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Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic
generalized epilepsies and the potential underlying mechanism for phenotypic variation.

Methods: Whole-exome sequencing was performed in a cohort of 88 patients with
idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant
N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined
using two-electrode voltage-clamp recordings. The alterations of protein expression
were detected by immunofluorescence staining and biotinylation. Previous studies
reported that epilepsy related GRIN2A missense mutations were reviewed. The
correlation among phenotypes, functional alterations, and molecular locations was
analyzed.

Results: Three novel heterozygous missense GRIN2A mutations
(c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W)
were identified in three unrelated cases. Electrophysiological analysis demonstrated
R1067W significantly increased the current density of GluN1/GluN2A NMDARs.
Immunofluorescence staining indicated GluN2A mutants had abundant distribution in
the membrane and cytoplasm. Western blotting showed the ratios of surface and total
expression of the three GluN2A-mutants were significantly increased comparing to
the wild type. Further analysis on the reported missense mutations demonstrated that
mutations with severe gain-of-function were associated with epileptic encephalopathy,
while mutations with mild gain of function were associated with mild phenotypes,
suggesting a quantitative correlation between gain-of-function and phenotypic
severity. The mutations located around transmembrane domains were more frequently
associated with severe phenotypes and absence seizure-related mutations were mostly
located in carboxyl-terminal domain, suggesting molecular sub-regional effects.

Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic
gene of idiopathic generalized epilepsies. The functional quantitative correlation and the
molecular sub-regional implication of mutations helped in explaining the relatively mild
clinical phenotypes and incomplete penetrance associated with GRIN2A variants.

Keywords: GRIN2A gene, N-methyl-D-aspartate receptors, gain of function, sub-regional effect, idiopathic
generalized epilepsy
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INTRODUCTION

Idiopathic generalized epilepsies (IGEs) (G40.3 in ICD-10 2016,
WHO), also known as genetic generalized epilepsies (GGE,
OMIM# 600669), are a group of self-limited epileptic syndromes
characterized by recurring generalized seizures without any
underlying anatomic or neurological abnormality (Berrin et al.,
2015; Scheffer et al., 2017; Collaborative, 2019). Idiopathic
generalized epilepsies include juvenile myoclonic epilepsy (JME),
juvenile absence epilepsy (JAE), childhood absence epilepsy
(CAE), and epilepsy with generalized tonic-clonic seizures alone
(EGTCS) (Engel and International League Against Epilepsy
[ILAE], 2001). Generally, IGEs were regarded as a group of
genetically determined disorders (Mullen and Berkovic, 2018).
Monogenic abnormalities only account for 2–8% of IGEs (Weber
and Lerche, 2008; Prasad et al., 2013). Exome-based genetic
screening studies have demonstrated that over twenty genes
were associated with IGEs, such as CACNA1H, CACNB4, CASR,
CHD4, CLCN2, EFHC1, GABRD, GABRA1, GABRG2, GABRB3,
HCN2, KCC2, KCNMA1, RORB, SCN1A, SLC12A5, SLC2A1,
RYR2, and THBS1 (DiFrancesco et al., 2011; Striano et al., 2012;
Kahle et al., 2014; Rudolf et al., 2016; Santolini et al., 2017; Wang
et al., 2017; Abou El Ella et al., 2018; Li et al., 2018; Yap and
Smyth, 2019; Chan et al., 2020; Liu et al., 2021). Recent studies
also identified several copy number variants associated with
IGEs, such as duplication at 8q21.13-q22.2 and microdeletions
at 1q21.1, 15q11.2, 15q13.3, and 16p13.11 (de Kovel et al., 2010;
Kirov et al., 2013; Møller et al., 2013; Jähn et al., 2014; Rezazadeh
et al., 2017). Clinically, genetic etiologies in majority of the cases
with IGEs remain unknown. On the other hand, although IGEs
were generally considered as genetic epileptic syndromes, big
pedigrees of IGEs were rare. Variants with incomplete penetrance
in IGEs-associated genes are common.

GRIN2A gene (OMIM∗ 138253), encoding GluN2A subunit of
N-methyl-D-aspartate receptors (NMDARs), is comprehensively
expressed in human cerebral cortex since embryonic period1 and
plays a critical role in excitatory synaptic transmission, plasticity
and excitotoxicity in the mammalian central nervous system
(Bar-Shira et al., 2015; Bagasrawala et al., 2017). Previously,
GRIN2A mutations were found to be mainly associated with
idiopathic focal epilepsy with incomplete penetrance (Carvill
et al., 2013; Lemke et al., 2013; Lesca et al., 2013) and occasionally
with epileptic encephalopathy (EE) (Venkateswaran et al., 2014;
Yuan et al., 2014). So far, no GRIN2A mutation has been
identified in patients with IGEs.

In the present study, trio-based whole-exome sequencing
was performed in a cohort of patients with IGEs. Three novel
missense mutations in GRIN2A gene were identified. Further

Abbreviations: NMDAR, N-methyl-D-aspartate receptor; ATD, amino-terminal
domain; LBD, ligand-binding domain; TMD, transmembrane domains;
CTD, carboxyl-terminal domain; LOF, loss of function; GOF, gain of function;
GTCS, generalized tonic-clonic seizure; IGE, idiopathic generalized epilepsy;
JME, juvenile myoclonic epilepsy; JAE, juvenile absence epilepsy; CAE, childhood
absence epilepsy; EGTCS, epilepsy with generalized tonic-clonic seizures alone;
BECTS, benign epilepsy with centro-temporal spikes; LKS, Landau-Kleffner
syndrome; CSWSS, continuous spikes and waves during slow sleep; EE, epileptic
encephalopathy.
1https://www.proteinatlas.org/ENSG00000183454-GRIN2A/tissue

studies showed that the missense mutations led to gain of
function of NMDARs and/or increased membrane protein
expression. To understand the underlying molecular mechanism
for phenotypic variation, the correlations between the functional
alterations and phenotypic severity, and the sub-regional effect of
missense mutations were analyzed.

MATERIALS AND METHODS

Subjects
A total of 88 patients with IGEs, including 47 patients with
JME, 15 with JAE, 12 with CAE, and 14 with EGTCS,
were recruited in Epilepsy Center of the Second Affiliated
Hospital of Guangzhou Medical University from February
2013 to December 2018. Patients with IGEs were diagnosed
according to the classification of epilepsy and epileptic syndromes
by International League Against Epilepsy (Commission on
Classification and Terminology of the International League
Against Epilepsy, 1989; Engel and International League Against
Epilepsy [ILAE], 2001; Helbig, 2015; Scheffer et al., 2017). The
collected clinical data included semiology and evolution of the
disorders, family history, and the data of treatment. The patients
with abnormalities of general and/or neurological examinations
were excluded. Video-electroencephalogram (EEG) monitoring
recordings that included hyperventilation, intermittent photic
stimulation, and sleep recordings were obtained to confirm the
diagnosis of IGEs. The patients were included if they had at
least one subtype of generalized seizures (including primarily
generalized tonic-clonic seizure, myoclonic, and absence seizure)
but no partial seizure. Their electroencephalogram (EEG) was
characterized by generalized discharges of 3–6 Hz or faster
on normal background. Brain magnetic resonances, cognitive
and behavioral evaluation, and neurometabolic testing were
performed to exclude symptomatic epilepsy. The patients have
no or little cognitive impairment and neurodevelopmental
comorbidities were included (Helbig, 2015).

The studies adhered to the guidelines of the International
Committee of Medical Journal Editors with regard to patient
consent for research or participation and received approval
from the Ethics Committee of the Second Affiliated Hospital of
Guangzhou Medical University (2021-hs-06).

Trio-Based Whole-Exome Sequencing
and Mutation Analysis
Blood samples of the probands and their biological parents
were collected. Genomic DNA was extracted. Trio Whole
Exome Sequencing (Trio-WES) was conducted as previously
reported (Wang et al., 2018). Population-based filtration removed
common variants presenting a minor allele frequency ≥ 0.005
in genome aggregation database (gnomAD). The potential
disease-causing mutations were screened under five models,
namely, epilepsy-associated gene model, dominant or de novo
model, autosomal recessive inheritance model, X-linked model,
and co-segregation analysis model. The candidate variants
were validated by Sanger sequencing. Conservation of mutated
positions was evaluated using sequence alignment of different
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species. All GRIN2A mutations were annotated based on the
transcript NM_000833.4.

To evaluate the damaging effect ofGRIN2Amutations, protein
modeling was performed using Iterative Threading ASSEmbly
Refinement (I-TASSER) software (Yang and Zhang, 2015; Zhang
et al., 2017). The confidence of each modeling was quantitatively
measured by C-score of -1.72. The three-dimensional structures
were shown using PyMOL 1.7.

cDNA Construction, Cell Culture, and
Transfection
Rat GluN2A-K590, GluN2A-K879, and GluN2A-R1067 cDNA
mutants were generated from the plasmid pcDNA3.1+-GluN2A
by the site-directed mutagenesis kit, KOD-Plus-Neo (KOD-
401, TOYOBO). As described in a previous study (Luo et al.,
2002), the N-terminal GFP-tagged versions (GFP-GluN2A-
K590N, GFP-GluN2A-K879R, and GFP-GluN2A-R1067W) were
constructed using the GFP-GluN2A plasmid as a template. All
these expression constructs were verified by DNA sequencing.
Human embryonic kidney (HEK) 293 and 293T cells were
grown in Dulbecco’s modified eagle medium (11995065, Gibco),
supplemented with 10% fetal bovine serum (10099141, Gibco)
and 1% penicillin and streptomycin (10378016, Gibco) in
a humidified atmosphere of 5% CO2 at 37◦C. Appropriate
plasmids (2–4 µg per 35-mm dish) were transfected into
the cells using the Lipofectamine 2000 Reagent (11668019,
Invitrogen), according to the instructions of the manufacturer.
To avoid NMDARs-mediated toxicity, 200 µM D, L-2-amino-
5-phosphonovaleric acid (A8054, Sigma, United States) and
1 mM kynurenic acid (K3375, Sigma) were added to the
culture medium. All experiments were performed in accordance
with United Kingdom Animal Scientific Procedures Act (1986)
following local ethical review (2021-hs-06).

Whole-Cell Recordings and
Immunofluorescence Analysis
Whole-cell current recordings were performed as previously
described (the details listed in Supplementary Data 1) (Xu
et al., 2018). Surface immunofluorescence staining has been
described previously (Luo et al., 2002). Twenty-four hours after
GluN1-1a/GFP-GluN2A or GluN1-1a/GFP-GluN2A-mutant
cDNAs transfection, HEK293 cells were rinsed once with PBS,
incubated with rabbit anti-GFP antibody (Chemicon) for 7 min
subsequently. After rinsing three times, cells were incubated with
secondary antibody (A11010, Invitrogen) for another 7 min.
Cells were immediately fixed with 4% paraformaldehyde for
10 min following three washes. Images were acquired with a
fluorescence microscope (BX51, Olympus) and analyzed using
the MetaMorph image analysis software (Universal Imaging,
West Chester, PA, United States). Red signal outlined around the
transfected HEK 293 cells represented surface expression, and
green signal represented intracellular expression.

Cell Surface Biotinylation
HEK293T cells were incubated for 48 h after transfection
and collected for extraction of total and surface protein.

For total protein, cells were extracted using lysis buffer
(FNN0021, Thermo Fisher Scientific), containing 1%
phenylmethylsulfonyl fluoride and protease inhibitor cocktail
(87786, Thermo Fisher Scientific). For surface protein, cells were
permeabilized with permeabilization buffer (87786, Thermo
Fisher Scientific, United States) supplemented with protease
inhibitor cocktail (87786, Thermo Fisher Scientific). Surface
protein was solubilized with solubilization buffer including
protease inhibitor cocktail. The concentration of protein was
measured using Bicinchoninic Acid (BCA) Protein Assay
(23225, Thermo Fisher Scientific, United States). Equivalent
amounts of the protein (200 µg for surface protein and 100 µg
for total protein) was resolved over 7.5% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, and transferred to
polyvinylidene difluoride membrane (0.2 µm, 1620177, BIO-
RAD, United States). The membranes were blocked within 5%
non-fat milk for 2 h at room temperature and then incubated,
respectively, with anti-GluN2A (1:4,000, ab124913, Abcam,
United Kingdom), anti-β-actin (1:4,000, Proteintech, China),
and anti-ATP1A1 (1:20,000, 14418-1-AP, Proteintech, China)
antibodies at 4◦C overnight. After washing the membranes in
the mixture of tris-buffered saline and Tween 20 three times,
the membranes were incubated with corresponding secondary
antibodies for 2 h. Blots were representative of five independent
experiments with similar results. Positive signals were analyzed
by using ImageJ (National Institutes of Health, Bethesda,
DC, United States).

Analysis of Effect of GRIN2A Mutation
and Phenotypic Variation
In an attempt to investigate the mechanism for phenotypic
variation, epilepsy-related GRIN2A missense mutations and
their corresponding phenotypes were systematically retrieved
from the PubMed database using “GRIN2A” and “epilepsy”
as search terms until December 2019. All GRIN2A mutations
were annotated based on the transcript NM_000833.4. The
functional alterations of the missense mutations were reviewed
based on the results coming from two electrode voltage clamp
recordings. The severity of functional changes was ranked based
on the results of glutamate potency and response to Mg2+

block, and simultaneously referred to other electrophysiological
evaluation indicators, such as current density, glycine potency,
and protein expression, etc. The severity was classified into (1)
severe functional alteration that was of equal to or more than
five-fold increase or decrease of the glutamate potency and/or
Mg2+ block or other minor functional changes, (2) intermediate
functional alteration that was of more than two-fold and less
than five-fold increase or decrease of the glutamate potency
and/or Mg2+ block, and (3) mild functional alteration that was
defined as less than or equal to two-fold increase or decrease
of the glutamate potency and/or Mg2+ block in the mutations
comparing to the wild type.

The phenotypes were divided into (1) severe phenotype,
i.e., EE, (2) intermediate phenotype, including atypical benign
partial epilepsy, Landau-Kleffner syndrome (LKS), continuous
spikes and waves during slow sleep (CSWSS), myoclonic-astatic

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 October 2021 | Volume 14 | Article 720984

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-720984 October 8, 2021 Time: 16:29 # 4

Liu et al. Generalized Epilepsies and GRIN2A Mutations

epilepsy, and focal epilepsy, and (3) mild phenotype that included
benign epilepsy with centro-temporal spikes (BECTS) and IGEs.

Statistical Analysis
All data values were expressed as mean ± SEM derived from at
least three separate transfections. Graphpad Prism software and
Statistical Package for the Social Sciences (SPSS) software were
used for statistical analysis. The frequencies of GRIN2A variants
in the cohort of IGEs and those in the general population were
compared by two-sided Fisher’s exact test. Whole-cell current
density and surface expression levels between wild-type and
mutant receptors were compared by unpaired t-test. EC50 values
between wild-type and mutant receptors (K590N, K879R, and
R1067W) were compared by one-way ANOVA with Bonferroni
post hoc multiple comparison test. The proportions of severe
and mild phenotypes in different domains were compared by
Pearson’s chi-square test. A P value of < 0.05 was considered to
be statistically significant.

RESULTS

Identification of GRIN2A Mutations
Three novel inherited heterozygous missense GRIN2A mutations
were identified in two unrelated sporadic cases and one family
with IGEs (Figures 1A,B). Mutation c.1770A > C/p.K590N was
identified in a case with JME, mutation c.2636A > G/p.K879R
in a case with JAE, and mutation c.3199C > T/p.R1067W in
two individuals in a family with CAE and unclassified IGE,
respectively (Table 1). Mutations K590N and K879R presented
at a minor allele frequency of 0.00002849 and 0.0002 in general
population in gnomAD database, respectively, while mutation
R1067W was not observed in gnomAD database. A statistical
analysis showed that the frequency of the GRIN2A variants in
the present cohort of IGEs was significantly higher than that in
the general population or East-Asian population (in gnomAD)
(3/176 vs. 67/282366 in general population, p = 0.000002, and
3/176 vs. 67/19946 in East-Asian population, p = 0.003625;
Table 2). Mutations K590N, K879R, and R1067W were predicted
to be damaging or probably damaging by 6, 14, and 18 out of
the 25 in silico prediction tools, respectively (Supplementary
Data 2). The amino acid sequence alignments showed that
residues K590, K879, and R1067 were highly conserved across
vertebrates (Figure 1C), indicating an important role of these
residues in NMDARs functions. All cases had no other
pathogenic or likely pathogenic mutations in genes known to be
associated with seizure disorders.

The mutation K590N was located in the intracellular domain
and close to M2 domain, while the mutations K879R and
R1067W were located in the carboxyl-terminal domain (CTD)
(Figures 2A,B). The alterations of hydrogen bonds caused by
the missense variants were further analyzed by protein modeling
using Iterative Threading ASSEmbly Refinement (I-TASSER).
Originally, residue K590 formed a hydrogen bond with residue
L588. When lysine was replaced by asparagine at residue 590,
the hydrogen bond was destroyed (Figure 2C). Residue K879
formed hydrogen bonds with residues H875, E877, K881, and

S882, respectively. When lysine was replaced by arginine, the
hydrogen bonds between residues E877 and K881 were broken,
and the hydrogen bonds between H875 and S882 were preserved
(Figure 2C). Residue R1067 formed two hydrogen bonds with
N1076, and one hydrogen bond with T1064 and T1069 each.
When arginine was replaced by tryptophan, the hydrogen
bonds between N1076 and T1064 were destroyed, and only
the hydrogen bond with T1069 were preserved (Figure 2C).
The evidences indicated the mutations may alter the protein
local conformation.

Clinical Features of the Patients With
GRIN2A Mutations
All affected cases showed childhood or adolescence-onset
generalized epilepsy. Their clinical features were summarized in
Table 1.

The patient with mutation K590N was a 20-year-old female
with no family history of epilepsy and febrile seizures. She had the
first generalized tonic-clonic seizure (GTCS) at the age of 11 years
old. Thereafter, she had clusters of myoclonic jerks approximately
2–3 times per week. The video-EEG monitoring obtained at the
age of 14 years old demonstrated intermittent high voltage 3–5 Hz
generalized spike and polyspike-and-waves (Figure 3A). She was
diagnosed as JME with myoclonic seizures and GTCSs, and was
seizure free on lamotrigine 75 mg/day at 15 years old. The EEG
obtained at the age of 15 years old showed that the epileptiform
discharges dramatically decreased.

The patient with mutation K879R was a 27-year-old male
with negative family history of epilepsy and febrile seizures.
He had frequent absence seizures and one GTCS at the age of
13 years. The Video-EEG monitoring recorded frequently regular
high voltage generalized 3 Hz spike-and-waves (Figure 3B-1)
and occasionally bilateral frontal synchronous spike-and-waves
(Figure 3B-2). He was diagnosed as JAE with typical absence
seizures and GTCS. He was seizure free at 22 years old with
the combination of valproate acid 500 mg/day, lamotrigine
200 mg/day, and levetiracetam 625 mg/day. The EEG returned
to normal by 25 years old.

The family with mutation R1067W had two affected
individuals. The proband was a 10-year-old girl, who was found
to have repeated daily episodes of staring spells for about 10 s at
5 years old. The EEG obtained at 5 years old showed intermittent
high voltage generalized 3 Hz spike-and-waves (Figure 3C-
1) and bilateral independent centro-temporal spike-and-waves
(Figure 3C-2). Frequent episodes of typical absence seizures
were recorded. She was on valproate 18 mg/kg/day and seizure
free for 5 years. The EEG obtained at 10 years old still showed
epileptic discharges in left or right centro-temporal regions,
but no focal seizure was found. The other patient was the
proband’s cousin, an 8-year-old boy, appearing daily myoclonic
and atonic seizures since he was 3 years old. He had mild speech
delay, cognitive disabilities, and autistic tendencies. The EEG
obtained at 3 years old showed high voltage irregular 2.5–3.5 Hz
generalized polyspike-and-wave discharges (Figure 3D) and focal
discharges in bilateral fronto-centro regions. He was diagnosed
as unclassified IGE and was seizure free with the combination
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FIGURE 1 | Genetic data about GRIN2A mutations. (A) Pedigrees of the three cases with GRIN2A mutations and their corresponding phenotypes. (B) DNA
sequence chromatogram of the GRIN2A mutations. Arrows indicate the positions of the mutations. (C) The amino acid sequence alignment of the three mutations
shows that residues K590, K879, and R1067 were highly conserved across vertebrates. JME, juvenile myoclonic epilepsy; JAE, juvenile absence epilepsy; CAE,
childhood absence epilepsy; IGE, idiopathic generalized epilepsy.

of valproate (25 mg/kg/day) and lamotrigine (3.5 mg/kg/day)
by the age of six.

Biophysiological Features of
GluN2A-Mutants
To examine the functional changes of NMDARs caused
by the mutants, electrophysiological experiments were
conducted. As shown in Figures 4A,B, the average current
density of GluN1/GluN2A-K590N NMDARs was similar to
GluN1/GluN2A-WT NMDARs (143.1 ± 12.19 pA/pF, n = 13
vs. 138.1 ± 12.75 pA/pF, n = 15; p > 0.05). The average
current density of GluN1/GluN2A-K879R NMDARs was
slightly increased but not statistically significant from that of
GluN1/GluN2A-WT NMDARs (143.4 ± 10.85 pA/pF, n = 12 vs.
130.9 ± 19.51 pA/pF, n = 10; p > 0.05; Figures 4A,C). However,
the current density of GluN1/GluN2A-R1067W NMDARs
was 31% higher than that of the wild type (185.6 ± 15.59
pA/pF, n = 13 vs. 141.6 ± 12.32 pA/pF, n = 12; p < 0.05;

Figures 4A,D), suggesting a gain-of-function effect for
GluN1/GluN2A-R1067W NMDARs.

To test whether the mutants change glutamate sensitivity of
NMDARs, glutamate concentration-response assessments were
performed. None of these mutants was revealed alteration in
glutamate potency of NMDARs. The half-maximally effective
concentration (EC50) was similar between GluN1/GluN2A-WT
and mutant NMDARs (n = 6, p > 0.05; Figure 4E).

Immunofluorescence staining was performed to analyze the
effect of mutants on cellular distribution of NMDARs. As
shown in Figure 5A, all NMDARs with GluN2A mutants had
abundant distribution in the membrane and cytoplasm as that
of GluN1/GluN2A WT NMDARs. Biotinylation was conducted
to assess the protein expression level. Compared to the wild type,
both the total and surface expression levels of GluN2A-mutants
NMDARs were significantly increased (Figures 5B,C; p < 0.01),
and the ratios of surface and total expression of GluN2A-mutants
were also higher than that of wild type (p < 0.05).
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TABLE 1 | Clinical manifestations of the cases with GRIN2A mutations.

Case 1 Case 2 Case 3-1 Case 3-2

Mutation c.1770A>C/p.K590N c.2636A>G/p.K879R c.3199C>T/p.R1067W c.3199C>T/p.R1067W

Phenotype JME JAE CAE MAE

Gender Female Male Female Male

Age (year) 20 27 10 8

Age of onset (year) 11 13 5 3

Seizure types Myoclonic, GTCS Absence, GTCS Absence, GTCS Myoclonic, atonic

Intelligence and
development

Normal Normal Normal Mild language and cognitive
disabilities, autistic tendency

EEG findings 3-5 Hz generalized
spike-waves and
polyspike-waves

3 Hz generalized
spike-waves and bi-frontal

spike-waves

3 Hz generalized spike-waves and
bi-centrotemporal spike-waves

2.5-3.5Hz generalized spike-waves
and bi-frontocentral spike-waves

Brain MRI Normal Normal Normal Normal

Treatment LTG VPA, LTG VPA VPA, LTG

Prognosis Seizure free Seizure free Seizure free Seizure free

MAF in ExAC 0.00002849 0.0002 - -

JME, juvenile myoclonic epilepsy; JAE, juvenile absence epilepsy; CAE, childhood absence epilepsy; MAE, myoclonic-astatic epilepsy; GTCS, generalized tonic-clonic
seizure; LTG, lamogrigine; VPA, valproic acid.

TABLE 2 | Gene-based burden analysis for GRIN2A mutations identified in this study.

Allele
count/number
in this study

Allele count/number
in gnomAD-all

populations

Allele count/number in
gnomAD-East Asian

populations

Allele count/number in
controls of gnomAD-all

populations

Allele count/number in
controls of

gnomAD-East Asian
populations

Identified GRIN2A mutations

Chr16: 9927969: c.1770A>C/p.K590N 1/176
(0.00568)

10/282366
(0.00003542)

10/19950 (0.0005013) 6/120276 (0.00004989) 6/9960 (0.0006024)

Chr16: 9858765: c.2636A>G/p.K879R 1/176
(0.00568)

57/282532 (0.0002017) 57/19946 (0.002858) 27/120275 (0.0002245) 27/9956 (0.002712)

Chr16:9858202: c.3199C>T/p.R1067W 1/176
(0.00568)

–/– –/– –/– –/–

Total 3/176
(0.01705)

67/282366
(0.00002373)

67/19946 (0.003359) 33/120275 (0.00002743) 33/9956 (0.003315)

p value 0.000002 0.003625 0.000003 0.003766

OR (95% CI) 45.877–482.033 3.230–33.947 38.700–427.351 3.193-35.272

p values and odds ratio were estimated with 2-sided Fisher’s exact test.
CI, confidence interval; gnomAD, Genome Aggregation Database; OR, odd ratio.

Effect of GRIN2A Mutation and
Phenotypic Variation
In order to understand the mechanism underlying phenotypic
variations, all reported epilepsy-related GRIN2A missense
mutations and their functional alterations were reviewed
(Supplementary Data 3).

To date, 71 epilepsy-related missense mutations were
reported. Electrophysiological tests were performed in 35
mutations previously (Endele et al., 2010; de Ligt et al., 2012;
Carvill et al., 2013; DeVries and Patel, 2013; Lemke et al., 2013;
Lesca et al., 2013; Conroy et al., 2014; Venkateswaran et al., 2014;
Yuan et al., 2014; Fainberg et al., 2016; Retterer et al., 2016; Serraz
et al., 2016; Singh et al., 2016; Swanger et al., 2016; Monies et al.,
2017; von Stulpnagel et al., 2017; Dazzo et al., 2018; Hesse et al.,
2018; Lindy et al., 2018; Lionel et al., 2018; Miao et al., 2018; Xu
et al., 2018; Yang et al., 2018; Snoeijen-Schouwenaars et al., 2019;

Strehlow et al., 2019). Among the 35 tested mutations, 10
mutations were demonstrated to cause gain of function (GOF),
16 mutations led to loss of function (LOF), and 9 mutations
had no detectable electrophysiological changes in the aspects
investigated.

Since the consequence of the mutations in the present
study was GOF of NMDARs featured by increased current
density and surface expression of protein, the correlation
between GOF and phenotypic severity was analyzed. The detailed
electrophysiological alterations and phenotypes were listed in
Table 3 (Endele et al., 2010; Lemke et al., 2013; Yuan et al.,
2014; Swanger et al., 2016; Chen et al., 2017; Ogden et al., 2017;
Xu et al., 2018; Marwick et al., 2019a; Bertocchi et al., 2021).
Three mutations (P552R, M817V, and L812M) significantly
increased glutamate potency and glycine potency by over five-
fold, and one mutation (N615K) led to a complete loss of
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FIGURE 2 | The alterations of hydrogen bonds with surrounding amino acids. (A) The locations of missense mutations in topological structure of GluN1/GluN2A.
Residue K590N in GluN2A lies within the channel pore of the NMDAR, while residues K879R and R1067W lie in carboxyl-terminal domain. Mutation K590N was
colored in red, mutation K876R was colored in green, and mutation R1067W was colored in blue. (B) Schematic illustration of the location of mutations in the
three-dimensional structure of GluN2A. (C) Alterations of hydrogen bonds with surrounding amino acids. In wild type, residue K590 forms one hydrogen bond with
L588. In the mutant, this hydrogen bond was destroyed. In wild type, residue K879 forms hydrogen bonds with H875, E877, K881, and S882 while in the mutant,
the hydrogen bonds with E877 and K881 were destroyed. In wild type, residue R1067 forms hydrogen bonds with T1064, T1069, and N1076 while in the mutant,
only hydrogen bond with T1069 was kept.

Mg2+ blocker. The GOF of the four mutations were classified
as severe, and the associated phenotypes were severe epilepsies,
including two cases with early-onset epileptic encephalopathy
and two with refractory epilepsy with severe developmental delay.
Two mutations presented intermediate GOF. Mutation V452M
caused 3.4-fold increase of glutamate potency and was associated
with early infantile epileptic encephalopathy. Mutation K669N
caused 3.1-fold increase of glutamate potency and was associated
with intermediate phenotype CSWSS. Four mutations (N447K,
V506A, P699S, and A243V) caused mild GOF, all of which
were associated with mild phenotypes, including three cases
with BECTS and one with unclassified epilepsy with incomplete
penetrance. Three mutations identified in the study caused mild
GOF or increased the expression of membrane protein, all of
which were all associated with IGEs, which was classified as mild
phenotype. This evidence indicated a quantitative correlation
between the degree of GOF and the severity phenotype.

In previous studies, sixteen mutations were presented as LOF.
Specifically, seven mutations were classified as severe featured
by over five-fold decreased glutamate potency or complete
trafficking defect (Supplementary Data 4; Swanger et al., 2016;
Addis et al., 2017; Gao et al., 2017; Ogden et al., 2017; Strehlow
et al., 2019), of which mutation V685G was associated with EE
and the rest were associated with intermediate phenotypes. Four
mutations were classified as intermediate LOF, and all associated

with intermediate phenotypes. The remaining five mutations
were ranked as mild LOF, of which three mutations (A727T,
V734L, and R370W) were associated with BECTS. Thus, there
was a tendency of correlation between the degree of LOF and
phenotype severity. However, no definite conclusion could be
drawn because majority of mutations with LOF were associated
with intermediate phenotypes.

Nine mutations presented no detectable nor statistically
significant alterations in the electrophysiological aspects
examined (Supplementary Data 2).

There was no difference in phenotypic spectrum between the
mutants with GOF and those with LOF. Electrophysiological
alteration appeared not to be the only explanation for phenotypic
variation. The previous study indicated that the molecular sub-
regional location of mutations was associated with the damaging
effects and, subsequently, the phenotypic severity (Tang et al.,
2019). The relationship between the molecular sub-regional
location of GRIN2A mutations and the severity of phenotype was
therefore analyzed.

The epilepsy-related missense mutations were scattered
over all domains of GluN2A except M1 helix (Figure 6A).
The mutations located around the transmembrane
domains (TMD) were more frequently associated with
EE than those in amino- terminal domain (ATD) and
ligand-binding domain (LBD) (Figure 6B), suggesting a
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FIGURE 3 | Electroencephalogram changes in the cases with idiopathic generalized epilepsy with GRIN2A mutations. (A) Interictal EEG for the patient with juvenile
myoclonic epilepsy with mutation K590N obtained at the age of 14 years showed high-voltage generalized 3.5 Hz polyspike-and-waves. (B) Interictal EEG for the
case with juvenile absence epilepsy with mutation K879R obtained at the age of 13 years showed 3–3.5 Hz spike- and -waves (B-1) and interictal bilateral frontal
focal spikes (B-2). (C) EEG for the patient with CAE with mutation R1067W obtained at the age of 5 years. The ictal EEG showed regular high voltage 3–3.5 Hz
spike- and -waves with typical absence seizure (C-1). The interictal EEG showed bilateral centro-temporal spikes during sleep (C-2). (D) The interictal EEG of the
patient with unclassified IGE with mutation R1067W obtained at the age of 3 years showed irregular spike-and-waves. EEG, electroencephalogram.

molecular sub-regional effect. Previously, four patients
with missense mutations had absence seizures, although
they were diagnosed as LKS, CSWSS, and EE, respectively
(Lemke et al., 2013; Lesca et al., 2013). Three of the four

mutations were located in CTD. In this study, absence
seizure-related mutations were also located in CTD. These
data suggested a potential association between absence
seizures and CTD.
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FIGURE 4 | Electrophysiological functional alterations of GluN2A-mutant NMDARs. (A) Representative current traces of GluN1/GluN2A-WT, GluN2A-K590N,
GluN2A-K879R, and GluN2A-R1067W NMDARs evoked by 20 µM glycine and 100 µM glutamate (current scale bar, 1 nA; time scale bar, 2 s). (B) Quantitative
analysis of whole-cell current density of GluN2A-WT (n = 15) and GluN2A-K590N (n = 13) NMDARs (Student’s t-test, p > 0.05). (C) Quantitative analysis of
whole-cell current density GluN2A-WT (n = 10) and GluN2A-K879R (n = 12) NMDARs (Student’s t-test, p > 0.05). (D) Quantitative analysis of whole-cell current
density of GluN2A-WT (n = 12) and GluN2A-R1067W (n = 13) NMDARs (Student’s t-test, *p < 0.05). (E) Glutamate concentration-response curves of
GluN1/GluN2A-WT (black open circles, n = 6), GluN2A-K590N (red squares, n = 6), GluN2A-K879R (green triangles, n = 6), and GluN2A-R1067W (blue triangles,
n = 6) NMDARs (One-way ANOVA with Bonferroni post hoc multiple comparison test, p > 0.05). NMDAR, N-methyl-D-aspartate receptors.

DISCUSSION

The GRIN2A gene has been demonstrated to be associated with
idiopathic focal epilepsy and EE. In the present study, three
novel missense GRIN2A mutations were identified in unrelated
cases with IGEs. These mutations presented significantly higher
frequency in the case cohort than in general populations.

Experimental studies demonstrated that these mutations caused
mild GOF of NMDARs or expression alterations of GluN2A.
Further analysis showed that the phenotypic severity was
correlated with the degree of GOF and sub-regional locations.
This study suggested that GRIN2A gene was potentially a
candidate pathogenic gene of IGEs and would help understand
the pathogenesis of IGEs.
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FIGURE 5 | Surface and total expression of GluN2A-WT and GluN2A-mutant NMDARs detected by immunofluorescence staining and biotinylation. (A) Surface (red,
upper row) and intracellular (green, lower row) expression of GluN1/GluN2A-WT or mutant NMDARs in HEK 293 cells. (B) Western blot detected the total and
surface protein expression of GluN2A-WT, GluN2A-K590N, GluN2A-K879R, and GluN2A-R1067W NMDARs. (C) Quantitative analysis of the total and surface
expression of GluN2A-WT and GluN2A-mutants NMDARs and their corresponding ratio of the surface/total expression as shown in panel (B) (n = 5. One-way
ANOVA with Bonferroni post hoc multiple comparison test, *P < 0.05; **P < 0.01). NMDAR, N-methyl-D-aspartate receptors.

The gene GRIN2A encodes GluN2A, a subunit of NMDARs,
which are excitatory glutamate-gated channels with high Ca2+

permeability. GRIN2A is broadly expressed in multiple regions
of the brain, including the cortex, cerebellum, and hippocampus
since the embryonic period and is gradually increased during
human development (Bar-Shira et al., 2015; Bagasrawala et al.,
2017). A similar expression pattern was observed in rats (Sheng
et al., 1994; Goebel and Poosch, 1999). GluN2A is critical for the
formation and maturation of excitatory synapses and neuronal
circuits (Swanger et al., 2016). To date, more than 140 GRIN2A
mutations have been identified in focal epilepsy with or without
speech disorders and EE. In the present study, three missense
GRIN2A mutations were identified in the patients with IGEs.
These mutations presented no or low allele frequencies in the
gnomAD database and statistically higher frequency in the cohort
of IGEs than in the populations of gnomAD. Experimental

studies revealed increased current density in mutant NMDARs
with R1067W and increased membrane protein expression in
the three mutants. Considering that NMDARs generally mediate
excitatory neurotransmission and are critical for the regulation
of neuronal excitability in the brain, it potentially explains the
association between GRIN2A variants and epilepsy. This study
provided an insight into the underlying mechanism for the
pathogenesis of IGEs.

Previously, 10 GRIN2A mutations with epilepsy were
identified as GOF through two-electrode voltage clamp
recordings (Endele et al., 2010; Lemke et al., 2013; Yuan
et al., 2014; Swanger et al., 2016; Chen et al., 2017; Ogden
et al., 2017; Xu et al., 2018). Further analysis in the study
revealed that the severe GOF were associated with EE, while
the mild GOF were mainly associated with mild phenotypes,
specifically, BECTS or IGEs, indicating a quantitative correlation
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between functional alteration and phenotypic severity. In the
present study, mutation R1067W had no allele frequency in
the general population, caused more severe functional changes,
and was predicted to be damaging by more in silico tools than
mutations K590N and K879R. Clinically, mutation R1067W
was associated with relatively more severe phenotypes, i.e.,
unclassified IGE with earlier onset, more frequent seizures,
poorer response to AEDS, more than one individual affected, and
potentially intellectual and developmental impairments. These
findings provided additional pieces of evidence on quantitative
correlation between functional alteration and phenotypic
severity, potentially explaining the mild clinical manifestation,
and incomplete penetrance.

In previous studies, incomplete penetrance and intra or
inter-familial phenotypic variability of GRIN2A mutations were
commonly observed in the families with idiopathic focal epilepsy
(Lemke et al., 2013; Lesca et al., 2013). The phenomenon was
also observed in the present study. The underlying mechanism
remains undetermined. The numerous genomic variations in
each individual and environmental factors might modify the
phenotype. Generally, the variants with strong pathogenicity
usually produce a relatively accordant phenotype, such as the
variants in genes related to epileptic encephalopathy. In contrast,
the variants with less pathogenicity tend to present phenotypic
variation and incomplete penetrance and be associated with the
mild functional alteration. In this study, the mutations K590N
and K879R presented low frequency in control populations and
lead to milder alterations of GluN2A expression, which might
be one of the explanations for incomplete penetrance and intra
or inter-familial phenotypic variability. It is possible that the
GRIN2A variants with the mild impact played a risk, rather than
a causal role in IGE, and were associated with only increased
susceptibility to epilepsy.

Generally, the electrophysiological properties of channels are
directly related to neuronal excitability, which determines
the susceptibility of epilepsy. However, mutations with
electrophysiological LOF of NMDARs have been identified
previously (Swanger et al., 2016; Addis et al., 2017; Gao et al.,
2017; Ogden et al., 2017; Strehlow et al., 2019). Truncating
mutations and gross deletions of GRIN2A gene were also
reported (Endele et al., 2010; Lesca et al., 2013). In animal
models, homozygotes of targeted null GRIN2A exhibited
jumpiness, increased locomotor activity, and loss of analgesic
tolerance after repeated morphine doses (Sakimura et al., 1995;
Kadotani et al., 1996). In Grin2a knockout mice, spontaneous
epileptiform discharges were detected (Salmi et al., 2018, 2019).
These clues indicated that loss of GluN2A protein was associated
with increased neuronal excitability. Therefore, LOF of GRIN2A
was potentially pathogenic for epilepsy. The analysis revealed a
tendency of quantitative correlation between the degree of LOF
and phenotypic severity. However, a conclusion cannot be drawn
for LOF at present due to the data limitation. Additionally,
several mutations had no detectable electrophysiological
alterations. The pathogenic mechanism for these mutations
was unknown. Electrophysiological alterations of NMDARs
appeared to be not the only explanation of epileptogenesis.
GRIN2A is broadly expressed in the human brain since the
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FIGURE 6 | The locations and corresponding phenotypes of epilepsy-related missense GRIN2A mutations. (A) Topological distribution of the GRIN2A missense
mutations with different phenotypes. (B) The proportion of GRIN2A mutations with EE in different molecular regions. The proportion of missense mutations with EE
around TMD was significantly higher than that in ATD and LBD (Pearson’s chi-square test, *p < 0.05; **p < 0.01). ATD, amino terminal domain; LBD, ligand-binding
domain; TMD, transmembrane domains; M1, M3, and M4, transmembrane domains; M2, re-entrant pore loop; CTD, carboxyl-terminal domain; EE, epileptic
encephalopathy.

embryonic period, indicating GRIN2A potentially plays a role in
neurodevelopment. Clinically, patients with GRIN2A mutations
had variable neurodevelopmental abnormalities. It is, therefore,
possible that GRIN2A mutations will cause neurodevelopmental
abnormalities and subsequently secondary epilepsy, for which
the underlying mechanism warrants further studies.

A recent study showed that molecular sub-regional locations
of mutations were associated with the pathogenicity (Tang et al.,
2019). Previous studies showed that the locations of missense
mutations affected the severity of developmental phenotypes.
The missense mutations in transmembrane and linker domains
were associated with severe developmental delay (Strehlow et al.,
2019). The present study revealed that the severity of epileptic
phenotypes was also associated with the locations of missense
mutations. Particularly, the missense mutations in TMD of
GluN2A were more frequently associated with more severe
phenotypes of epilepsy, whereas the mutations in ATD and
LBD were more frequently associated with milder epilepsies.
Additionally, five of the six absence associated mutations were
located in CTD. These findings suggest the phenotypes were
affected by a molecular sub-regional effect of GRIN2A mutations.

In the present study, two variants K879R and R1067W
were located in C-terminal. C-terminal is less conservative in
evolution with divergence among different species (Hedegaard
et al., 2012). However, K879 and R1067 and their interacting
residues were conservative residues (Figures 1C, 2C). Variant
R1067W had no allele frequency in controls of general
population, and led to functional alterations of NMDARs. In

previous studies, thirteen C-term variants with no or low
allele frequency in general population were reported in the
patients with epilepsy, even in the patients with epileptic
encephalopathy. Functional studies had been performed in
two C-term variants previously (Addis et al., 2017; Mota
Vieira et al., 2020). The variant of GluN2A-N976S had
no detectable electrophysiological alteration, while GluN2A-
S1459G was proved to reduce spontaneous miniature excitatory
synaptic current (mEPSC) frequency, decrease NMDAR surface
expression, disrupt NMDAR interactions, and reduce synaptic
function (Mota Vieira et al., 2020). It was suggested that
the pathogenicity of C-term variants was variable and some
of variants were potentially pathogenic, for which further
experimental investigations were needed.

Clinically, features of BECTS and IGEs might consecutively
or contemporarily coexist in the same patients (Esmail et al.,
2016; Verrotti et al., 2017). In the present study, focal discharges
were also observed in the patients with JAE and CAE (Figure 3).
Both BECTS and IGEs were associated with GRIN2A mutations,
which were potentially the common genetic basis of the two
phenotypes. However, the absence-associated mutations were
mainly located in CTD, while BECTS-associated mutations did
not appear in this region. The difference in the distribution of
mutations would potentially explain the phenotypic variation, for
which the underlying mechanisms warrants further investigation.

This study has several limitations. More cases with IGEs are
required to confirm the association between GRIN2A variants
and IGEs. Further studies should be performed to elucidate
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the mechanism underlying the pathogenesis of IGEs. Recently,
increasing evidence showed that triheteromers (GluN1/2A/2B)
were prominent in the alterations of electrophysiological
functions as compared with diheteromers (GluN1/2A) (Marwick
et al., 2019b), which is potentially an alternative approach
to determine the electrophysiological functional alterations of
GRIN2A variants.

In conclusion, the present study revealed GRIN2A gene was
potentially a candidate pathogenic gene of IGEs. The molecular
sub-regional effects of missense mutations and the quantitative
correlation between the degree of GOF and the phenotypic
severity provided evidence to explain the relatively mild clinical
phenotypes and incomplete penetrance of GRIN2A variants,
which would help understand the underlying mechanisms of
phenotypic variation.
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