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A B S T R A C T

Air quality in dental clinics is critical, especially in light of the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) pandemic, given that dental professionals and patients are at risk of regular exposure to aerosols
and bioaerosols in dental clinics. High levels of ultrafine particles (UFP) may be produced by dental procedures.
This study aimed to quantify ultrafine particles (UFP) concentrations in a real multi-chair dental clinic and
compare the levels of UFP produced by different dental procedures. The efficiency of a high-volume evacuator
(HVE) in reducing the UFP concentrations during dental procedures was also assessed. UFP concentrations were
measured both inside and outside of a dental clinic in Shanghai, China during a 12-day period from July to
September 2020. Dental activities were recorded during working hours. The mean (�standard deviation) con-
centrations of indoor and outdoor UFP during the sampling period were 8,209 (�4,407) counts/cm3 and 15,984
(�7,977) counts/cm3, respectively. The indoor UFP concentration was much higher during working hours
(10,057 � 5,725 counts/cm3) than during non-working hours (7,163 � 2,972 counts/cm3). The UFP concen-
trations increased significantly during laser periodontal treatment, root canal filling, tooth drilling, and grinding,
and were slightly elevated during ultrasonic scaling or tooth extraction by piezo-surgery. The highest UFP con-
centration (241,136 counts/cm3) was observed during laser periodontal treatment, followed by root canal filling
(75,034 counts/cm3), which showed the second highest level. The use of an HVE resulted in lower number
concentration of UFP when drilling and grinding teeth with high-speed handpieces, but did not significantly
reduce UFP measured during laser periodontal therapy. we found that many dental procedures can generate high
concentration of UFP in dental clinics, which may have a great health impact on the dental workers. The use of an
HVE may help reduce the exposure to UFP during the use of high-speed handpieces.
1. Introduction

Air quality in dental clinics has become an important concern. This
concern has becomealarming under the light of the severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) pandemic (Cherrie et al., 2020).
Previous studies have found that the indoor dental environment is
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particularly subject to bioaerosols air pollution (Nejatidanesh et al., 2013;
Sotiriou et al., 2008). Dental professionals and patients may be constantly
exposed to a clearly visible aerosol cloud of particulate matter and fluid
during dental treatment. This ubiquitous aerosolized cloud can be produced
by many dental procedures, such as tooth preparation with a rotary in-
strument or air abrasion, the use of an air-water syringe, using ultrasonic
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scaling or air polishing (Micik et al., 1969;Miller et al., 1971; Bennett et al.,
2000). It has beenproven by several studies that a great variety of infectious
agents and toxic substances such as microorganisms and viruses, allergenic
substances, solvent fumes and fine particulate matter can be transported by
aerosols and bioaerosols generated in the dental clinic environment, which
may be a risk factor for cross-infection for dental professionals, staff, and
patients (Bennett et al., 2000; Kedjarune et al., 2000; Harrel et al., 2004;
Kimmerle et al., 2012; Yamada et al., 2011). An increased prevalence of
respiratory infections among dental personnel and a direct relationship
between bioaerosols produced during dental procedures and respiratory
system infections has been demonstrated (Harrel et al., 2004).

Additionally, existing studies provide evidence that the dental
healthcare workers and patients are also exposed to large amounts of
abiotic particles, which are generated from different dental procedures,
such as drilling teeth (Sotiriou et al., 2008; Helmis et al., 2008; Liu et al.,
2019), removing the old restorations and grinding/polishing dental ma-
terials with high/low speed turbine handpieces (Nayebzadeh et al., 1998;
Collard et al., 1989; Helmis et al., 2007; Van Landuyt et al., 2012). In
addition to the disease transmission through bioaerosols, exposure to
abiotic aerosol particles in dental clinics and laboratories adversely affects
human health (Taira et al., 2009). To date, various studies have reported
the health effects caused by exposure to particulate matter, such as par-
ticulatematter less than 10 μm(PM10) and 2.5 μm(PM2.5) in aerodynamic
diameter, during dental procedures (Sotiriou et al., 2008; Brunekreef
et al., 2009; Cassee et al., 2013; Kadaifciler et al., 2013). Godwin et al.
(2003) found that PM2.5 levels in the dental office exceeded ambient
standards (by a factor of 2–6) throughout the building. In addition, a
previous study showed that thedrilling activities in the operating roomare
associated with the smallest particles (<0.5 μm), which is significantly
higher than thebackground level (Sotiriou et al., 2008). Particulatematter
may contain potential toxic trace elements such as Al, Si, Zr, and Ba. The
aerosolized particlesmay bedeposited in certain regions of the respiratory
tract, with deposition amounts and areas dependent on particulate size
and concentration (Day et al., 2008). Particles of a certain sizemay further
enter the bloodstream, causing respiratory and cardiovascular diseases
and increasing mortality (Burnett et al., 2014; Lelieveld et al., 2015).

Recently, increasing attention has been focused on ultrafine particles
(UFP) with aerodynamic diameters less than 0.1 μm. Existing evidence
indicates that UFP may have a greater potency to cause adverse health
effects compared with larger particles (Ferreira et al., 2013; Kumar et al.,
2013, 2014). An important property of UFP is the large surface-area to
mass ratio that allows themtoact as carriers of toxic chemicals (Wichmann
and Peters, 2000). The large variety of compounds that attach to these
particles is likely to be amajor cause of their toxicity (Schraufnage, 2020).
However, limited attempts have beenmade to assess the air quality status
of dental clinics by measuring UFP with diameter below 100 nm (Van
Landuyt et al., 2014; Polednik, 2014; Ochsmann et al., 2020). In dental
practice, UFP are abundant and are mainly produced by intra-oral grind-
ing/polishing dental resin material containing nano-sized particles, such
as pyrogenic silica (SiO2) or zirconium dioxide (ZrO2)– SiO2 (Schmalz
et al., 2018; Van Landuyt et al., 2014; Polednik, 2014; Rupf et al., 2015;
Ochsmann et al., 2020). These nano-sized particles may deposit in the
alveoli of the lungs (Donaldson et al., 2005; Day et al., 2008). Substances
such as silica or the other nanoparticles generated during grinding dental
materials have a fibro-genic potential and may cause lung fibrosis (Hoff-
meyer et al., 2007). They might further cross the biological barriers and
enter the bloodstream, either through mobile cells or freely in the vascu-
lature and lymph to directly harm distal organs causing lung cancer,
pulmonary and cardio-vascular diseases, neurodegenerative diseases,
asthma, increased mortality (Sotiriou et al., 2008; Lelieveld et al., 2015;
Cokic et al., 2020a; Schraufnage, 2020; Calder'on-Garcidueenas et al.,
2004; Von Klot et al., 2002; Maher et al., 2016; Tian et al., 2019) or even
occupational disability in dental health care workers (Leggat et al., 2007).
The exposure to nanoparticles in the dental laboratories is addressed by
legal regulations (Schmalz et al., 2018). Another key issue, mostly studied
using animal experiments is the potentially carcinogenic effect of UFP,
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which depends on the underlying substances and is still under scrutiny
(Ostiguy et al., 2008; Simko et al., 2010). Hence,more attention should be
paid on air quality in dental clinics.

The objective of this study was to quantify UFP concentrations in real
multi-chair dental clinics and to compare the levels of UFP produced by
different dental procedures. We also assessed the efficiency of an HVE in
reducing the UFP concentration during dental procedures.

2. Material and methods

2.1. Measurement site

UFP concentrations were measured in the dental department of
Shanghai Tenth People's Hospital, a comprehensive hospital in Shanghai,
China. Thedental clinic is a 4-storybuilding, located in thedowntownarea
of Shanghai. The endodontics, periodontics and operative dentistry
(EPOD) and prosthodontic Clinics are located on the first floor of the
building. The clinic operates in two shifts (08:00–12:00 and 13:30–17:00)
fromMonday to Saturday, with amaximumof 35 occupants in every shift.

Before the main experiment, preliminary measurements were per-
formed in several areas of the dental clinic. According to the results, the
EPOD and prosthodontic clinic, on the first floor of the building, was
selected for the experiment because of their characteristics and high
pollution levels. The clinic on thefirstfloor has 13 separate office spaces for
dental treatments and procedures. The indoor ventilation conditions were
controlledbyaheatingventilationair conditioning (HVAC)system(cooling
mode: 25–26 �C) which was used during the working hours, and were
closed after working time. The area of the first floor is approximately
800m2. The rooms have the same dimensions of 3.2 � 3.8 � 2.7 m
(W�L�H). A partitionwall with 2.2m height separates the adjacent rooms
into separate spaces. Thereare approximately260–280outpatient visits per
day on the first floor. The layout of the first floor is illustrated in Figure 1.

2.2. Data collection

A 12-day monitoring campaign was conducted between July and
September of 2020. Consecutive 24-h measurements (8:00 a.m.–8:00
a.m.) were performed to collect indoor and outdoor UFP concentrations
and climatic factors (i.e., temperature and relative humidity) simulta-
neously. Indoor measurements were conducted in the operating rooms on
the ground floor, where the 13 operating rooms were connected by an
internal corridor and separated from the waiting region. Each room has
no window but two doors, one with only a doorframe open towards the
corridor, and the other with a glass sliding door to the outside. The
sampling equipment was placed next to the dental unit (approximately
0.5 m from the patient's head and 0.85 m above the floor) to collect the
air in the patients' and dentists' breathing zone. The outdoor sampling
equipment was placed on the balcony of the fourth floor.

We measured the number concentrations of UFP using NanoTracer
(XP, Oxility, Netherlands), which records the real-time (every 10 s)
concentration of particles within the range of 10–300nm using the
diffusion charging method. Temperature and relative humidity were
measured using HOBO loggers (UX100-003, Onset Computer Corpora-
tion, Pocasset, Massachusetts), with 1-min time intervals of data logging.

During the working hours, we also recorded information that may
influence the concentration of UFP, including the number of patients and
the dental procedures (type, time, instruments, etc.). We calculated the
average concentration during off-hours (5:00 p.m.–8:00 a.m.) as the
“background concentration” (Helmis et al., 2007) and the averaged con-
centration during the 10 min prior to dental procedures as the “baseline
concentration”.

2.3. Statistical methods

SPSS software (version 22.0; SPSS, Chicago, IL, USA) was used for
statistical analyses, and the significance level was set to 0.05. GraphPad



Figure 1. The layout of the dental clinic on the first floor.
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Prism software (version 6.0; GraphPad Software, Inc., USA) was used for
the graph data. Descriptive statistics were used to characterize the con-
centrations and compositions of the indoor and outdoor UFP. Student's
t-test was applied (p < 0.05; two-tailed) to compare the indices of UFP
generated with or without an HVE during high-speed handpiece or laser
periodontal treatment. A one-way ANOVAwas conducted to compare the
particle concentrations generated by power drilling, piezo-surgery, and
simple extraction.

3. Results

Table 1 summarizes the descriptive statistics of UFP, temperature, and
relative humidityduringworkinghours, nonworkinghours, and the entire
sampling period. During the 12-day period, the mean concentrations
(�SD) of indoor and outdoor UFP were 8,209 (�4,407) counts/cm3 and
15,984 (�7,977) counts/cm3, respectively. The indoorUFP concentration
was much higher during working hours (10,057 � 5,725 counts/cm3)
than during non-working hours (7,163 � 2,972 counts/cm3).

Table 2 presents the main dental procedures performed during the
monitoring campaign. Extraction, drilling teeth using a high-speed rotary
handpiece were the most frequently procedures during the study period,
Table 1. Descriptive statistics of temperature, relative humidity, and UFP during the

Environments Variables Working hours

Mean (SD) Median (IQR)

Indoor T, �C 24.27 (1.18) 24.15 (1.52)

RH, % 56.99 (7.00) 56.71 (8.93)

UFP, counts/cm3 10,057 (5,725) 9,196 (4,875)

Outdoor T, �C 30.65 (4.15) 30.76 (7.17)

RH, % 49.01 (13.69) 50.09 (21.79)

UFP, counts/cm3 20,249 (9,116) 18,717 (11,033)

a: The working hours were between 8:00 and 17:00; b: The non-working hours were
Definition of abbreviations: SD, standard deviation; IQR, interquartile range; T, temp
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followed by root canal filling, grinding composites, and laser periodontal
therapy.

The time-dependent changes in the concentrations of the indoor UFP
are shown in Figure 2, and the peak UFP concentrations during the
procedures are presented in Table 3. Overall, the UFP concentrations
varied during the days and generally increased during the following
dental procedures: drilling (D), grinding (G), root canal filling (R), laser
periodontal treatment (L) and tooth extraction with power drilling (P),
extraction with piezo-surgery (PS), and simple extraction (SE)
(Figure 2A). Examples of UFP concentration profiles in the operating
room on the seventh day are shown in Figure 2B. We identified peaks
during dental procedures ranging from 11,602 counts/cm3 to 241,136
counts/cm3 (Table 3). The highest concentration (241,136 counts/cm3)
was observed during laser periodontal treatment on the eighth day,
which was 32.90 and 26.52 times their background and baseline levels,
respectively (Table 3). The second highest level (75,034 counts/cm3)
was produced by root canal filling treatment and was 9.75 and 7.24
times their background and baseline levels, respectively (Table 3). We
found that drilling, grinding, and extraction with a power drill can also
generate high concentrations of UFP (Figure 2A and Table 3). On
average, the concentrations of UFP produced by grinding increased by
working hoursa, non-working hoursb, and the entire sampling day.

Nonworking hours The entire sampling day

Mean (SD) Media (IQR) Mean (SD) Median (IQR)

25.00 (1.00) 25.22 (1.16) 24.69 (1.11) 24.80 (1.45)

59.70 (8.19) 58.13 (14.47) 57.4 (10.14) 57.19 (13.04)

7,163 (2,972) 6,602 (3,425) 8,209 (4,407) 7,444 (4,270)

27.19 (2.76) 27.68 (3.54) 28.77 (3.84) 28.67 (4.51)

60.60 (13.28) 60.26 (19.15) 57.24 (15.33) 59.06 (23.06)

13,872 (6,366) 12,130 (8,247) 15,984 (7,977) 14,236 (10,445)

between 17:00 and 8:00.
erature; RH, relative humidity; UFP, ultrafine particles.



Table 2. Dental activities for each sample day in working hours (List of the main
dental procedures for each sample day).

Day Time Dental procedures

Day 1 8:00–12:00 DⅩ2, GⅩ1, LSHⅩ1, UⅩ1

13:30–17:00 DⅩ2, RCFⅩ2, GⅩ1, LSHⅩ1, UⅩ1

Day 2 8:00–12:00 DⅩ2, RCFⅩ2, GⅩ2

13:30–17:00 DⅩ2, RCFⅩ1, GⅩ1

Day 3 8:00–12:00 PⅩ3, SEⅩ3,UⅩ2

13:30–17; 00 PⅩ1, PSⅩ1, UⅩ1

Day 4 8:00–12:00 LⅩ2, DⅩ1. UⅩ1

13:30–17; 00 LⅩ2, DⅩ1,UⅩ1

Day 5 8:00–12:00 PⅩ2, PSⅩ1, SEⅩ2

13:30–17:00 PⅩ2, PSⅩ2, SEⅩ1

Day 6 8:00–12:00 SEⅩ7, PⅩ1, PSⅩ2

13:30–17:00 SEⅩ6, PⅩ1, PSⅩ2

Day 7 8:00–12:00 PⅩ3, PSⅩ2, SEⅩ1, DⅩ3, RCFⅩ3, GⅩ3, LSHⅩ1

13:30–17:00 PⅩ2, PSⅩ1, SEⅩ3, DⅩ3, GⅩ3, RCFⅩ1, LSHⅩ1

Day 8 8:00–12:00 LⅩ2, PⅩ3, PSⅩ3, DⅩ2, GⅩ2

13:30–17:00 LⅩ2, RCFⅩ1, DⅩ1, PⅩ3, PSⅩ1, GⅩ1

Day 9 8:00–12:00 LⅩ2, UⅩ2, RCFⅩ2, GⅩ2, LSHⅩ2

13:30–17:00 LⅩ2, UⅩ1, GⅩ1, RCFⅩ1, LSHⅩ1

Day 10 8:00–12:00 LⅩ2, DⅩ1, LSHⅩ1, PⅩ4, PSⅩ2, SEⅩ1

13:30–17:00 LⅩ2, DⅩ1, GⅩ1, LSHⅩ1, PⅩ3, PSⅩ2

Day 11 8:00–12:00 DⅩ1, RCFⅩ1, GⅩ2, LSHⅩ1, PⅩ4, PSⅩ1

13:30–17:00 RCFⅩ3, DⅩ3, GⅩ3, UⅩ2, PⅩ4, PSⅩ2, SEⅩ1

Day 12 8:00–12:00 DⅩ3, RCFⅩ3, GⅩ3, UⅩ1

13:30–17:00 DⅩ2, RCFⅩ2, GⅩ2, UⅩ1

Definition of abbreviations: D, drilling; U, ultrasonic scaling; RCF, root canal
filling; G, Grinding; P, extraction with power.
drill; PS, extraction with piezo-surgery; S, simple extraction; L, laser periodontal
treatment; LSH, low-speed handpiece.
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1.91 (�0.53) times, and the maximum could reach 5.47 times the
corresponding background level.

During ultrasonic scaling, we did not observe a significant change in
UFP concentrations, which were about 1.32 (0.39) and 0.99 (0.12) times
higher than the background and the baseline level, respectively. Among
the three extraction methods, the highest levels of UFP (mean ¼ 11,941
counts/cm3, peak ¼ 36,015 counts/cm3) were generated by extraction
with the power drill, which was 1.87 and 6.67 times their background
level, respectively (Table 3 and Fig. 5A, B). While during extraction with
piezo-surgery, the UFP levels were much lower than power drill (mean¼
8,986 counts/cm3, peak ¼ 17,092 counts/cm3, p < 0.05) (Table 3),
which was 1.49 and 2.49 times their background level (Fig. 5A, B) and
1.01 and 1.18 times the baseline level, respectively (Fig. 5C, D). During
simple tooth extraction the increase in UFP concentration was the
smallest. The average and peak values were only 5,688 counts/cm3 and
11,692 counts/cm3 respectively (Table 3), which was 0.96 and 2.23
times the background (Fig. 5A, B), and 1.02 and 1.28 times the baseline
level (Fig. 5C, D).

Figure 3 shows the comparison of the UFP concentrations when using
an HVE or low vacuum evacuator (LVE) while drilling and grinding teeth
with a high-speed handpiece. The concentration of UFP with an HVE
(mean¼ 11,024 counts/cm3, peak¼ 29,817 counts/cm3) was lower than
that with LVE (mean¼ 14,178 counts/cm3, peak¼ 62,233 counts/cm3, p
< 0.05) (Fig. 3A, C). In addition, during drilling and grinding with an
HVE, the ratio of mean or peak concentration to its background level
(1.62 and 1.87) was significantly lower than that with the LVE (2.16 and
3.09, p < 0.01) (Fig. 3B, D).

Figure 4 shows the comparison of the UFP concentrations during laser
periodontal treatment with an HVE or LVE. Although not statistically
significant (p > 0.05), the mean concentrations of UFP during laser
periodontal therapy with an LVE (26,125 counts/cm3) were much higher
4

than those with HVE (14,488 counts/cm3) (Figure 4A). Similar results
were found for the peak levels of UFP concentrations (Figure 4C). The
ratio of the mean or peak UFP concentration to its background level with
HVE (2.06 and 3.57) and LVE (3.57 and 7.17) also showed no difference
between the two conditions (p > 0.05) (Fig. 4B, D).

4. Discussion

Numerous studies have shown that dental procedures can generate
bioaerosols (Harrel et al., 2004; Micik et al., 1969; Miller et al., 1971).
In this study, we conducted a monitoring campaign to measure varia-
tions of UFP number concentrations with various operative procedures
in a real multi-chair dental clinic in Shanghai Tenth Hospital, China.
Dental care professionals are exposed to higher levels of UFP, which
may contain hazardous substances during dental procedures in daily
practice. We assessed high-level indoor UFP concentrations in the dental
clinic and found that the increased UFP concentrations were associated
with specific dental procedures. A significant increase in the level of
UFP was encountered during laser periodontal therapy, root canal
filling, drilling, and grinding of dental composites. Additionally, our
results suggest that the use of HVE can efficiently reduce the level of
UFP during the use of high-speed handpieces. The main significance is
that this is a clinical study with patients not a simulation.

The study showed that the mean concentration of outdoor UFP was
significantly higher than that inside the dental clinic. There may be two
reasons for the result. First, the high concentration of outside UFP was
due to the heavy traffic pollution because the clinic was located at the
crossroad of two arterial roads with great amounts of traffic. Further-
more, the emergency building of the hospital which is situated at the
west of the dental clinic was under construction every day during the
sample periods.

In the present study, we found that the UFP concentrations may vary
with dental treatments. Previous studies have found that laser-generated
airborne contaminants may contain bacteria, viruses, cellular debris,
particulate matter, noxious and toxic aerosols, gases, vapors, or fumes
such as hydrocarbons, acrylonitrile, fatty acids, and phenols (Hensman
et al., 1998; Bargman et al., 2011; Pierce et al., 2011). It has been
documented that laser-related dental treatments may produce UFP
(Irene et al., 2008), which could be inhaled into the air tract, deposited
in the alveoli, and further be transferred into the blood and lymph
circulation through epithelial and endothelial cells (Li et al., 2003;
Penttinen et al., 2001; Peters et al., 1997; Heinsohn et al., 1993;
Nemmar et al., 2006). In the present study, the highest levels of UFP
was observed during laser periodontal therapy with laser erbium,
chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG). This finding
is consistent with the results reported by Irene et al. (2008), who
measured the amounts of generated particulates in 'surgical smoke'
during different surgical procedures and quantified the particle con-
centration in the surgical operating room. They found a peak concen-
tration of 490,000 counts/cm3 particles in the diameter range of 10 nm
to 1 μm. However, the peak values found in this study were not as high
as those reported by Irene et al. (2008), which could be due to the use of
different types of lasers and different types of surgical procedures. La-
sers are a beneficial tool and are widely used in dentistry for soft and
hard tissue treatment, even in the SARS-Cov-2 era (Arnabat-Dominguez
et al., 2021). Based on the results, the authors suggest that high levels of
exposure to UFP may increase the potential risk of using lasers during
the daily dental practice.

To the best of our knowledge, this is one of the first studies to
quantify the exposure to UFP generated during root canal filling during
actual dental work. We observed the second highest levels of UFP
concentration (75,034 counts/cm3) during root canal filling, which was
9.75 and 7.24 times the background and baseline concentration,
respectively. During the process of root canal filling, a combination of
core material with a composition of 20% gutta-percha (GP), 56% zinc
oxide filler, 11% radio-pacifier (barium sulfate), and 3% plasticizers



Figure 2. Time series of the indoor UFP concentrations in the dental clinic during working hours. A. The concentrations of UFP in the twelve-day period; B. Example
of indoor UFP concentration profile on the seventh day, as shown by the arrow in panel A. L, laser periodontal treatment; R, root canal filling; D, drilling; G, grinding;
P, power drilling.
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(waxes or resins) (Al-Afifi et al., 2016; Belsare et al., 2015; Monteiro
et al., 2011) is obturated to the root canals. Heating the core material
above 130 �C is necessary to remove the excess material, which can
cause physical changes or degradation of GP and UFP is emitted
(Friedman et al., 1977). The operation of heating often lasts for 3–30
min, depending on the number of root canals and GP points obturated in
the canals. Hence, dentists may be exposed to the relatively high con-
centrations of UFP multiple times per day in daily practice. Because of
the limitations of the experimental conditions, we did not measure the
chemicals in the smoke generated during heating of the GP. Further
studies are needed to measure the composition of UFP during the
operation of root canal filling.

Dental composites typically contain high amounts (up to 60 vol.%) of
nano-sized filler particles (Van Landuyt et al., 2014), which may be a
source of UFP exposure for dental personnel, particularly during
grinding, finishing, and polishing composites. Evidence suggests that
dental drilling and grinding of composites fillings both with and without
the use of water results in increased particle concentrations, which could
far exceed the background levels (Liu et al., 2019; Van Landuyt et al.,
2012; Polednik et al., 2014; Lang et al., 2018; Ireland et al., 2003) with
sizes ranging from 0.01 to 0.3 μm. During grinding, the average and the
maximum concentrations of PN0.01-0.3 increased by 6.2 and 31.8 times on
average, respectively, while during drilling, they increased by 3.2 and 9.7
times, respectively (Polednik, 2014). However, the levels of UFP gener-
ated by grinding and drilling in the present study were lower than that
Polednik (2014) reported. There are four possible reasons for these dif-
ferences. First, we used water-cooling spray systems during using
grinding and drilling. Consistent with previous studies (Nimmo et al.,
1990; Van Landuyt et al., 2012, 2014), we observed that the use of water
spray and high-velocity evacuation significantly reduced patient
5

exposure to particles. Cokic et al. (2020b) found that grinding with water
spray greatly reduced UFP concentrations compared to those produced
when grinding without water-cooling spray. In any case, the amounts of
particulate matters generated in dental clinics should be kept to a mini-
mum during dental procedures. Cooling with water spray and effective
suction whenever possible are recommended when drilling and grinding
dental materials (Van Landuyt et al., 2012, 2014; Schmalz et al., 2018).
Second, the different result may be due to the different monitors and
their lower cut for PM size. Third, in the present study, an assistant was
present to assist with saliva suction during the entire treatment period.
The use of four-handed dentistry helps to reduce the intensity of aerosol
contamination (Shahdad et al., 2020). The author suggested that the
four-handed approach to all dental procedures would enhance protection
during aerosol-generating procedures, which is particularly important
during the SARS-Cov-2 pandemic. Finally, this difference may also be
partially explained by the varied indoor air relative humidity, seasons,
and background levels of UFP.

The present study also found that ultrasonic scaling produced rela-
tively low levels of UFP compared to drilling and grinding. This result
was consistent with the finding of Polednik (2014), who found that the
use of an ultrasonic scaler produced the lowest levels of the measured
particle concentrations (PN0.02-1). However, some other previous studies
have found that ultrasonic cleaning can produce large amounts of aero-
sols. Micik et al. (1969) found that air-turbine hand pieces, when used
with air-water spray coolant, generated 20 times more bacteria than air
spray alone. Harrel et al. (1996) found that the use of an ultrasonic scaler
produced the highest levels of airborne contamination with regard to
scaling. Inconsistent findings might be due to the different objectives and
methods among studies. These previous studies focused on the colony
forming unit (CFU) in bioaerosols during dental treatments; however, the
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present study measured the concentration of abiotic aerosols, especially
PM0.1, during ultrasonic scaling.

Inhalation of UFP may pose significant human health risks due to
their nanometer size range which allows UFP to relatively efficiently
penetrate the deeper parts of the lungs, cross the biological barriers to get
deeper into the body to directly harm distal organs (Sotiriou et al., 2008;
Cokic et al., 2020a; Schraufnage, 2020). Occupational exposure to high
UFP levels can cause airway inflammation, impaired lung function
(Wichmann and Peters, 2000), even cardiac events, neurodegenerative
diseases and cancer (Fang et al., 2010; Devlin et al., 2014; Downward
et al., 2018; Kawanaka et al., 2011; Tian et al., 2019). Previous re-
searches have revealed that some pathogen such as Sars-CoV-2 virus can
be transmitted via particulate matters, especially in the light of COVID-19
pandemic (Kimmerle et al., 2012; Yamada et al., 2011; Guo et al., 2020).
Therefore, protection methods are constantly emphasized. It is extremely
essential for dental workers to reduce the aerosols during routine dental
procedures.

The removal of suspended particles during dental procedures by using
an effective vacuum system and selecting optimal high-level personal
face masks for dentists and other medical staffs are important safety
measures (Liu et al., 2019). The use of saliva ejectors with low or high
volume was shown to reduce the production of droplets and aerosols in
the study of Yadav et al. (2015). Harrel et al. (1996) discussed that an
HVE device operated by an assistant or attached to the instrument being
used can decrease the level of dental aerosols. Harrel (2004) also found
that an HVE can reduce the aerosol by more than 90%. In the present
study, we observed that an HVEwas more effective in removing UFP than
an LVE during drilling and grinding, which is consistent with previous
studies (Harrel et al., 2004; Liu et al., 2019; Nulty et al., 2020; Rupf et al.,
2015). Nulty et al. (2020) observed a statistically significant difference in
the levels of PM2.5- and PM10-sized particulate with and without an
external HVE. Their study suggested that an HVE should be used along
with a high-speed handpiece. Moreover, Rupf et al. (2015) recommended
HVE to reduce patients' and dental staffs’ exposure to fine and ultrafine
airborne particles when using scanning sprays.

However, the results of this study showed no statistically significant
difference between the levels of UFP in using HVE and using LVE during
laser periodontal treatment. The result is in contrast to that of
Grzech-Le'sniak (2021) who found a significantly lower aerosol quantity
generated during crown removal using Er:YAG lasers, compared to that
in using the high-speed turbine with both HVE and saliva ejector (SE).
The present study is a clinical study in a real setting, not a simulation
study. In addition, different laser treatments were used in the two
studies. These may explain the difference. However, the result of the
current study is consistent with those of Desarda et al. (2014) and
Holloman et al. (2015). Desarda et al. (2014) found no statistically
significant difference for aerosols reduction with and without HVE
either at 12 or 20 inches from patient's oral cavity. Holloman et al.
(2015) found that neither saliva ejectors nor HVE devices could reduce
the aerosols and splatter effectively. Recently, Balanta-Melo (2020)
measured the volume fraction of aerosol particles less than 10 μm in the
dental operating room, and found that HVE could reduce the generated
particles, but not for all of them. Holliday (2021) found that the HVE
device, as other mitigation measures, cannot completely eliminate the
risk profile to dental professionals, with around 60% of particles
removal efficiency. The differences in the results might be attributed to
the differences in experimental design, HVE type, observation indicators
and dental procedures. Additionally, the size of particles generated
during the dental procedures should be considered in evaluating the
efficacy of HVE (Koch et al., 2021). Although the difference was not
statistically significant, the results showed a lower level of UFP in using
an HVE during laser periodontal therapy, compared to the levels
observed in using an LVE. More samples are needed in additional
studies under controlled experimental conditions. Furthermore, ran-
domized clinical trials concerning the effect of HVE on aerosols reduc-
tion are needed during laser dental procedures.



Figure 3. Comparison of UFP concentrations under drilling or grinding the teeth with a high-volume evacuation (HVE) or low-volume evacuation (LVE): A. the
averaged concentrations of UFP with HVE or LVE; B. the ratios of A/BG with HVE or LVE; C. the peak concentrations of UFP with HVE or LVE; D. the ratios of P/BG
with HVE or LVE. Definition of abbreviations: A, averaged concentrations of UFP; BG, the background levels of UFP concentrations; P, the peak concentrations of UFP;
*: p < 0.05, significant; **: p < 0.01, much significant.

Figure 4. Comparison of UFP concentrations under laser periodontal treatment with an HVE or LVE: A. the averaged concentrations of UFP with HVE or LVE; B. the
ratio of averaged concentrations of UFP to the background level of UFP with an HVE or LVE; C. the peak concentrations of UFP with an HVE or LVE; D. the ratio of peak
concentrations of UFP to the background concentrations of UFP with an HVE or LVE. Definition of abbreviations: A, averaged number concentrations of UFP; BG, the
background levels of UFP concentrations; P, the peak concentrations of UFP.
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Therefore, besides an HVE, a plume scavenging system (suction
nozzle within 5 cm from the treatment site) with high-efficiency partic-
ulate air filters (HEPA) or ultra-low penetration air filters (ULPA) should
also be warranted (Sullivan et al., 2021; Liu et al., 2020; Bargman et al.,
2011). In addition, a laser-related N95/P2 mask should be considered
during the dental procedures, especially during the pandemic of
SARS-CoV-2 (Sullivan et al., 2021).

Some limitations should be considered when interpreting of findings.
First, this study may not cover all types of dental operative procedures
7

(i.e., polishing) which may also generate UFP. Second, we did not assess
the bioaerosols levels simultaneously. Thus, we could not assess the risk
of exposure to microorganisms as well as the high levels of UFP. Third,
notice that our measurement might miss the portion of UFP less than
10nm, given that the instrument of NanoTracer measures the particles
ranging from 10nm to 300nm. Finally, the study did not consider the
influence of air conditioner and ventilation to the levels of UFP. We
suggest future studies on aerosols reduction in larger areas with HVE
efficacy evaluation.



Figure 5. Comparison of the averaged concentrations of UFP to the background concentrations with different extraction methods; A. the A/BG ratio of the UFP concentration; B. the P/BG ratio of the UFP concentration;
C. the A/BL ration of the UFP concentration; D. the P/BL ratio of the UFP concentration; Definition of abbreviations: P, power drilling; BL, the baseline levels of UFP concentrations; PS, piezo-surgery; SE, simple extraction;
*: p < 0.05, significant; **: p < 0.01, much significant; NS, not significant.
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5. Conclusions

In this study, we found that many dental procedures can generate
high concentrations of UFP in dental clinics, such as laser periodontal
treatment, root canal filling, drilling, and grinding dental composites.
Exposure to the high concentrations of particulate matter may have a
significant health impact on the dental workers and patients. HVE can be
used to help decrease the concentrations of UFP.
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