Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzophenone imine-*kN*)chlorido-(hydridotripyrazolylborato)(triphenylphosphine)ruthenium(II) diethyl ether solvate

Hung-Chun Tong,^a Chih-Yung Chen Hsu,^a Yih-Hsing Lo,^a* Chia-Her Lin^b and Yu Wang^c

^aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, ^bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and ^cDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan Correspondence e-mail: yhlo@ttu.edu.tw

Received 12 September 2008; accepted 15 October 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 19.0.

The reaction of RuCl(Tp)(Ph₃P)₂, where Tp is $[(CH)_3N_2]_3BH$, with benzophenone imine leads to the formation of the title compound, $[Ru(C_9H_{10}BN_6)Cl(C_{13}H_{11}N)(C_{18}H_{15}P)]\cdot C_4H_{10}O$. The environment about the Ru atom corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand produces an average N–Ru–N angle of 86.3 (9)°. The three Ru–N(Tp) bond lengths [2.117 (2), 2.079 (2) and 2.084 (2) Å] are slightly longer than the average distance (2.038 Å) in other ruthenium–Tp complexes.

Related literature

For background literature, see: Albertin *et al.* (2008); Burrows (2001); Harman & Tube (1988); Pavlik *et al.* (2005). For related structures, see: Alock *et al.* (1992); Bohanna *et al.* (1996); Gemel *et al.* (1996); Slugovc *et al.* (1998).

Experimental

Crystal data $[Ru(C_9H_{10}BN_6)Cl(C_{13}H_{11}N)-(C_{18}H_{15}P)]\cdot C_4H_{10}O$

 $M_r = 867.18$ Monoclinic, $P2_1/c$

a = 9.3768 (1) Å
b = 30.1803 (5) Å
c = 14.9092 (2) Å
$\beta = 96.126 \ (1)^{\circ}$
$V = 4195.13(10) \text{ Å}^3$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.915, T_{max} = 0.952$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.029587 reflections Z = 4 Mo K α radiation μ = 0.52 mm⁻¹ T = 295 (2) K 0.20 × 0.15 × 0.10 mm

28699 measured reflections 9587 independent reflections 7313 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

505 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.60 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This research was supported by the National Science Council, Taiwan, and in part by the Project of the Specific Research Fields of Tatung University, Taiwan (grant No. B96-C07-081), and the Project of the Specific Research Fields of Chung Yuan Christian University, Taiwan (grant No. CYCU-97-CR-CH). We also thank Mr. Yi-Hung Liu (Department of Chemistry, National Taiwan University, Taiwan) for his assistance in the X-ray single-crystal structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2110).

References

- Albertin, G., Antoniutti, S. & Magaton, A. (2008). Inorg. Chim. Acta, 361, 1744–1753.
- Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bohanna, C., Esteruelas, M. A., López, A. M. & Oro, L. A. (1996). J. Organomet. Chem. 526, 73–83.
- Burrows, A. D. (2001). CrystEngComm, 46, 1-5.
- Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.
- Harman, W. D. & Tube, H. (1988). Inorg. Chem. 27, 3261-3262.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.

Acta Cryst. (2008). E64, m1453 [doi:10.1107/S1600536808033722]

(Benzophenone imine-KN)chlorido(hydridotripyrazolylborato)(triphenylphosphine)ruthenium(II) diethyl ether solvate

H.-C. Tong, C.-Y. C. Hsu, Y.-H. Lo, C.-H. Lin and Y. Wang

Comment

Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik *et al.*, 2005). The complex RuCl(Tp)(PPh₃)₂ (Alock *et al.*, 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). On the other hand, despite the large number of known transition metal complexes containing multidentate imine ligands, the monodentate nitrogen-bond imine derivatives are rather rare (Albertin *et al.*, 2008). This is somewhat surprising and may be partly due to the weak Lewis basicity of the imine nitrogen atom (Harman & Tube 1988). However, coordination of an imine on a metal fragment would be an important step in its activation toward nucleophilic attack or its hydrogenation reaction to give the amine.

The complex [RuCl(Tp)(PPh₃)₂] reacts smoothly with benzophenone imine in warm toluene affording the title compound RuCl(Tp)(PPh₃)(HN=CPh₂) ((I)). The complex (I) is yellow crystalline solid which in their IR spectra display one medium band near 3312 cm⁻¹, attributable to v(NH) in the imine ligand. We have observed that the benzophenone imine is lost readily in solution. It appears that a rapid dissociation equilibrium occurs which leads to the formation of variable amounts of free imine plus other species. This behavior has been observed in other imine complexes of ruthenium, as in the case of RuHCl(CO)(HN=CPh₂)(PiPr₃)₂, where PiPr is tri(isopropyl)phosphine, (Bohanna *et al.*, 1996), and hence in all further operations for the purification of (I), an excess of free imine was added in order to prevent decomposition by imine ligand dissociation. In complex (I), the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand produces an average N—Ru—N angle of 86.3° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths: 2.117 (2), 2.079 (2) and 2.084 (2) Å are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel *et al.*, 1996; Slugovc *et al.*, 1998). The Ru1—N7 and N7—C10 bond lengths of 2.063 (2) Å and 1.284 (3) Å correspond to single Ru—N and double C=N bonds. The angles (121.5 (2)°, 120.2 (3)° and 117.9 (2)°) around C10 indicate a *sp*² hybridization as expected.

Experimental

The synthesis of the title compound (I) was carried out as follows: to a solution of RuCl(Tp)(PPh₃)₂ (3.95 g, 4.50 mmol) in toluene (100 ml), an excess of benzophenone imine (7.9 ml, 45.0 mmol) were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature. Then, it was concentrated to approximately half of the volume and cooled to 253 K. The yellow precipitate was filtered off, washed with ethanol and ether, dried under vacuum to give the (I) (3.34 g, 95% yield). Spectroscopic analysis: IR (KBr, cm⁻¹): v(BH) 2467 cm⁻¹; v(NH) 3312 cm⁻¹. The ¹H NMR (CDCl₃, 303 K, d, p.p.m.): δ 5.67 (t, *J*_{HH} = 2.0 Hz, 1H, Tp), 5.78 (t, 1H, *J*_{HH} = 2.0 Hz, Tp), 5.95 (d, 1H, *J*_{HH} = 2.0 Hz, Tp), 6.11 (t, 1H, *J*_{HH} = 2.0 Hz, Tp), 6.45 (d, 1H, *J*_{HH} = 2.0 Hz, Tp), 6.73–7.70 (Ph, Tp), 8.13 (d, 1H, *J*_{HH} = 2.0 Hz, Tp), 12.45 (s, 1H, HN). The ¹³C NMR (CDCl₃, 200 Hz, 1H, NMR) (CDCl₃)

303 K, d, p.p.m.): 105.2–148.4 (m, Ph, PPh₃, Tp), 179.9 (s, HN=C (Ph)₂). The ³¹P NMR (CDCl₃, 303 K, d, p.p.m.): d 51.3. The MS (m/z, Ru 102): 793.2 (M^+),758.1 (M^+ - Cl), 612.2 (M^+ - HN=C (Ph)₂). Anal. Calc. for C₄₀H₃₆BClN₇PRu, (%): C, 60.58; H,4.58; N, 12.36. Found (%): C, 60.43; H, 4.61; N, 12.42. The bright-yellow crystals of (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether containing free benzophenone imine.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$, B—H = 1.10 Å and $U_{iso}(H) = 1.2U_{eq}(B)$.

Figures

Fig. 1. The molecular structure of (I) showing atoms numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are drawn with arbitrary radius.

$(Benzophenone\ imine-\kappa N) chlorido(hydridotripyrazolylborato)\ (triphenylphosphine) ruthenium (II)\ diethyl\ ether\ solvate$

Crystal data

$[Ru(C_9H_{10}BN_6)Cl(C_{13}H_{11}N)(C_{18}H_{15}P)] \cdot C_4H_{10}O$	$F_{000} = 1792$
$M_r = 867.18$	$D_{\rm x} = 1.373 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 61738 reflections
a = 9.3768 (1) Å	$\theta = 1-27.5^{\circ}$
b = 30.1803 (5) Å	$\mu = 0.52 \text{ mm}^{-1}$
c = 14.9092 (2) Å	T = 295 (2) K
$\beta = 96.126 (1)^{\circ}$	Plate, yellow
$V = 4195.13 (10) \text{ Å}^3$	$0.20\times0.15\times0.10~mm$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	9587 independent reflections
Radiation source: fine-focus sealed tube	7313 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 295(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$

(SORTAV; Blessing, 1995)	
$T_{\min} = 0.915, T_{\max} = 0.952$	$k = -38 \rightarrow 39$
28699 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 2.3324P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
9587 reflections	$\Delta \rho_{max} = 1.60 \text{ e } \text{\AA}^{-3}$
505 parameters	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ru1	0.29312 (2)	0.099417 (7)	0.750725 (14)	0.03648 (7)
Cl1	0.44869 (8)	0.14260 (3)	0.66246 (5)	0.05512 (19)
P1	0.22862 (8)	0.15893 (2)	0.83575 (5)	0.04520 (17)
N1	0.3739 (2)	0.00419 (7)	0.72037 (16)	0.0441 (5)
N2	0.3456 (2)	0.04306 (8)	0.67632 (14)	0.0419 (5)
N3	0.2246 (2)	0.01635 (7)	0.84529 (15)	0.0418 (5)
N4	0.1670 (2)	0.05607 (7)	0.81661 (14)	0.0378 (5)
N5	0.4838 (2)	0.03736 (7)	0.86467 (15)	0.0423 (5)
N6	0.4675 (2)	0.08098 (7)	0.84144 (15)	0.0409 (5)
N7	0.1440 (2)	0.11552 (8)	0.64377 (15)	0.0450 (5)
H7A	0.1717	0.1399	0.6215	0.054*
B1	0.3757 (3)	0.00265 (10)	0.8237 (2)	0.0450 (7)
H1	0.4047	-0.0306	0.8498	0.054*
C1	0.3922 (3)	-0.02816 (11)	0.6606 (2)	0.0563 (8)
H1A	0.4122	-0.0577	0.6745	0.068*

C2	0.3764 (3)	-0.01009 (12)	0.5761 (2)	0.0620 (9)
H2A	0.3831	-0.0246	0.5217	0.074*
C3	0.3483 (3)	0.03437 (12)	0.5884 (2)	0.0535 (7)
H3A	0.3334	0.0552	0.5424	0.064*
C4	0.1277 (3)	-0.00731 (10)	0.88551 (19)	0.0498 (7)
H4A	0.1419	-0.0354	0.9106	0.060*
C5	0.0039 (3)	0.01730 (10)	0.8830 (2)	0.0513 (7)
H5A	-0.0812	0.0094	0.9057	0.062*
C6	0.0332 (3)	0.05626 (10)	0.83963 (18)	0.0439 (6)
H6A	-0.0315	0.0794	0.8281	0.053*
C7	0.6081 (3)	0.03204 (11)	0.9177 (2)	0.0525 (7)
H7B	0.6429	0.0055	0.9429	0.063*
C8	0.6744 (3)	0.07213 (11)	0.9282 (2)	0.0573 (8)
H8A	0.7621	0.0783	0.9610	0.069*
C9	0.5838 (3)	0.10188 (10)	0.8796 (2)	0.0506 (7)
H9A	0.6015	0.1320	0.8744	0.061*
C10	0.0270 (3)	0.10422 (9)	0.59664 (18)	0.0432 (6)
C11	-0.0235 (3)	0.12837 (10)	0.51180 (19)	0.0482 (7)
C12	0.0215 (4)	0.17094 (12)	0.4950 (2)	0.0665 (9)
H12A	0.0822	0.1856	0.5386	0.080*
C13	-0.0224(5)	0.19198 (14)	0.4145 (3)	0.0849 (12)
H13A	0.0098	0.2205	0.4039	0.102*
C14	-0.1128(5)	0.17104 (17)	0.3507 (3)	0.0962 (14)
H14A	-0.1437	0.1854	0.2970	0.115*
C15	-0.1579(5)	0.12930 (18)	0.3653 (3)	0.1075 (18)
H15A	-0.2178	0 1149	0 3208	0.129*
C16	-0.1153(4)	0 10794 (14)	0.4459(2)	0.0787(12)
H16A	-0 1490	0.0796	0.4558	0.094*
C17	-0.0629(3)	0.06701 (10)	0 62470 (17)	0.0429(6)
C18	-0.2001(3)	0.07601 (11)	0.6479(2)	0.0129(0) 0.0524(7)
H18A	-0.2359	0 1047	0.6430	0.063*
C19	-0.2831(3)	0.04240(13)	0.6781 (2)	0.0605 (8)
H19A	-0.3731	0.0488	0.6957	0.073*
C20	-0.2333(4)	-0.00019(13)	0.6822 (2)	0.0670 (9)
H20A	-0.2892	-0.0227	0.7027	0.080*
C21	-0.0998(4)	-0.00227	0.6560 (2)	0.0638 (8)
H21A	-0.0674	-0.0389	0.6571	0.0038 (8)
C22	-0.0140(3)	0.03370 (10)	0.6371	0.077 0.0515(7)
H22A	0.0766	0.02370 (10)	0.6117	0.0515(7)
C23	0.0700	0.0171 0.14282(11)	0.0117 0.0387 (2)	0.002
C24	0.1480(5)	0.14232(11) 0.11179(12)	0.9387(2)	0.0500(0)
U24	0.2230 (4)	0.11179 (12)	0.9944(2)	0.0074(9)
C25	0.1776 (6)	0.1003	1.0740 (3)	0.081°
H25A	0.1770 (0)	0.0781	1.0740 (3)	0.0095 (14)
C26	0.2510	0.1136/ (18)	1.0085 (3)	0.107
U20 H26A	0.0304 (7)	0.11304 (10)	1.0705 (5)	0.1055 (19)
1120A	-0.0270(5)	0.1037	1.1310	0.127
U27 H27A	-0.1145	0.14300 (10)	1.0444 (3)	0.0770(10)
112/A	0.11+3	0.15916 (12)	0.0642(2)	0.117
C20	0.0211 (4)	0.13910(13)	0.9043 (3)	0.0740(10)

H28A	-0.0315	0.1800	0.9288	0.090*
C29	0.3590 (3)	0.20070 (10)	0.8864 (2)	0.0547 (7)
C30	0.3323 (4)	0.22422 (11)	0.9633 (2)	0.0710 (9)
H30A	0.2491	0.2187	0.9902	0.085*
C31	0.4288 (6)	0.25585 (13)	1.0002 (3)	0.0899 (13)
H31A	0.4091	0.2715	1.0511	0.108*
C32	0.5529 (6)	0.26417 (14)	0.9621 (3)	0.0970 (14)
H32A	0.6186	0.2848	0.9880	0.116*
C33	0.5794 (4)	0.24191 (13)	0.8856 (3)	0.0882 (13)
H33A	0.6627	0.2478	0.8590	0.106*
C34	0.4823 (4)	0.21035 (11)	0.8474 (3)	0.0691 (9)
H34A	0.5009	0.1957	0.7950	0.083*
C35	0.0942 (3)	0.19466 (10)	0.7724 (2)	0.0546 (7)
C36	0.1355 (4)	0.23402 (11)	0.7351 (2)	0.0665 (9)
H36A	0.2295	0.2440	0.7475	0.080*
C37	0.0374 (5)	0.25872 (13)	0.6794 (3)	0.0859 (12)
H37A	0.0662	0.2850	0.6543	0.103*
C38	-0.1033 (5)	0.24445 (14)	0.6609 (3)	0.0886 (13)
H38A	-0.1688	0.2613	0.6241	0.106*
C39	-0.1453 (4)	0.20575 (14)	0.6968 (3)	0.0815 (12)
H39A	-0.2397	0.1962	0.6849	0.098*
C40	-0.0466 (4)	0.18051 (12)	0.7515 (2)	0.0677 (9)
H40A	-0.0753	0.1537	0.7743	0.081*
01	0.4596 (3)	0.13805 (11)	0.2598 (2)	0.0970 (9)
C44	0.5827 (5)	0.1501 (2)	0.1320 (3)	0.128 (2)
H44A	0.5909	0.1700	0.0826	0.192*
H44B	0.5551	0.1213	0.1090	0.192*
H44C	0.6734	0.1481	0.1684	0.192*
C42	0.3529 (6)	0.15112 (18)	0.3139 (3)	0.1105 (16)
H42A	0.2593	0.1484	0.2799	0.133*
H42B	0.3671	0.1819	0.3313	0.133*
C43	0.4733 (6)	0.16682 (17)	0.1874 (3)	0.1003 (14)
H43A	0.5005	0.1961	0.2102	0.120*
H43B	0.3819	0.1693	0.1506	0.120*
C41	0.3591 (7)	0.12344 (18)	0.3947 (4)	0.136 (2)
H41A	0.2859	0.1326	0.4311	0.204*
H41B	0.4514	0.1265	0.4287	0.204*
H41C	0.3438	0.0930	0.3775	0.204*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.03305 (11)	0.03839 (12)	0.03758 (12)	-0.00223 (8)	0.00183 (8)	0.00409 (9)
Cl1	0.0477 (4)	0.0613 (4)	0.0563 (4)	-0.0130 (3)	0.0054 (3)	0.0137 (4)
P1	0.0461 (4)	0.0396 (4)	0.0488 (4)	0.0000 (3)	-0.0001 (3)	-0.0003 (3)
N1	0.0406 (11)	0.0418 (12)	0.0508 (13)	-0.0015 (9)	0.0092 (10)	-0.0054 (10)
N2	0.0369 (11)	0.0504 (13)	0.0390 (12)	-0.0029 (9)	0.0063 (9)	0.0000 (10)
N3	0.0404 (11)	0.0404 (12)	0.0448 (12)	-0.0011 (9)	0.0044 (9)	0.0060 (10)

N4	0.0360 (11)	0.0412 (12)	0.0363 (11)	-0.0017 (9)	0.0043 (9)	0.0005 (9)
N5	0.0386 (11)	0.0438 (12)	0.0439 (12)	0.0035 (9)	0.0016 (9)	0.0038 (10)
N6	0.0372 (11)	0.0418 (12)	0.0427 (12)	0.0007 (9)	0.0005 (9)	0.0019 (10)
N7	0.0414 (12)	0.0460 (12)	0.0465 (13)	-0.0009 (10)	0.0001 (10)	0.0072 (11)
B1	0.0433 (16)	0.0391 (16)	0.0526 (19)	0.0013 (13)	0.0052 (14)	0.0029 (14)
C1	0.0502 (16)	0.0511 (17)	0.069 (2)	-0.0068 (13)	0.0149 (15)	-0.0159 (16)
C2	0.0540 (18)	0.078 (2)	0.057 (2)	-0.0110 (16)	0.0188 (15)	-0.0245 (18)
C3	0.0421 (15)	0.076 (2)	0.0433 (16)	-0.0072 (14)	0.0098 (12)	-0.0031 (15)
C4	0.0509 (16)	0.0510 (16)	0.0479 (16)	-0.0085 (13)	0.0077 (13)	0.0127 (13)
C5	0.0429 (15)	0.0633 (19)	0.0490 (16)	-0.0072 (13)	0.0113 (12)	0.0066 (14)
C6	0.0356 (13)	0.0535 (16)	0.0429 (15)	-0.0007 (12)	0.0064 (11)	-0.0003 (13)
C7	0.0430 (15)	0.0604 (19)	0.0519 (17)	0.0084 (13)	-0.0049 (12)	0.0095 (14)
C8	0.0436 (15)	0.066 (2)	0.0584 (19)	-0.0009 (14)	-0.0125 (13)	0.0009 (16)
C9	0.0435 (15)	0.0518 (17)	0.0544 (17)	-0.0049 (12)	-0.0051 (13)	-0.0031 (14)
C10	0.0361 (13)	0.0507 (16)	0.0426 (15)	0.0009 (11)	0.0029 (11)	-0.0010 (12)
C11	0.0421 (14)	0.0578 (18)	0.0438 (16)	-0.0002 (13)	-0.0001 (12)	0.0047 (13)
C12	0.077 (2)	0.060 (2)	0.059 (2)	-0.0028 (17)	-0.0089 (17)	0.0092 (16)
C13	0.109 (3)	0.066 (2)	0.076 (3)	-0.006 (2)	-0.005 (2)	0.027 (2)
C14	0.101 (3)	0.112 (4)	0.069 (3)	-0.015 (3)	-0.023 (2)	0.040 (3)
C15	0.111 (3)	0.130 (4)	0.070 (3)	-0.048 (3)	-0.040 (2)	0.038 (3)
C16	0.082 (2)	0.087 (3)	0.061 (2)	-0.030 (2)	-0.0195 (19)	0.0201 (19)
C17	0.0364 (13)	0.0546 (16)	0.0371 (14)	-0.0053 (11)	0.0009 (10)	0.0007 (12)
C18	0.0389 (14)	0.0646 (19)	0.0532 (17)	0.0003 (13)	0.0030 (12)	-0.0012 (15)
C19	0.0405 (15)	0.086 (3)	0.0557 (19)	-0.0097 (16)	0.0075 (13)	-0.0034 (17)
C20	0.0551 (19)	0.079 (2)	0.067 (2)	-0.0256 (17)	0.0054 (16)	0.0059 (18)
C21	0.0590 (19)	0.0575 (19)	0.074 (2)	-0.0086(15)	0.0038 (16)	0.0031 (17)
C22	0.0406 (14)	0.0577 (18)	0.0564 (18)	-0.0026(13)	0.0055 (13)	-0.0014 (14)
C23	0.0644 (19)	0.0540 (18)	0.0530 (18)	-0.0114 (15)	0.0114 (15)	-0.0116 (15)
C24	0.095 (3)	0.060 (2)	0.0480 (18)	-0.0119 (18)	0.0096 (17)	-0.0069 (16)
C25	0.139 (4)	0.080 (3)	0.051 (2)	-0.026 (3)	0.020 (2)	-0.0063 (19)
C26	0.157 (5)	0.098 (4)	0.068 (3)	-0.066 (4)	0.045 (3)	-0.023(3)
C27	0.102 (3)	0.104 (4)	0.097 (3)	-0.046(3)	0.052 (3)	-0.054(3)
C28	0.077(2)	0.071 (2)	0.079 (2)	-0.0156(19)	0.0226 (19)	-0.027(2)
C29	0.0590 (18)	0.0418 (15)	0.0600 (19)	-0.0033(13)	-0.0083(14)	0.0013 (14)
C30	0.089 (2)	0.055 (2)	0.066(2)	-0.0126(18)	-0.0081(18)	-0.0034(17)
C31	0.125(4)	0.065(2)	0.074(3)	-0.014(2)	-0.017(3)	-0.016(2)
C32	0.109(3)	0.065(3)	0.108 (4)	-0.030(2)	-0.033(3)	-0.005(3)
C33	0.078(3)	0.061(2)	0.122 (4)	-0.0238(19)	-0.006(2)	-0.002(2)
C34	0.068(2)	0.001(2)	0.022(1)	-0.0090(16)	-0.0022(18)	-0.002(2)
C35	0.0554(17)	0.0479(17)	0.0583(18)	0.0112 (13)	-0.0046(14)	-0.0091(14)
C36	0.077(2)	0.0504(18)	0.070(2)	0.0082(16)	-0.0056(17)	0.0031 (16)
C37	0.077(2) 0.112(3)	0.057(2)	0.070(2)	0.0002(10)	-0.014(2)	0.007(2)
C38	0.097(3)	0.037(2) 0.072(3)	0.000(3)	0.017(2)	-0.024(2)	-0.007(2)
C39	0.063 (2)	0.080(3)	0.096 (3)	0.0233 (19)	-0.018(2)	-0.018(2)
C40	0.061 (2)	0.056 (2)	0.082(2)	0.0105 (16)	-0.0078(17)	-0.0080(18)
01	0.105(2)	0.110(2)	0.0786 (19)	0.0160 (18)	0.0204 (16)	0.0066 (18)
C44	0.099(4)	0.197 (6)	0.090(3)	0.006 (4)	0.019(3)	0.020 (4)
C42	0.131(4)	0 104 (4)	0.098(4)	0.019(3)	0.019(3)	-0.020(-7)
C43	0.113 (4)	0.105 (4)	0.090(1)	-0.007(3)	0.020(3)	-0.003(3)
UTJ	U.113 (T)	0.105 (+)	0.001 (3)	0.007 (3)	0.002 (3)	0.005 (5)

sup-7

C41	0.210 (7)	0.095 (4)	0.115 (4)	0.027 (4)	0.075 (4)	0.007 (3)
<i>a</i>	(2 0)					
Geometric parai	neters (A, °)					
Ru1—N7		2.063 (2)	0	C18—H18A		0.9300
Ru1—N4		2.079 (2)	C	С19—С20		1.367 (5)
Ru1—N6		2.084 (2)	C	С19—Н19А		0.9300
Ru1—N2		2.117 (2)	C	C20—C21		1.381 (5)
Ru1—P1		2.3158 (8)	C	C20—H20A		0.9300
Ru1—Cl1		2.4429 (7)	C	C21—C22		1.382 (4)
Ru1—B1		3.183 (3)	C	C21—H21A		0.9300
P1—C35		1.841 (3)	C	C22—H22A		0.9300
P1—C23		1.844 (3)	C	C23—C28		1.384 (5)
P1—C29		1.859 (3)	C	C23—C24		1.400 (5)
N1-C1		1.345 (4)	C	C24—C25		1.378 (5)
N1—N2		1.357 (3)	0	C24—H24A		0.9300
N1—B1		1.539 (4)	C	C25—C26		1.368 (7)
N2—C3		1.340 (3)	C	C25—H25A		0.9300
N3—C4		1.346 (3)	C	C26—C27		1.377 (7)
N3—N4		1.365 (3)	C	C26—H26A		0.9300
N3—B1		1.542 (4)	C	C27—C28		1.403 (6)
N4—C6		1.335 (3)	C	С27—Н27А		0.9300
N5—C7		1.346 (3)	C	C28—H28A		0.9300
N5—N6		1.366 (3)	C	C29—C34		1.379 (5)
N5—B1		1.538 (4)	C	C29—C30		1.393 (5)
N6—C9		1.333 (3)	C	C30—C31		1.388 (5)
N7—C10		1.284 (3)	C	С30—Н30А		0.9300
N7—H7A		0.8600	C	C31—C32		1.372 (6)
B1—H1		1.1000	C	С31—Н31А		0.9300
C1—C2		1.367 (5)	C	C32—C33		1.368 (6)
C1—H1A		0.9300	C	С32—Н32А		0.9300
C2—C3		1.384 (5)	C	C33—C34		1.397 (5)
C2—H2A		0.9300	0	С33—Н33А		0.9300
С3—НЗА		0.9300	C	С34—Н34А		0.9300
C4—C5		1.375 (4)	C	C35—C36		1.384 (5)
C4—H4A		0.9300	C	C35—C40		1.390 (4)
C5—C6		1.384 (4)	C	C36—C37		1.390 (5)
С5—Н5А		0.9300	C	С36—Н36А		0.9300
С6—Н6А		0.9300	C	C37—C38		1.387 (6)
С7—С8		1.362 (4)	C	С37—Н37А		0.9300
С7—Н7В		0.9300	C	C38—C39		1.360 (6)
С8—С9		1.386 (4)	C	C38—H38A		0.9300
C8—H8A		0.9300	C	C39—C40		1.393 (5)
С9—Н9А		0.9300	C	С39—Н39А		0.9300
C10—C17		1.491 (4)	C	С40—Н40А		0.9300
C10-C11		1.493 (4)	0	D1—C43		1.403 (5)
C11—C16		1.380 (4)	0	D1—C42		1.406 (5)
C11—C12		1.383 (4)	C	C44—C43		1.472 (6)
C12—C13		1.381 (5)	C	C44—H44A		0.9600

C12—H12A	0.9300	C44—H44B	0.9600
C13—C14	1.360 (6)	C44—H44C	0.9600
C13—H13A	0.9300	C42—C41	1.462 (7)
C14—C15	1.354 (6)	C42—H42A	0.9700
C14—H14A	0.9300	C42—H42B	0.9700
C15—C16	1.385 (5)	C43—H43A	0.9700
C15—H15A	0.9300	С43—Н43В	0.9700
C16—H16A	0.9300	C41—H41A	0.9600
C17—C22	1.384 (4)	C41—H41B	0.9600
C17—C18	1.394 (4)	C41—H41C	0.9600
C18—C19	1.383 (4)		
N7—Ru1—N4	98.08 (8)	C16—C15—H15A	119.8
N7—Ru1—N6	169.96 (9)	C11—C16—C15	120.6 (4)
N4—Ru1—N6	88.39 (8)	C11—C16—H16A	119.7
N7—Ru1—N2	87.74 (9)	C15—C16—H16A	119.7
N4—Ru1—N2	85.29 (8)	C22—C17—C18	119.0 (3)
N6—Ru1—N2	85.14 (8)	C22—C17—C10	121.8 (2)
N7—Ru1—P1	92.60 (7)	C18—C17—C10	119.2 (3)
N4—Ru1—P1	91.98 (6)	C19—C18—C17	120.3 (3)
N6—Ru1—P1	94.85 (6)	C19—C18—H18A	119.9
N2—Ru1—P1	177.26 (6)	C17—C18—H18A	119.9
N7—Ru1—Cl1	81.51 (6)	C20—C19—C18	120.2 (3)
N4—Ru1—Cl1	173.03 (6)	С20—С19—Н19А	119.9
N6—Ru1—Cl1	91.13 (6)	С18—С19—Н19А	119.9
N2—Ru1—Cl1	87.75 (6)	C19—C20—C21	120.0 (3)
P1—Ru1—Cl1	94.99 (3)	C19—C20—H20A	120.0
N7—Ru1—B1	126.89 (9)	C21—C20—H20A	120.0
N4—Ru1—B1	52.49 (8)	C20—C21—C22	120.4 (3)
N6—Ru1—B1	52.24 (8)	C20-C21-H21A	119.8
N2—Ru1—B1	51.71 (8)	C22—C21—H21A	119.8
P1—Ru1—B1	126.35 (6)	C21—C22—C17	120.0 (3)
Cl1—Ru1—B1	122.41 (6)	C21—C22—H22A	120.0
C35—P1—C23	105.29 (15)	C17—C22—H22A	120.0
C35—P1—C29	101.29 (14)	C28—C23—C24	118.7 (3)
C23—P1—C29	98.59 (14)	C28—C23—P1	125.2 (3)
C35—P1—Ru1	112.22 (10)	C24—C23—P1	116.1 (3)
C23—P1—Ru1	113.85 (10)	C25—C24—C23	121.2 (4)
C29—P1—Ru1	123.32 (11)	C25—C24—H24A	119.4
C1—N1—N2	109.8 (2)	C23—C24—H24A	119.4
C1—N1—B1	130.7 (3)	C26—C25—C24	120.0 (5)
N2—N1—B1	119.4 (2)	С26—С25—Н25А	120.0
C3—N2—N1	106.3 (2)	С24—С25—Н25А	120.0
C3—N2—Ru1	134.4 (2)	C25—C26—C27	119.9 (4)
N1—N2—Ru1	119.04 (16)	С25—С26—Н26А	120.1
C4—N3—N4	110.0 (2)	C27—C26—H26A	120.1
C4—N3—B1	129.0 (2)	C26—C27—C28	120.9 (4)
N4—N3—B1	120.8 (2)	C26—C27—H27A	119.5
C6—N4—N3	105.9 (2)	C28—C27—H27A	119.5
C6—N4—Ru1	135.73 (19)	C23—C28—C27	119.3 (4)

N3—N4—Ru1	118.33 (15)	C23—C28—H28A	120.4
C7—N5—N6	109.3 (2)	C27—C28—H28A	120.4
C7—N5—B1	130.1 (2)	C34—C29—C30	118.1 (3)
N6—N5—B1	120.3 (2)	C34—C29—P1	121.1 (3)
C9—N6—N5	106.5 (2)	C30-C29-P1	120.8 (3)
C9—N6—Ru1	134.4 (2)	C31—C30—C29	120.7 (4)
N5—N6—Ru1	118.73 (16)	C31—C30—H30A	119.7
C10—N7—Ru1	146.0 (2)	С29—С30—Н30А	119.7
C10—N7—H7A	107.0	C32—C31—C30	120.5 (4)
Ru1—N7—H7A	107.0	С32—С31—Н31А	119.8
N5—B1—N1	108.3 (2)	С30—С31—Н31А	119.8
N5—B1—N3	108.4 (2)	C33—C32—C31	119.5 (4)
N1—B1—N3	106.8 (2)	С33—С32—Н32А	120.2
N5—B1—Ru1	68.71 (14)	C31—C32—H32A	120.2
N1—B1—Ru1	69.76 (14)	C32—C33—C34	120.4 (4)
N3—B1—Ru1	68.29 (14)	С32—С33—Н33А	119.8
N5—B1—H1	110.7	С34—С33—Н33А	119.8
N1—B1—H1	111.0	C29—C34—C33	120.7 (4)
N3—B1—H1	111.6	С29—С34—Н34А	119.6
Ru1—B1—H1	179.2	С33—С34—Н34А	119.6
N1—C1—C2	108.2 (3)	C36—C35—C40	118.2 (3)
N1—C1—H1A	125.9	C36—C35—P1	120.2 (2)
C2—C1—H1A	125.9	C40—C35—P1	121.1 (3)
C1—C2—C3	105.5 (3)	C35—C36—C37	120.3 (4)
C1—C2—H2A	127.2	С35—С36—Н36А	119.9
C3—C2—H2A	127.2	С37—С36—Н36А	119.9
N2—C3—C2	110.1 (3)	C38—C37—C36	120.5 (4)
N2—C3—H3A	125.0	С38—С37—Н37А	119.8
С2—С3—НЗА	125.0	С36—С37—Н37А	119.8
N3—C4—C5	108.0 (3)	C39—C38—C37	119.8 (4)
N3—C4—H4A	126.0	C39—C38—H38A	120.1
C5—C4—H4A	126.0	С37—С38—Н38А	120.1
C4—C5—C6	105.2 (2)	C38—C39—C40	119.9 (4)
С4—С5—Н5А	127.4	С38—С39—Н39А	120.1
С6—С5—Н5А	127.4	С40—С39—Н39А	120.1
N4—C6—C5	110.8 (2)	C35—C40—C39	121.3 (4)
N4—C6—H6A	124.6	C35—C40—H40A	119.4
С5—С6—Н6А	124.6	С39—С40—Н40А	119.4
N5—C7—C8	108.5 (3)	C43—O1—C42	113.4 (4)
N5—C7—H7B	125.7	C43—C44—H44A	109.5
С8—С7—Н7В	125.7	C43—C44—H44B	109.5
С7—С8—С9	105.6 (3)	H44A—C44—H44B	109.5
С7—С8—Н8А	127.2	C43—C44—H44C	109.5
С9—С8—Н8А	127.2	H44A—C44—H44C	109.5
N6—C9—C8	110.1 (3)	H44B—C44—H44C	109.5
N6—C9—H9A	124.9	O1—C42—C41	110.2 (4)
С8—С9—Н9А	124.9	O1—C42—H42A	109.6
N7—C10—C17	121.5 (2)	C41—C42—H42A	109.6
N7—C10—C11	120.6 (2)	O1—C42—H42B	109.6

C17-C10-C11	117.9 (2)	C41—C42—H42B	109.6
C16-C11-C12	117.7 (3)	H42A—C42—H42B	108.1
C16-C11-C10	120.1 (3)	O1—C43—C44	110.3 (4)
C12-C11-C10	122.1 (3)	O1—C43—H43A	109.6
C13—C12—C11	121.1 (3)	C44—C43—H43A	109.6
C13—C12—H12A	119.5	O1—C43—H43B	109.6
C11—C12—H12A	119.5	C44—C43—H43B	109.6
C14—C13—C12	120.0 (4)	H43A—C43—H43B	108.1
C14—C13—H13A	120.0	C42—C41—H41A	109.5
С12—С13—Н13А	120.0	C42—C41—H41B	109.5
C15-C14-C13	120.2 (4)	H41A—C41—H41B	109.5
C15—C14—H14A	119.9	C42—C41—H41C	109.5
C13—C14—H14A	119.9	H41A—C41—H41C	109.5
C14-C15-C16	120.4 (4)	H41B—C41—H41C	109.5
C14—C15—H15A	119.8		

