have demonstrated that the
spatial extent of the system plays a critical role in the spatiotemporal dynamics generated by
applying a localized stimulus to a fully synchronized system. In particular, holding all parame-
ters fixed, we find a range of system sizes for which a localized stimulation totally disrupts the
synchronized oscillations, sending the entire cable to a quiescent state. In the continuum limit,
this change in system size L is equivalent to scaling the diffusion constant D while holding L
fixed. By observing the proper scaling, we conclude that our results obtained from a finite-
differencing scheme adequately model the continuum system. Furthermore, the window of vul-
nerability with respect to the system’s phase when the stimulus is applied may be reconstructed
for the entire cable as shown in Fig. 10. The window of vulnerability for the extended cable
shows a qualitatively similar picture to that of the single cell (c.f. Fig. 6) with a range of phases
for which a stimulation causes the entire cable to evolve toward a homogeneous, quiescent
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state with no oscillations. Interestingly, the edges of this window correspond to dramatic insta-
bilities in the one-dimensional cable where highly complex spatiotemportal patterns emerge as
long-lived transient effects. The results presented in this paper serve to sketch the basic build-
ing blocks for spatiotemporal patterns which naturally emerge from this system. Clearly, de-
tailed investigations of the possible patterns and their relation to neurophysiology are lines of
direction for future work. The appearance of recent studies [42] using multiple-lead sensors to
measure neuronal activity at several locations suggest our model could provide an important
component in explaining measurements or predicting outcomes of future experiments.

Generalizing these reaction-diffusion models to include dynamical Nernst potentials pro-
vides a platform for future investigation into what diffusive chemical influences may have on
neural network dynamics. Seizure activity and various bursting events are heavily influenced
by external factors. If preliminary information regarding medicinal reactions are known, these
effects could possibly be incorporated within a reaction-diffusion system by means of profiled
diffusion. Recent research into Belousov-Zhabotinsky reactions and chemical computing [43]
show a promising future for understanding how information is retrieved and written within
networks such as these. In addition to providing benefits to those suffering from mental illness,
understanding neural network stability could also provide new ways of encrypting sensitive
network information.

Research on epilepsy and seizures has shown that a neuron will swell as a result of electrical
activity and when modeling such activity one must account for variations in ion concentration
[8, 9]. By incorporating this dynamic size variation into network simulations it was shown that
if glial cells fail to maintain the proper micro-environmental conditions neurons will produce
seizure-like activity. It was also suggested that how persistent states respond to perturbations
may be critical to transient behavior such as working memory [19]. One could imagine a better
understanding of neural networks will allow for a more quantitative understanding of complex
brain activity such as working memory.

In the work of Mornev and Aslanidi [2, 7], soliton-like behavior, with reflection from zero-
flux boundaries, was observed in addition to complete synchronization of the cable. The ratio
of time constants for membrane potential and recovery was shifted by a function of trans-
membrane potential but without any obvious physiological reason. The present work is an ex-
tension of this type of investigation with the aim of better understanding the particular nonlin-
earities responsible for observable phenomena and strengthening the link between
mathematics and physiology. In agreement with Aslanidi and Mornev we observed elevated
ion fluxes in proximity to the ion impermeable, no-flux, boundaries. Therefore, one would ex-
pect, for fibers of total size comparable to the size of the stimulation region, these no-flux
boundaries would reinforce the current applied at the site of stimulation. This is in agreement
with what we observed for smaller cables where the entire fiber remains synchronized with a
simple phase-shift in accordance with the stimulus applied. That is, if the size of the stimulation
site is relatively large in comparison to the fiber length, the no-flux boundaries will work to am-
plify the applied stimulus so that the fiber becomes indistinguishable from the situation where
one would apply a stimulus to the entire fiber itself.

However, when the fiber is long enough to produce effective causal separation between the
center and edges, yet short enough so that the interplay between the center stimulus and elevat-
ed ion-fluxes at both ends of the fiber may produce long-lived, transient behavior, we find an
alternation between establishing a phase difference and complete quiescence. Interestingly, this
is also the regime where pattern formation was observed. The open boundaries act as imperme-
able membranes so that the fiber becomes isolated, and acts as a one-dimensional pathway for
voltage disturbances. If a cable is composed of cells tuned to be near a Hopf Bifurcation point,
it is possible for the elevated ion-concentrations located at the fiber’s edge to cause reflections
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at the open boundaries [31]. Therefore, these isolated regions may sustain activity without ex-
ternal influence. When a stimulus is applied to these isolated regions, as would be the case for
sensory information being delivered to information processing units within the brain, the tran-
sients may form complicated patterns. Most interestingly, when a single cell of the fiber is mon-
itored we observe potential curves (c.f,, Fig. 12) qualitatively identical to bursting
measurements made in rat brains [44]. We do note that different classes of neurons have differ-
ent bursting behaviors and waveforms, and detailed investigations of mechanisms for particu-
lar classes do exist [45]. One important goal of this paper is to demonstrate a new mechanism
by which single- or few-cell bursting may emerge. Specifically, we demonstrate how a small, lo-
calized region within excitable tissue may exhibit bursting through the transient spatiotempo-
ral complexity occurring within the system.

The results in this paper suggest soliton-like regimes are likely common in biological, excit-
able media. Additionally, we find that one need not abandon the Hodgkin-Huxley-like, parallel
channel framework to observe such regimes. Examining the phase-response for single cells
close to a Hopf bifurcation point, one finds the existence of a stable limit-cycle, unstable limit-
cycle, and a stable equilibrium point. If the initial conditions are such that the cell is undergo-
ing stable limit-cycle oscillations and a stimulus is applied within the hyperpolarization stage
of cell recovery so that the trajectory moves across the unstable limit-cycle, then the stimulation
will result in a quiescent cell. Based on these observations the notion of a “vulnerable window”
was established. This compact picture of a vulnerability window represents a sort of building
block to which further research may add in the construction of reaction-diffusion systems used
to describe memory formation and both physiological and pathophysiological behavior within
such systems.
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