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A multiscale signalling network map of innate
immune response in cancer reveals cell
heterogeneity signatures
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The lack of integrated resources depicting the complexity of the innate immune response in
cancer represents a bottleneck for high-throughput data interpretation. To address this
challenge, we perform a systematic manual literature mining of molecular mechanisms
governing the innate immune response in cancer and represent it as a signalling network
map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived
suppressor cells and natural killers are constructed and integrated into a comprehensive meta
map of the innate immune response in cancer. The meta-map contains 1466 chemical
species as nodes connected by 1084 biochemical reactions, and it is supported by infor-
mation from 820 articles. The resource helps to interpret single cell RNA-Seq data from
macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-
tumor sub-populations within each cell type. Here, we report a new open source analytic
platform that supports data visualisation and interpretation of tumour microenvironment
activity in cancer.
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umors are engulfed in a complex microenvironment

(TME) that critically impacts disease progression and

response to therapy. TME includes immune and non-
immune interconnected components that exchange multiple
signals and are influenced by molecules secreted by cancer cells.
The behavior of the tumor and its TME as a whole critically
depends on the organization of these different players and their
ability to regulate each other in a dynamic manner!. The innate
immune part of the TME plays important, but sometimes
opposite roles in tumor evolution. Innate immune cells can
contribute to eliminate the tumor, e.g. through phagocytosis and
T cell priming and by induction of adaptive immune response.
However, they can also favor tumor escape from immunological
control, by a production of immunosuppressive molecules such as
transforming growth factor beta (TGFB) or interleukin 10
(IL10)2. An additional level of complexity in the TME is that
various stimuli can lead to a range of innate immune cells’ phe-
notypes. This results in very heterogeneous subpopulations
within each innate immune cell type coexisting in TME34,

Depending on the set of stimuli from TME and tumor,
immune cells are able to change their phenotype or polarization
status from anti-tumor to pro-tumor®®. Such functional dichot-
omy was first evidenced for one of the components of innate
immunity in TME, the tumor-associated macrophages (TAM)
and led to a description of M1 and M2 polarized TAM classes’.
The same tendency was later documented for other components
of innate immunity as neutrophils®, dendritic cells® and natural
killers!0, Therefore, the term “polarization” can be applied for the
innate immunity system in TME in general'! that represents the
major focus of current works. The balance between anti-tumor
and pro-tumor activity of innate immune cells has an impact on
tumor growth, patient response to therapy, and survival!2.

The correct evaluation of the polarization status within the
subtle innate immune cell subpopulations in TME is essential for
immunotherapy improvement. Nevertheless, the primary activa-
tion of adaptive immune response requires innate immune
players, the antigen-presenting cells (APC) such as dendritic
cells’3 or macrophages!!> Therefore, an efficient immune
checkpoint therapy depends directly on the proper innate
immune activation!®. In addition, there are studies showing that
innate immunity can restrict tumor growth even when the
adaptive immune system is inactivated!”. This indicates that
detailed study of potential innate immune-related targets should
be performed to identify new types of immunotherapy'® that
could function in synergy with the current T cell-targeted
therapies or act independently!9-20,

There is a massive amount of information in the literature
about molecular mechanisms implicated in innate immune cells
polarization in TME. However, most of the studies are focused on
individual molecular components and pathways. They do not
integrate the complexity of multiple crosstalks between innate
immune cells and tumor cells. To create a holistic picture of the
diversity and integrity of innate immune system in TME, the
knowledge about molecular circuits should be gathered together
and systematically represented?!.

To address these challenges, a systems biology approach is
needed??. Formalization of biological knowledge in a form of
comprehensive signaling maps, both at the intra- and intercellular
levels, helps to integrate information from multiple research
papers?3. There are numerous public databases containing sig-
naling pathways related to innate-immune response such as
KEGG?* and REACTOME?>, which are quiet comprehensive, but
contain mostly generic mechanisms. Furthermore, there are
resources dedicated to different types of innate immune cells such
as macrophages®® or dendritic cells?’. Finally, there are resources
depicting the innate immune system in general as InnateDB28

and ImmuNet?°, Virtually Immune30. However, these reposi-
tories are rather pathogen response-oriented than cancer-specific
and often represent a catalog of disconnected pathways. Thus,
there is a need to create an integrated resource on molecular
mechanisms of innate immune response in cancer.

To fill the gap, we construct and present here a system of cell-
type-specific maps and an integrated meta-map of innate
immune signaling in cancer based on the information retrieved
from the literature (Fig. 1). These maps together represent an
open source analytic platform for data visualization and inter-
pretation of TME activity in cancer.

Results

Principles of innate immune response in cancer. The molecular
mechanisms regulating six major innate immune cell types found
in the TME were gathered and depicted in the form of network
maps. To cope with a massive body of literature on innate
immune response in cancer we followed a systematic procedure
of literature selection, knowledge organization, and integration of
information in a visual and understandable manner (Fig. 1). The
network maps were constructed as two-dimensional maps to
facilitate the graphical representation of molecular mechanisms
that drive biological processes. The maps possess a particular
layout that reflects the accepted vision of spatial organization and
propagation of biological processes. The information about
molecular mechanisms was manually retrieved by the researchers
from the scientific literature along with the information presented
in general pathway databases or in the immune system-
specialized resources. The information was classified by specifi-
city to the cell types in cancer and organized into three cell-type-
specific signaling network maps, namely map of macrophages
and myeloid-derived suppressor cells (MDSC), dendritic cells and
natural killer (NK) cells (Fig. 2). These maps, enriched by the
information on additional cell types as neutrophils and mast cells,
were integrated into the meta-map of innate immune response in
cancer (Fig. 3).

The molecular mechanisms were depicted in the maps in the
form of biochemical reaction network using a well-established
methodology®!*2. The maps were described using Systems
Biology Graphical Notation language (SBGN)33 and drawn using
the CellDesigner tool3# that ensures compatibility of the maps
with various tools for network analysis, data integration, and
network modeling (Fig. 3b). Each molecular player and reaction
in the maps was annotated in the NaviCell format. The NaviCell
annotations include PubMed references, cross-references with
other databases, and notes of the map manager. In addition,
molecular complexes and reactions were assigned with confidence
scores and tags indicating their involvement in different
biological processes on the maps. Finally, the correspondence of
each molecular player on the map to different cell types is also
indicated, indicated by cell-type-specific tags (Supplementary
Fig. 1)3>. The principles and procedure for map construction are
provided in the Methods.

Content and structure of the innate immune maps. Macro-
phages are the major immune component of leukocyte infiltration
in the tumor. The anti-tumor polarization of macrophages is
related to their ability to recognize and to reject tumor cells by
phagocytosis, represent tumor antigens on the cell surface and
induce a T cell response and attract immune cells into the TME.
However, TAMs can also act as pro-tumor agents, expressing
tumor-stimulating growth factors, producing immunosuppressive
molecules induce angiogenesis and matrix remodeling in TME
and consequently facilitate metastatic process>0-37.
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Fig. 1 Map construction workflow and map structure. The scheme demonstrates the steps of meta-map construction starting from collection of cancer-
specific and innate-immune specific information about individual molecular interactions from scientific publications and databases, manual annotation and
curation of this information (steps 1-4), then organization of this formalized knowledge in form of cell-type specific maps (step 5), and finally integration
the cell-type specific networks in one global meta-map of innate immune response in cancer with areas corresponding to biological processes, modules,

pro- and anti-tumor polarization (step 6)

MDSC represent a heterogeneous population of myeloid cells.
In general, the role of MDSC in TME is similar to TAMs. MDSC
suppress T cell response and NKs’ activity in TME. In addition,
MDSCs induce EMT and angiogenesis and participate in matrix
remodeling. MDSC mostly show a pro-tumor activity; therefore,
their presence in the tumor is correlated with a poor clinical
prognosis’®3®. The MDSC signaling is included into the
macrophage cell-type-specific map.

The macrophage and MDSC cell-type-specific map contains
588 objects and 7 modules representing both pro-tumor and anti-
tumor polarization of myeloid cells (Fig. 2a, Supplementary
Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/macrophages_mdsc_cells/master/index.html.

Dendritic cells are innate immune cells that can have both
myeloid and lymphoid origin. As with macrophages, dendritic

cells have phagocytic abilities and can produce inflammatory
cytokines. But the major role of dendritic cells in anti-tumor
response is antigen presentation and further T cell activation®0.
The dendritic cell map contains 491 objects and 8 modules
(Fig. 2b, Supplementary Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/dendritic_cell/master/index.html.

NKs are big granular lymphocytes that can be cytotoxic to
tumor cells. The main role of NK cells in innate immunity is an
elimination of cells lacking MHCI1 molecules that therefore
cannot be recognized by T cells. The activity of NK cells is
stimulated by the target cells expressing NK receptors activating
ligands and modulated by inflammatory cytokines, produced by
macrophages and dendritic cells. NK cells secrete granules
contains lytic enzymes and express the apoptosis inducers.
Presence of active NK cells in cancer is correlated with good
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Fig. 2 Cell-type-specific maps. Cell-type-specific networks are visualized at
the top-level view, the colorful background indicates boundaries of
functional modules of the maps. a The maps of macrophages and MDSC.
b The map of dendritic cells. € The map of natural killer cells

prognosis. To escape NK control, tumor cells express immuno-
suppressive cytokines and downregulate NK ligands expression
that collectively inhibit cytotoxic activity of NK cells*l. A pro-
tumor polarization of NK cells is not described in the literature.
However, suppressed NK cells are incapable to reject tumor cells
and, therefore, indirectly promote cancer progression. The NK
map contains 567 objects and 6 modules (Fig. 2¢, Supplementary
Table 1).

The map is available at https://navicell.curie.fr/navicell/
newtest/maps/natural_killer_cell/master/index.html.

Neutrophils form a subtype of granulocytic leukocytes. The
role of neutrophils in the tumor microenvironment is not well

documented, but it is known that they can produce ROS,
inflammatory cytokines and demonstrated tumoricidal activity.
Although, in other conditions, neutrophils act as pro-tumor
agents via stimulation of matrix remodeling, angiogenesis, and
metastasis, therefore these cells have both pro- and anti-tumor
polarization potential®*2. The signaling on neutrophils is
included into the innate immune meta-map (Fig. 3, Table 1).

Mast cells resemble blood basophils and contain granules rich
in histamine and heparin. The experimental data about the
influence of mast cells on tumor microenvironment is contra-
dictory. It is known that mast cells can produce inflammatory
cytokines and secrete Chondroitin sulfate which acts as a decoy
for tumor cells and blocks the metastatic process. However, mast
cells also secrete molecules stimulating tumor growth, angiogen-
esis and local immunosuppression4344, Probably the polarization
of mast cells in TME is context-dependent. The signaling on mast
cells is included into the innate immune meta-map (Fig. 3,
Table 1).

The aforementioned cell-type-specific maps gathered together
and enriched by additional information gave rise to the global,
seamless meta-map of innate immunity in cancer. The meta-map
contains 1466 chemical species as nodes connected by 1084
biochemical reactions, and it is supported by information from
820 cell-type specific and cancer-related articles (Table 1).

The layout design of the meta-map reflects the current
understanding of signaling propagation in cells. To cope with the
complexity of the signaling network and to make it understandable
and navigable, the meta-map has a hierarchical structure (Figs. 1
and 3). The meta-map possesses two major structuring dimen-
sions: the internal organization of the map (layers, zones, meta-
module, modules, and pathways) and the external organization
represented by zoom levels (see explanation below).

The internal organization of the meta-map is provided in a
form of three layers entitles Inducers, Core Signaling, and
Effectors (Fig. 3a, Table 1). The top part of the meta-map is the
Inducers layer that depicts inducer molecules frequently present
in TME. The inducers interact through specific receptors and
adaptor proteins that propagate the signal via limited number of
transmitters, also called hub molecules as NF-kB, PLCG, PI3K,
etc. These molecules are located in the middle parts of the meta-
map in the Core Signaling layer. The signaling is further
propagated to the Effectors layer, located in the lower part of
the meta-map, which actually executes the biological activity and
therefore defines the outcome phenotype, namely, the positive or
negative influence of the innate immunity system on the tumor
growth and invasion (Fig. 3b, Table 1).

Further, the whole meta-map is divided into multiple signaling
pathways, running through the aforementioned layers (Fig. 3b). A
signaling pathway on the meta-map represents a sequence of
molecular interaction which transforms extracellular signals into
intracellular activity or into single or multiple cell phenotypes.
For instance, the TGFB pathway in innate immune cell
upregulates the expression of immune-suppressive ligands,
inhibits expression of immune-activating molecules and NO
production, and modulates migration of immune cells (Supple-
mentary Fig. 2A).

The meta-map is composed of 98 signaling pathways, 30 of
which contain more than 10 molecules in the sequence
(Supplementary Data 2). It is worth highlighting that there are
many crosstalks between different signaling pathways (Fig. 3b).

The signaling pathways of the meta-map form together 25
functional modules. A module on the meta-map represents a
group of signaling pathways collectively executing a phenotype,
e.g. the functional module NO and ROS production contains
several signaling pathways implicated in a single biological
function (Supplementary Fig. 2B).
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nature of interactions

These functional modules are assembled into the structures of
higher level, namely nine biological processes (meta-modules),
reflecting the major biological activities of the innate immune
system with respect to a tumor, i.e. Tumor recognition, Inhibition
of Tumor Recognition, Tumor Growth, Tumor Killing, Immune
Stimulation, Immune Suppression, Recruitment of Immune Cells,
Core Activation, and Core Inhibition.

Finally, at the highest level, all biological processes (meta-
modules) are grouped into two zones representing the concept of
innate immune system polarization into anti- or pro-tumor mode.
The Anti-Tumor zone covers the meta-modules named Tumor

Recognition, Immune Activation, Tumor Killing, and Core
Activation, whereas the Pro-Tumor zone is composed of
Inhibition of Tumor Recognition, Immune Suppression, Tumor
Growth and Core Inhibition meta-modules (Figs. 1, 3a and
Table 1). The list of map nodes per signaling pathways, modules,
biological processes (meta-modules), and zones is available in the
Supplementary Data 3 and downloadable form the resource
website (https://navicell.curie.fr/pages/maps_innateimmune.html).

The various map levels are interconnected and cross-talk
to each other. The crosstalks between the biological processes
(meta-modules) are represented as an interaction network shown
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Table 1 Hierarchical modular structure of innate immune response meta-map
Zones metamodule module Chemical species as Proteins Genes RNAs asRNAs Reactions References
entities
Zone: Pro-tumor polarization
Inhibition of Tumor Recognition
NK inhibiting receptors 35 23 1 1 0 14 57
Immune Suppression
Immunosuppressive cytokine pathways 109 46 10 n 3 67 14
Immunosuppressive cytokine expression 55 19 14 14 0 36 75
Immunosuppressive chekpoints 8 7 0 0 0 8 13
Core Signaling Pathways
Immunosupppressive core pathways 43 23 5 5 1 25 54
MIRNA TF Immunosuppressive 77 20 23 14 12 48 62
Tumor Growth
Tumor growth 60 42 8 8 0 71 58
Zone: Anti-tumor polarization
Tumor Recogntiton
NK activating receptors 14 45 16 14 6 72 ns5
Danger signal pathways 60 30 2 1 0 36 66
FC receptors 18 12 0 0 0 8 37
Integrins 38 24 0 0 0 21 56
Immune Stimulation
Immunostimulatory cytokine pathways 152 74 18 18 3 92 193
Immunostimulatory cytokine expression 43 17 12 n 1 27 109
Antigen presentation and immunostimulatory 99 65 6 6 0 91 152
checkpoints
Core Signaling Pathways
Immunostimulatory core pathways 184 93 6 6 na 244
MIRNA TF immunostimulatory 50 17 12 10 5 33 60
Tumor Killing
Lytic granules exocytosis and phagocytosis 73 39 6 6 5 50 75
No ROS production 33 10 4 4 0 23 44
Cell-type specific markers
Markers
Markers macrophage 22 10 6 6 0 0 8
Markers NK 10 10 0 0 0 0 36
Markers mast 6 6 0 0 0 0 9
Markers DC 16 14 0 2 0 0 14
Markers neutrophil n n 0 0 0 0 15
Markers MDSC 9 9 0 0 0 0 9
Recruitment
Recruitment of immune cells
Recruitment of immune cells 103 48 17 17 0 93 83
Meta-map 1466 582 162 152 20 1084 820
Structure and content of innate immune meta-map

in the Fig. 3c. The interaction network demonstrates different
types of links between meta-modules of the map, including
activation, inhibition, molecular flow. The Core Signaling meta-
module is a network “hub” where most signaling pathways
converge. In addition, it is notable that there are numerous
positive and negative crosstalks between Immune Stimulation
and Immune Suppression meta-modules on the map (Fig. 3c).

The external organization of the meta-map is reflected in the
hierarchical structure of zoom levels, similar to geographical
maps, where only limited information is displayed on each zoom
level (Fig. 3a). This hierarchical structure facilitates Google Maps-
like navigation of the map.

Access, navigation, and maintenance of the resource. The cell-
type-specific and the integrated meta-map are open source, can
be browsed online, and are available at https://navicell.curie.fr/
pages/maps_innateimmune.html. Each map is presented under
three independent platforms, namely NaviCell, MINERVA, and
NDEx. All map components are clickable, making the map
interactive. The extended annotations of map components con-
tain rich tagging system converted to links and confidence scores.

This allows tracing the involvement of molecules into different
map sub-structures as pathways, modules, and biological pro-
cesses (meta-modules) (Fig. 3). Tagging system also allows to use
the meta-map as a source of annotated signatures (Supplemen-
tary Fig. 1).

The semantic zooming feature of NaviCell> simplifies the
navigation through large maps of molecular interactions, showing
readable amount of details at each zoom level.

Comparison of meta-map with existing pathway databases. The
meta-map content (Supplementary Fig. 3) and the coverage of
literature used to annotate the entities (Supplementary Fig. 4)
were compared to a sub-set of pathways related to the innate
immune system from the existing molecular interaction databases
(Supplementary Table 2). The InnateDB database contains a
detailed description of the innate-immune signaling, even though
more general databases as KEGG and REACTOME also include
immune pathways. A description of comparison procedure is
provided in the Methods.

We further compared the major features of innate immune
response representation in different pathway databases. The
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innate immune response in cancer resource contains cell-type-
specific maps in contrast to other databases. The comparison
indicates that the cross-talk between the pathways is visually
represented at the maps of immune response in cancer
resource. Finally, the combination of hierarchical organization
of knowledge and possibility of navigation through the layers
of the maps thanks to semantic zooming feature makes the
innate immune resource more suitable for meaningful data
visualization. The visualization tool box is built into the
NaviCell environment which allows easy data integration and
visualization in the context of the innate immune maps (Figs. 4
and 5).
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Taken together, the results of database comparisons indicate
that the innate immune response in cancer resource is topic-
specific, and describes immune-related and cancer-relevant
signaling processes based on the latest publications about innate
immune component in TME. The thoughtful layout and visual
organization of the biological knowledge on the maps makes it a
distinguished resource for data analysis and interpretation.

Application of the maps for data visualization and analysis.
The cell-type-specific maps and the meta-map were applied to
explore the heterogeneity of innate immune cell types in cancer.
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The single-cell RNA-Seq data for macrophages and NK cells from

metastatic melanoma samples were used?®.

A matrix factorization technique, independent components
analysis (ICA)% allows ranking genes or samples along data-
driven axes. The independent components instead of detecting

8

highest variability axes as PCA, extract independent and non-
Gaussian signals called components. The most stable component
was used as a way to order the cells based on some latent process
that we aim to interpret using innate immune maps. In order to
better understand the differences in the cell ranking, the cells with
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extreme rank values were selected, which resulted in Groups 1
and 2. When projected in the PCA space (Fig. 4a), those
macrophage cell groups are lying on the borders of the cloud of
points.

Furthermore, the activity scores were computed for each
macrophage cell group (as defined in the Methods) for functional
modules at different levels: pro- and anti-tumor general
classification, innate map modules, and macrophage-specific
map modules.

First, the analysis of potential pro- and anti-tumor properties
of the macrophage cell groups was examined in the context of the
innate immunity meta-map. Group 1 has significantly higher
anti-tumor score (t-test p value: 0.02) and Group 2 is the pro-
tumor one (f-test p value: 0.003). Second, the expression profile
differences of the cells from the two groups were interpreted in
the context of the Macrophage cell-type-specific map and the
innate immune response meta-map. The results of the enrich-
ment study for the two Macrophage groups were also represented
as heatmaps with a significance level of p value for Student's t-test
(see Methods) (Supplementary Fig. 5). The module activity values
were plotted on the maps using BiNoM plugin of Cytoscape®”.

Visualization of the module activity scores in the context of
macrophage cell-type-specific demonstrates that the module
Antigen Presentation is upregulated in Macrophage Group 1
(Fig. 4b) comparing to Macrophage Group 2 (Fig. 4c). Whereas,
Macrophage Group 2 (Fig. 4c) shows upregulated modules Core
Signaling Pathways and Immunosuppressive Cytokines Pathways
comparing to Macrophage Group 1 (Fig. 4b).

Then, the module activity scores for the two Macrophage cell
groups were analyzed in the context of the meta-map that allowed
to detect several additional modules differentially regulated
between the two groups. The four modules Antigen Presentation,
Immunosuppressive Checkpoints, Danger Signal Module, and
Immunostimulatory MiRNA and TF were significantly over-
expressed in Anti-tumor Macrophage Group 1 (t-test p values,
respectively: <1074, 0.009, <10~8, <105, Fig. 4d) compared to
Pro-tumor Macrophage Group 2 (Fig. 4e). On the contrary, the
three modules Recruitment of Immune Cells Module, Tumor
Growth, and Immunosuppressive Cytokine Expression were
strongly upregulated in Pro-tumor Macrophage Group 2 (t-test
p values, respectively: <107% <1079, <107>, Fig. 5d). in
comparison to Anti-tumor Macrophage Group 1 (Fig. 4d, e).

From these results, it can be concluded that the Macrophage
Group 1 has a tendency to express an anti-tumor phenotype,
because it is characterized by the expression of inflammatory
cytokines that are able to induce local adaptive immunity via
antigen presentation process. Interestingly, the most typical
modules responsible for tumor elimination as Exocytosis and
Phagocytosis and Immunostimulatory Cytokine Pathways are not
over-activated in this cell sub-set. In contrary, Macrophage Group
2 demonstrated a pro-tumor phenotype, characterized by
expression of immunosuppressive cytokines restricting local
immune response and growth factors supporting tumor growth.

Alike macrophages, NK cells were ranked along a latent variable
obtained with ICA algorithm. Due to low cell number available, the
42 single NK cells were split in half according to the ICA ranks.
Subsequently, the module activity scores were computed of each
group and then a t-test was applied to evaluate the difference in
module activity between the two NK subpopulations (Group 1
referred to as Tumor Killing and Group 2 referred to as
Immunosuppressed) (Fig. 5a, Supplementary Fig. 6).

First, the comparison and visualization of the module activity
between the two NK cells groups demonstrated the activation of
Lytic Granules Exocytosis module in NK Group 1 compared to
NK Group 2 (#-test p value: 0.006), on the NK cell-type-specific
map (Fig. 5b). The activity of this module is directly responsible

of tumor killing capacity of NK Group 1 cells that most probably
exposes stronger anti-tumor abilities compared to Group 2
(Supplementary Fig. 6A).

Next, the two NK cells groups were analyzed in the context of
the meta-map that allowed detection of five differentially
regulated modules between the two groups of NK cells (Fig. 5d).
The four modules Recruitment of Immune Cells, Integrins, Fc
Receptors, and Danger Signal Pathway were significantly
upregulated in the NK Group 1 comparing to the NK Group 2
(t-test p values, respectively: 0.0001, <10~4, 0.004, <10~>). In
contrary, the module Immunosuppressive MiRNA and TF was
inhibited in the NK Group 1 comparing to the NK Group 2 (¢-test
p value: 0.001). Finally, although the activity of Phagocytosis and
Exocytosis module is not significantly different between the two
groups, this module is rather activated in the NK Group 1
compared to the NK Group 2 (Supplementary Fig. 6B).

Collectively these results demonstrate that the NK Group 1 is
characterized by upregulation of biological functions related to
NK cell recruitment and activation, coinciding with upregulation
of the mechanisms responsible for tumor killing. Thus, the NK
Group 1 can be interpreted as newly recruited, actively migrating
NKs with strong anti-tumor polarization. In contrary, most
probably, NK Group 2 contains resting or suppressed NK cells
that do not expose a well-defined phenotype.

The activation of upstream map zones and downstream effector
zones in NK Group 1 is notable (Fig. 5d). However, which
mechanisms coordinate this co-activation is not clear. The structure
of the network was analyzed to address this question and the
signaling pathways connecting the two activated zones were
retrieved. The activation state of 30 signaling pathways from the
meta-map was assessed for the cell from Group 1 and Group 2
(Fig. 5c). There are all together seven differentially regulated
pathways between the two cell groups. Five are upregulated
pathways in Group 1 (LFA1, CR3, STING, 2B4, FcyRIl) and two
upregulated pathways in Group 2 (IL13, IL18) (#-test p values <0.05).

Within the pathways activated in the Group 1 there are three
pathways regulated through receptors LFA1, CR3, and FcyRIL
The key players of the pathways are presented schematically in
Fig. 5d. The meta-map described difference between NK subtypes
both on the level of functional modules and signaling pathways. It
allows us to draw the conclusion that tumor recognition via these
pathways plays an even more important role for NK-activation
than well studied activation via classical NK receptors.

Meta-map as a source of patient survival signatures. To study
whether the innate immune response meta-map can be used for
assessment of processes contributing to patient survival, the list of
genes from the map was used to find correlation with prognosis
of patient survival using data published elsewhere*3 (see Meth-
ods). First, the presence of the genes on the innate immune
response meta-map correlating with the patient survival from the
aforementioned study was verified. It was detected that out of 627
proteins and protein coding genes depicted on the meta-map, 295
are significantly correlated with patient survival (z-score p value <
0.05), that represents 47% of the map content vs. 27% in the
whole genome study*® (Supplementary Data 1).

The genes enriched on the meta-map can be divided into two
groups, positively and negatively correlated with the patient
survival, which confirms the observation that innate immune
system can play a dual role in cancer disease. Interestingly, from
the whole genome analysis in the original study by Gentles et al.
(2015)#8, it emerges that there is quasi equal proportion of
positively and negatively correlated genes. However, in the innate
immune response meta-map, there is a strong predominance of
genes positively correlated with patient survival (Table 2).
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modules in innate immune response meta-map

Innate immune map meta-module Mean z-score

Table 2 Distribution of genes with positive (z < 0) and negative (z > 0) correlation with patient survival across functional meta-

Positive correlation with patient survival

Negative correlation with patient survival

Tumor Growth 1.3 12

Inhibition of Tumor Recognition -1.86 18

Tumor Recogntiton -1.56 67
Recruitment of Immune Cells —-0.94 29
Immune Stimulation —0.53 122
Tumor Killing -0.5 25

Core Signaling Pathways —0.46 14
Immune Suppression —-0.33 39

26
6

28
14
87
29
84
24

Values indicate number of genes

In order to highlight what biological functions on the innate
immune response in cancer meta-map are associated to positive
or negative patient survival, mean values of gene z-scores per
meta-modules were calculated and visualized in the context of the
meta-map (see Methods). As a general trend, the meta-map layers
Inducers and Core Signaling are more significantly correlated
with patient survival, compared to the layer Effectors. Further-
more, the meta-modules with biological functions related to anti-
tumor activity as Immune Response Stimulation and Tumor
Recognition, Recruitment of Immune Cells, etc. are positively
correlated with patient survival. Interestingly the meta-module
Tumor Killing is also positively correlated with patient survival,
though not reaching the statistical significance (Table 2, Supple-
mentary Fig. 7). The minority of meta-modules related to pro-
tumor activity as Tumor Growth, Immunosuppressive Core
Pathways, Immunosuppressive  MiRNA and TF correlated
negatively with patient survival (Table 2, Supplementary Fig. 7).
The described analysis demonstrates that the meta-map can serve
for evaluation of innate immune response signatures associated
with patient survival in cancer.

Discussion

One of the challenges of cancer biology today is understanding
the phenomena of tumor heterogeneity. It consists of two rela-
tively independent parts: first, heterogeneity of the tumor cells
themselves, as a result of their clonal divergence or action of
epigenetic mechanisms; second, heterogeneity of tumor micro-
environment (TME). Recent years discoveries have shown that
understanding how the components of this multicellular TME
system interact with each other is very important for effective
drug design. Actually, the attempt to modulate the interactions
within the tumor microenvironment lies on the basis of new anti-
cancer immune checkpoint inhibition therapy.

The analysis of large amounts of scientific information and the
creation of optimal forms of its representation, require the
development of new approaches for network map construction
and annotation. Our first goal was to preserve the natural mul-
tidimensionality of the biological knowledge available for the
different cell types in the innate component of the TME. Indeed,
different cells types in innate immune system are studied from
different angles. Some signaling pathways are described in detail
for the macrophages and others for natural killer cells and so on.
It is clear that the molecular knowledge described for one cell-
type cannot always be extrapolated to another. This motivated us
to create two complementary representations of innate immune
system in cancer, one in the form of cell-type-specific maps and
the second as an integrated meta-map of innate immune response
in cancer. To be able to trace the correspondence of molecular
entities and processes to a particular cell type, we introduced a

system of cell-type-specific tags, included into the annotation of
all entities on the maps.

Our second goal was to provide a complete and not con-
troversial picture on the processes occurring in the TME. The
generation of an integrated meta-map of innate immunity
immediately exposed a problem of map complexity. We coped
with the complexity problem by introducing the hierarchical
structure into the integrated meta-map, respecting the biological
functions. The general layout of the integrated meta-map is based
on the idea of immune cells polarization in TME, reflected in the
representation of both, pro-tumor and anti-tumor signaling
mechanisms. In accordance with the literature, all functional
modules and meta-modules on the map are grouped into pro-
tumor and anti-tumor zones. There two types of signaling modes
lead to the corresponding phenotypes. In addition, the mechan-
ism responsible for a switch in the polarization state is also
represented.

The modular hierarchical map structure and complex tagging
system of maps entities facilitated the production of geographical-
like easily browsable open source repository. Taking an advantage
of NaviCell platform, which provides Google Maps-engine and
map navigation features, the innate immune maps can be
explored in an intuitive way, allowing the shuttling between the
cell-type-specific maps to the integrated meta-map.

NaviCell-based representation of the maps facilitates visuali-
zation of various types of omics data. Analysis of data in the
context of both, cell-type-specific and integrated maps, can help
in the formalization of biological hypotheses for the processes and
interactions that are studied in some cell types, but unexplored in
others. In addition, thanks to the rich system of tags, the maps
content can be used as a source of knowledge-based gene sig-
natures of innate immune cell type. Finally, hierarchical organi-
zation of the map provides a basis for structural network analysis,
complexity reduction, and eventual transformation of the map
into executable mathematical models.

The integration of the innate immune response in cancer
resource into additional platforms allows broader exposure and
use of the valuable maps. Therefore, in addition to NaviCell
platform, the resource is also exposed in the MINERVA platform
and integrated into the NDEx repository and platform. In the
future, the resource will be also integrated into larger pathway
collections. These moves will allow a deeper involvement of the
scientific community into the maintenance and update of the
maps with the latest discoveries.

The resource of innate immune maps is useful for computing
network-based molecular signatures of innate immune cells
polarization. These signatures will help to characterize the overall
status of the signaling dictating pro-tumor and anti-tumor states
of TME in cell lines and tumoral samples. It will also help to
stratify cancer patients according to the status of the TME and
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potentially predict patient survival and response to immu-
notherapies. In addition, the resource might potentially provide
new immunotherapy targets, among innate immunity compo-
nents of TME in tumor infiltrates. These targets can be com-
plementary or synergistic to the well-known immune checkpoint
inhibitors.

As other studies show, similar resources are used for omics
data visualization in the context maps that can provide network-
based molecular portraits of studied cases. Comprehensive maps
are rich in molecular details carefully compiled together, therefore
structural analysis of the maps can explain particular phenotypes,
redundancies, and robustness*>0. Such analysis together with
omics data can guide to design of complex druggable interven-
tions®!, Further, complex maps contain modules that correspond
to particular biological processes; therefore, the content of these
modules are used as signatures of the corresponding biological
functions®?. These lists of genes are frequently used for enrich-
ment studies®3.

Construction of the innate immune response map is the first
step in the attempt to build a global network describing the
molecular interactions in the TME. The next perspective is to
represent the knowledge on adaptive immune response and non-
immune components in the tumor environment, including
fibroblasts and endothelial cells. The final goal is to build a
complete map of signaling in cancer representing both intracel-
lular interactions of tumor cells and each component in the TME
and their intracellular interactions, and describing the coordina-
tion among the components of this multicellular system.

In addition, being included into a broader Disease Maps pro-
ject, the meta-map of innate immune response will be helpful,
together with maps or other diseases, in the study of disease
comorbidities and drug repositioning®>°.

Methods

Map and model. The maps sere drawn in CellDesigner diagram editor3* using
Process Description (PD) dialect of Systems Biology Graphical Notation (SBGN)
syntax which is based on the Systems Biology Markup Language (SBML)33. The
data model used includes the following molecular objects: proteins, genes, RNAs,
antisense RNAs, simple molecules, ions, drugs, phenotypes, complexes. These
objects can play the role of reactants, products, and regulators in a connected
reaction network. The objects phenotypes play a role biological process outcome or
readout (e.g. Migration, Tumor killing, ROS production, etc). Edges on the maps
represent biochemical reactions or reaction regulations of various types. Different
reaction types represent post-translational modifications, translation, transcription,
complex formation or dissociation, transport, degradation and so on. Reaction
regulations include catalysis, inhibition, modulation, trigger and physical stimu-
lation. The naming system of the maps is based on HUGO identifiers for genes,
proteins, RNAs and antisense RNAs and CAS identifiers for drugs, small mole-
cules, and ions.

Manual literature mining. The molecular interactions reported in the scientific
articles were manually curated and the information extracted from the papers was
used for reconstruction and annotation of the maps. Three types of articles were
used for map annotation: (i) experimental innate-immunity specific articles directly
or indirectly confirming molecular interactions based on mammalian experimental
data; (ii) review articles; (iii) experimental articles from non-immune cells that
helped to complement the mechanisms present in immune cells (3% of the lit-
erature used for the map). In addition, pathway databases were used to retrieve
information of the canonical pathways reported for the innate immune signaling
general pathway databases (e.g. KEGG, REACTOME, SPIKE SignaLink, EndoNET)
or in the immune system-specialized resources such as Virtuallymmune (http://
www.virtuallyimmune.org) and InnateDB (www.innatedb.com).

Map structure and tagxging system. The annotation of each molecular object on
the maps (protein, gene, RNA, small molecule, etc.) includes several tags indicating
participation of the object in signaling pathways (tag PATHWAY:NAME), func-
tional modules (tag MODULE:NAME), and cell-type-specific map (tag: MAP:
NAME). Each PATHWAY obtains the name of the initiating ligand or receptor, in
case when several ligands are acting through the same receptor. The tags are
converted into the links by the NaviCell factory in the process of online map
version generation. The links allow to trace participation of entities in different

cell-type-specific maps and the sub-structure of the same map (pathway, module,
biological process) and also facilitate shuttling between these structures.

Reaction and protein complex confidence scores. To provide information on the
reliability of the depicted molecular interactions, two confidence scores have been
introduced. Both scores represent integer numbers varying from 0 (undefined
confidence) to 5 (high confidence). The reference score (REF) indicates both the
number and the “weight” associated with publications found in the annotation of a
given reaction. The functional proximity score (FUNC) is computed based on the
external network of protein-protein interactions (PPI), InnateDB, which contains
both experimental and literature-based curated interaction data23. The score
reflects an average distance in the PPI graph between all proteins participating in
the reaction (reactants, products, or regulators).

Map entity annotation in NaviCell format. The annotation panel followed the
NaviCell annotation format of each entity of the maps includes sections Identifiers,
Maps_Modules, References, and Confidence as detailed in ref. 32. Identifiers section
provides standard identifiers and links to the corresponding entity descriptions in
HGNC, UniProt, Entrez, SBO, GeneCards, and cross-references in REACTOME,
KEGG, Wiki Pathways, and other databases. Maps_Modules section includes tags
of modules, meta-modules, and cell-type-specific maps in which the entity is
implicated (see above). References section contains links to related publications.
Each entity annotation is represented as a post with extended information on the
entity.

Generation of NaviCell map with NaviCell factory. CellDesigner map annotated
in the NaviCell format is converted into the NaviCell web-based front-end, which
is a set of html pages with integrated JavaScript code that can be launched in a web
browser for online use. HUGO identifiers in the annotation form allow using
NaviCell tool for visualization of omics data. A detailed guide of using the NaviCell
factory embedded in the BiNoM Cytoscape plugin? is provided at https://navicell.
curie.fr/doc/NaviCellMapperAdminGuide.pdf.

Depositing maps at several web-based platforms. Cell-type specific maps and
the meta-map of innate immune response in cancer were made available at other
platforms such as MINERVA and NDEx. To integrate maps within NDEx, Cell-
Designer maps were first loaded in Cytoscape using the BiNoM Cytoscape plugin
and then uploaded on NDEx using the CyNDEx Cytoscape plugin.

Databases content comparison. Pathways related to the human innate immune
system were selected from the InnateDB 5.4 version, except Complement Cascade
(Human), NOD-like Receptor Signaling Pathway, Regulation of Autophagy
(Human), and RIG-I-Like Receptor Signaling Pathway (Human). The excluded
pathways represent virus and bacterial infection-specific pathways that do not
correspond to TME signaling. The innate immune-related pathways from KEGG
84.1 version were retrieved from the list 5.1-Immune System. The pathways
obtained from REACTOME 63rd version cover Class I MHC Mediated Antigen
Processing & Presentation, MHC Class II Antigen Presentation from Adaptive
Immune Branch, and all pathways from Innate Immune Branch. All together 666
gene names from InnateDB 5.4, 563 gene names from KEGG 84.1, and 2156 gene
names from REACTOME 63rd were selected. These lists were compared with the
innate immune response meta-map that contains 683 gene names. The complete
list of selected pathways with gene names is available in the Supplementary Data 2).

The selected InnateDB pathways contain altogether, nearly the same number of
objects as the innate immune response meta-map (Supplementary Data 4). The
content of selected KEGG or REACTOME pathways is richer than in the innate
immune response meta-map, due to the fact that KEGG and REACTOME are
generic databases, describing all innate immune-related interactions, whereas the
meta-maps is rather oriented to cancer signaling. The overlap between the meta-
map and the three selected databases represents 61% for InnateDB, 58% for KEGG,
and 30% for REACTOME. It is important to note that there are 188 genes that
present exclusively at the innate immune response meta-map (Supplementary
Fig. 4A, Supplementary Data 2). These unique genes are relatively homogeneously
distributed across the meta-map, indicating that the depicted processes are
described in more depth on the meta-map compared to the other three databases
(Supplementary Fig. 3A). Several modules are significantly enriched by unique
genes on the meta-map (Supplementary Fig. 3B). Thus, the modules Tumor
Growth and Immunosuppressive Checkpoints contain signaling that are very well
studied in cancer cells and therefore represented in great details on the meta-map.
Two additional modules, entitled MIRNA TF Immunostimulatory and MIRNA TF
Immunosuppressive, contain the latest information of miRNA involvement in the
innate immune system control in cancer and unique for the meta-map, compared
to other databases. It was concluded that the content of the meta-map is not
redundant with the other pathway databases and that several functional modules
directly related to TME functions are unique to the meta-map.

Databases annotation literature comparison. In addition, the sets of publica-
tions used to annotate the InnateDB resource and aforementioned preselected

| (2019)10:4808 | https://doi.org/10.1038/s41467-019-12270-x | www.nature.com/naturecommunications 1


http://www.virtuallyimmune.org
http://www.virtuallyimmune.org
http://www.innatedb.com
https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf
https://navicell.curie.fr/doc/NaviCellMapperAdminGuide.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

pathway from REACTOME resource were compared to the set of publications used
in the meta-map. The overlap of the literature body from the meta-map with
references from InnateDB and REACTOME databases is relatively small, because
785 papers out of 820 papers that were used to annotate the meta-map are unique
(Supplementary Fig. 4B). It confirms that the meta-map is not a mechanical
compilation of existing databases, but rather an independent resource. It formalizes
the part of biological knowledge which was not annotated before and highlights the
difference between reconstruction of generic and cell-type specific pathways in
terms of literature sources.

Although the median age of the literature references in the meta-map is only
one year-younger compared to InnateDB and REACTOME, there is a 27% of
papers dating 2010-2017 in the literature body annotating the meta-map. The
literature set in the meta-map contains more papers published after year 2010 than
in InnateDB and REACTOME, indicating that the meta-map represents the most
recent discoveries in the corresponding fields (Supplementary Fig. 4C).

Finally, the journal types represented in the three databases were also compared.
The choice of the journals used for annotating the meta-map and the other two
databases is similar; however, the distribution of the papers from different types of
journals is not even. The annotations of meta-map mainly contain papers from
immunological journals such as Journal of Immunology, Immunity, Nature
Immunology, and cancer-specific journals, such as Cancer Research and Oncogene,
comparing to the other two databases. The annotations of InnateDB and
REACTOME are rather oriented towards more generic molecular biology journals
as JBC, MCB, Nature, and PNAS (Supplementary Fig. 4C and D).

High-throughput data analytical pipeline. Normalized melanoma data sets from
GEO (GSE72056)*> were transformed into log expression levels and mean cen-
tered. The exploratory analysis and statistical testing was performed and visualized
using R packages (ggplot2, stats, pheatmap)>©-8 then MATLAB ICA imple-
mentation of FastICA algorithm#® and icasso package® to improve the stability.
Colored map images were obtained using function “Stain CellDesigner map” from
BiNoM Cytoscape plugin’ using .xml map files and the mean expression from the
analysis described below.

Analytical pipeline. The single-cell molecular profiles are characterized by high
variability that have both biological and technical origin. A common practice is to
group single cells in order to make an aggregated representative profile that
minimizes the technical biases but still represents finer level of granularity than a
bulk sample. In order to define cell groupings that would lead to functional
interpretation we used a matrix factorization technique called ICA

ICA is a matrix factorization-based technique aiming at defining statistically
independent hidden factors shaping gene expression. Stability-based analysis
revealed only one sufficiently stable independent component in the case of both
Macrophage and NK data subsets. Therefore, first independent component was
used to rank the individual cells. We grouped the NK single cells depending on the
first independent component (IC1) projection score such that Group 1 had positive
projection scores and the Group 2 has negative projection scores. For macrophage
single cells we selected the first and the last quartiles of the macrophage scores of
IC1 projection. In order to best interpret the “extreme” tendencies of the cells
placed on the opposite side of IC. The distinction of the groups plotted in first and
the second principal components space (PC1 and PC2) can be seen in Figs. 4a
and 5a.

For cell groups defined as described above, the following procedure was applied
in order to define the map module scores. For each module, 50% of most variant
genes were retained in order to select genes over the median variability. The
module score was defined as the mean of the selected genes.

Standard t-test was used to assess statistical differences between single-cell
groups for each module. The p values of the t-test were reported in the heatmaps
with the standard code of significance (***p <0.001, **p <0.01, *p < 0.05, <0.1).

The data on pan-cancer meta-analysis of expression signatures from ~18,000
human tumors across 39 malignancies accompanied by survival clinical data were
used*®. In total, 6323 genes with significant z-scores (p value <0.05) indicating
correlation to patient survival were retrieved*® and overlapped with the gene lists
from the innate immune response meta-map. Enrichment of the meta-map with
the genes significantly positively or negatively correlated with patient survival was
assessed using the y2 test with p value threshold 0.001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The cell-type-specific maps and meta-map of innate immune response in cancer are
freely available at the web page (https://navicell.curie.fr/pages/maps_innateimmune.
html). The meta-map and cell-type-specific maps are provided in three platforms,
NaviCell, MINEVRA and integrated into the repository NDEx. The maps exist and can
be downloaded in several exchange formats (CellDesigner SBML level 2 version 4,
SBGN-ML 0.2, SBML level 3 version 1, Cytoscape CX version 3.4.0). In addition, the
composition of map signaling pathways, modules, and meta-modules is provided in a
form of GMT files (Supplementary Tables 2 and 3, respectively) suitable for further

functional data analysis. A network of binary relations between proteins generated from
the meta-map and the complete list of references annotating the maps are also available.

Code availability

The documentation and the scripts for module activity calculation and generation of life
example is provided at GitHub (https://github.com/sysbio-curie/NaviCell/tree/master/
auxiliary_scripts). The step-by-step procedure on modular hierarchical maps
construction is also provided at https://github.com/sysbio-curie/NaviCell.
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