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Dihydrotestosterone (DHT) is the most potent androgen that regulates hair cycling. Hair
cycling involves cross-talk between the androgen and Wnt/b-catenin pathways. However,
howDHT regulates hair follicle (HF) growth through theWnt/b-catenin pathway has not been
well investigated. This study aimed to investigate the roles of DHT in hair growth in vivo and in
vitro.HumanscalpHFswere treatedwithdifferent concentrationsofDHT (10-5, 10-6, 10-7, 10-
8, and 10-9 mol/L) for 10 days. The effects of DHT on hair shaft elongation, the proliferation of
hair matrix cells, and the levels of b-catenin, GSK-3b, and phosphorylated GSK-3b (ser9)
were evaluated in the cultured HFs. The effects of DHT were further investigated in C57BL/6
mice. Moreover, the growth of cultured humanHFswas observed after interferingwith the b-
cateninpathway through inhibitorsoractivators in thepresenceorabsenceofDHT.We found
that different concentrations of DHT had different effects on human HFs in vitro and C57BL/6
mice. At 10-6mol/L, DHT inhibitedHF growth and b-catenin/p-GSK-3b expression, whereas
10-7 mol/L DHT induced HF growth and b-catenin/p-GSK-3b expression. In addition, a b-
catenin inhibitor (21H7) inhibited HF growth in vitro, while a b-catenin activator (IM12)
promoted HF growth in vitro and antagonized the inhibition of HFs by high levels of DHT.
These results suggest that DHT plays a pivotal role in region-specific hair growth, whichmay
be related to the Wnt/b-catenin pathway.

Keywords: hair follicle, dihydrotestosterone, hair growth, Wnt/b-catenin pathway, b-catenin activator,
androgenetic alopecia
INTRODUCTION

Many hormones participate in the regulation of hair follicle (HF) growth and cycling, of which
androgens are the most representative(Al-Nuaimi et al., 2010; Inui and Itami, 2013). Androgens
have a profound effect on the growth of human scalp and body hair, such as promoting beard
growth but leading to hair loss in androgenetic alopecia (AGA) in males (Randall et al., 2000;
Randall, 2007). AGA results from an abnormal sensitivity of balding scalp HFs to circulating
in.org January 2020 | Volume 10 | Article 15281
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testosterone (T). In 1996, Itami showed that a higher level of 5a-
reductase type 2 (5aR2) was found in balding scalp HFs than in
occipital scalp HFs, which can convert T to the more potent
DHT (Itami et al., 1996). This finding indicates that balding scalp
HFs have a higher level DHT than nonbalding scalp HFs, which
is consistent with the results of a double-blind study showing
that DHT levels were significantly higher in a bald scalp than in a
hair-containing scalp (Dallob et al., 1994). Once 5aR2 is
inhibited by finasteride, an oral drug that can decrease both
serum and scalp skin DHT levels, AGA progression is delayed
(Drake et al., 1999; Price, 1999). These findings suggest that
androgens are required to maintain AGA balding.

Asmentioned before, androgens stimulate hair growth inmany
areas andhaveparadoxical effects onhumanHFs. They causemales
to have more hair on the face and promote pubic and axillary hair
development in both sexes, while often causing balding in the same
individual (Hamilton, 2010;Ceruti et al., 2017;Mirandaet al., 2018).
However, androgens are essential for hair growth. Male
pseudohermaphroditism patients show nearly no beard growth or
AGAhair loss because of a lack of 5aR2, which suggests thatDHT is
necessary for beard growth (Andersson et al., 1991; Adachi et al.,
2000; Jakubiczka, 2015).Moreover, androgens regulate hair growth
in both males and females. There are a number of female subjects
with abnormal hair growth, such as hirsutism in polycystic ovary
syndrome (PCOS) patients, hair loss in females affected by AGA
and female pattern hair loss, and these conditions are closely related
to androgens (Blumepeytavi and Hahn, 2008; Lizneva et al., 2016).
However, the mechanisms by which androgens have simultaneous
but different effects on one organ, the HF, in different areas of the
body in the same individual have not been well studied.

The Wnt/b-catenin pathway is known to positively affect
mammalian HF growth and cycling (Andl et al., 2002; Ito et al.,
2007). After activation, b-catenin accumulates in the cytoplasm
and then translocates to the nucleus, where it interacts with Lef/
Tcf transcription factors to regulate the expression of genes
responsible for HF growth. The activity of b-catenin, the key
molecule in the Wnt/b-catenin pathway, can be suppressed by
glycogen synthase kinase-3b (GSK-3b), which is inhibited by
phosphorylation. DHT abrogates the ability of dermal papilla
cells (DPCs) from patients with AGA to induce HF stem cell
differentiation via inhibition of the Wnt/b-catenin pathway in
DPCs, which involves inhibiting GSK-3b activity (Mulholland
et al., 2005). Therefore, we hypothesized that the Wnt/b-catenin
pathway is essential to HF growth regulation by DHT.

The present study shows that the impact of DHT on HF
growth and cycling varies at different concentrations by
interacting with the Wnt/b-catenin signaling pathway. We
provide evidence that activation of the Wnt/b-catenin pathway
can weaken the negative influence of high-dose DHT on HFs.
MATERIALS AND METHODS

HFs Culture
Occipital nonbald human scalp skin was donated frommales and
females undergoing hair transplant surgery. HF donors were
Frontiers in Pharmacology | www.frontiersin.org 2
selected randomly from among patients who did not take any
antiandrogens in the past 3 months and who did not have
inflamed scalp skin. All 12 volunteers (men and women, ages
20–45 years) signed the informed consent form for participation
in this study.

Anagen VI HFs (Leirós et al., 2012) were isolated by
microdissection with ophthalmic forceps and a scalpel blade,
and the follicles were separated into a single follicle under a
dissecting microscope (Nikon, Japan). Fat was removed carefully,
and HFs were cut at the dermo-subcutaneous fat interface.
Isolated HFs were maintained individually in 24-well plates
with 500 ml serum-free Williams’ E medium (Gibco, USA),
supplemented with 2 mM L-glutamine (Gibco, USA), 2 mM
HEPES (Gibco, USA), 10 mg/L transferrin (MP Biomedicals,
USA), 10 mg/L sodium selenite (MP Biomedicals, USA), 10 mg/L
hydrocortisone (MP Biomedicals, USA), 10 mg/L insulin
(Sigma-Aldrich, USA), and 1% antibiotics (Gibco, USA). HFs
were maintained at 37°C in an atmosphere of 5% CO2/95% air.

DHT Treatment
After 24 h, the live HFs that grew 0.3–0.5 mm were cultured with
DHT (10-5~10-9 mol/L, MP Biomedicals, 521-18-6, purity≥98%
(HPLC), USA) for 10 days. The hair shaft length was measured
every 2 days, and the mean growth rate of the hair shaft was
calculated. At 10 days, partially isolated HFs cocultured in 10-6

mol/L or 10-7 mol/L DHT were analyzed for the proliferation of
hair matrix cells by Ki-67 staining. Ethanol (0.1%) dissolved in
serum-free Williams’ E medium served as the vehicle in the
negative control group.

Hair Growth In Vivo
Male 7-week-old C57BL/6 mice (n = 40) purchased from
Nanjing University Model Animal Research Institute (Nanjing,
China) were housed in plastic cages in a room with controlled
temperature (22°C ± 1°C) and humidity (55 ± 15%). Mice were
maintained on a regular pellet diet with access to fresh water.
After acclimatization for 7 days, all mice were depilated with 6%
sodium sulfide solution in the dorsal area (approximately 2 cm in
width and 4 cm in length) before being anesthetized. Mice were
randomly divided into 4 groups administered different
treatments: negative control group, 40% DMSO dissolved in
saline solution; experimental groups, DHT (10-6, 10-7, and 10-8

mol/L). All mice were administered 200 ml solution to the test
area every day for 17 days, and the back skin of these mice was
observed and photographed. After depilation at day 14, the
mouse back skin was isolated to examine histological features
by hematoxylin and eosin staining and related-proteins
expression by Western blot. The individual mouse skin
samples were fixed in 4% paraformaldehyde (Servicebio,
China) for 24 h, cut into 3-mm sections with a pathology
microtome (Leica, German), and stained with hematoxylin and
eosin; the histological morphology of the skin was examined by
light microscopy (NIKON, Japan).

Western Blot
Here, Nuclear and Cytoplasmic Protein Extraction Kit
(Beyotime, #P0028, Shanghai, China) was employed to isolate
January 2020 | Volume 10 | Article 1528
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the nucleoproteins of the back skin or cell lysis buffer to lyse the
total proteins; after that, the concentrations of these
nucleoproteins and total proteins were measured by a micro
BCA protein assay kit (Pierce, Irvine, CA, USA). Afterwards, a
total of 50 mg per lane of nucleoproteins or total proteins was
added into the well of sodium dodecyl sulfate-polyacrylamide
gel electrophoresis gels (Invitrogen), and immunoblotting was
performed using an anti-b-catenin (1:5000, Abcam, ab32572,
USA), anti-GSK3b (1:5000, Abcam, ab32391, USA), and anti-p-
GSK3b (1:500, Abcam, ab131097, USA) antibodies. Lamin B
and GAPDH levels were used for the normalization of
nucleoproteins or total proteins, respectively. Finally, scanned
and quantified the protein bands using a ChemiDoc image
analysis system (Bio-Rad Laboratories). The relative protein
levels were determined by calculating the ratio of the value of
the protein band of interest to that of the corresponding
GAPDH or Lamin B band.

Immunofluorescence
The cultured HFs were fixed in 4% paraformaldehyde (China)
for 24 h and then cut into 3-mm sections. After dewaxing, the
sections were soaked with 3% H2O2 for 10 min and preincubated
with normal goat serum (DAKO, Denmark) for 30 min. Then,
the paraffin sections were incubated with primary antibodies
against Ki67 (1:200, Abcam, ab8191, USA), b-catenin (1:200,
Abcam, ab32572, USA), GSK3b (1:200, Abcam, ab32391, USA),
p-GSK3b (1:100, Abcam, ab75814, USA), or androgen receptor
(AR, 1:600, CST, #5153, USA) at 4°C overnight. Afterwards, the
sections were incubated with secondary FITC- or CY3-
conjugated goat anti-mouse/rabbit antibody for 50 min. Next,
the sections were stained with 10 mg/ml DAPI (Abcam, USA).
These sections were observed under an inverted fluorescence
microscope (Nikon, Japan), and images were collected (FITC
green excitation wavelength 465–495 nm, emission wavelength
515–555 nm; CY3 red light excitation wavelength 510–560,
emission wavelength 590 nm). The relative expression levels of
Ki67, b-catenin, GSK3b, and p-GSK3b were analyzed by the
Image pro-plus 6.0 software: first of all, the immunofluorescence
image is converted into a black and white image; then the
integrated optical density (IOD) of the positive region is
analyzed; afterwards, calculate the area of positive region
(AREA); finally, mean density is obtained as follows: Mean
density = IOD/AREA.

21H7 and IM12 Treatment
21H7 is a selective inhibitor of the Wnt/b-catenin pathway that
destabilizes b-catenin, while IM12 is an activator of the Wnt/b-
catenin pathway that significantly increases b-catenin levels (Xu
et al., 2015). After 24 h, the live HFs that grew 0.3–0.5 mm were
cultured with IM12 (50, 100, or 500 nM; Sigma-Aldrich,
#SML0084, purity ≥ 98% (HPLC), USA) or 21H7 (1, 2, or
4 mM; Sigma-Aldrich, #SML0570, purity ≥ 98% (HPLC),
USA). Hair shaft length was measured every 2 days, and the
mean growth rate of the hair shaft was calculated. Partially
isolated HFs were cultured in DHT (10-6 mol/L), IM12
(500 nM) or 10-6 mol/L DHT and 500 nM IM12. After
Frontiers in Pharmacology | www.frontiersin.org 3
10 days of culture, the HFs were collected to analyze b-catenin
expression using an immunofluorescence assay.

Statistical Analysis
Data were statistically analyzed and graphed using GraphPad
Prism 5 (GraphPad Software, USA). All results are presented as
the mean ± standard deviation. Statistically significant
differences between groups were determined by Student’s t-
test. Multiple comparisons among ≥3 groups were performed
using one-way ANOVA followed by the Bonferroni post hoc test.
The nonparametric Mann-Whitney U test was used if data were
not normally distributed. P < 0.05 was considered
statistically significant.
RESULTS

Effects of DHT on Human HF Growth
In Vitro
First, we evaluated the effects of DHT on human HF growth based
ongrowth rate,morphologyof thehairmatrix (HM)and thedermal
papilla (DP), and HF proliferative activity. As shown in Figure 1A,
10-5 and 10-6 mol/L DHT inhibited HF growth, while 10-7 mol/L
DHT induced HF growth. Additionally, compared with control-
treated HFs, HFs had a considerably thinner HM, a more onion-
shaped DP, less melanin content and a lower percentage of Ki-67-
positive cells by exposing to 10-6mol/LDHT.WhileHFswhichwas
treated with 10-7 mol/L DHT showed a HM with a larger DP
volume, maximal melanin content and a significantly higher
number of Ki-67-positive cells. (Figures 1B, C). Furthermore, the
HFs after treated with 10-6 mol/L DHT entered the catagen phase
much faster than the control-treated HFs, and the HFs treated with
10-7 mol/L DHT opposite. Therefore, in the following study, we
chose 10-6 mol/L as the optimal concentration of DHT that inhibits
humanHFgrowth,which is close to the circulating concentrationof
human DHT.

Effects of DHT on Hair Regeneration in
C57BL/6 Mice
Then, we investigated the effects of DHT on HF cycling in vivo.
Depilation induces HFs to enter the next growth cycle
synchronously in C57BL/6 mice. Depilated dorsal mouse skin
is pink in the telogen phase, is gray when anagen is initiated, and
then gradually darkens. As shown in Figure 2, the control group
and the 10-8 mol/L DHT group exhibited light gray skin at day 9
after depilation, the low-dose DHT (10-7 mol/L) group had
darker skin than the other groups, and the 10-6 mol/L DHT
group still exhibited pink skin at day 9. At day 12, hair
regeneration was obvious in the low-dose DHT (10-7 mol/L)
group compared with the control group, while the skin of mice in
the high-dose DHT (10-6 mol/L) group remained pink at this
time point. HE staining (Figure 3) indicated that more hair
shafts were observed in the low-dose DHT (10-7 mol/L) group
than in the other groups. These results suggest that the effects of
DHT on HF growth depend on its concentration: the entry of
January 2020 | Volume 10 | Article 1528
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FIGURE 1 | Effects of different concentrations of dihydrotestosterone (DHT) on hair shaft growth of human HFs in vitro. Isolated anagen human HFs were cultured
with DHT at various concentrations or vehicle for 10 days. (A) Mean growth rates of hair shafts. Hair shaft length was measured every 2 days (n = 18). (B) Changes
in hair bulb morphology during the 10-day experimental period and immunofluorescence staining of Ki67 in HFs cultured with various concentrations of DHT (0, 10-6

and 10-7 mol/L) at day 10. (C) Percentages of Ki-67-positive cells in the matrix area (n = 6). The data are presented as the mean ± SD. Each bar represents the
mean of three independent experiments performed in triplicate. Compared with the vehicle-treated control group, *P < 0.05.
FIGURE 2 | Effects of topical dihydrotestosterone (DHT) on hair regeneration in C57BL/6 mice. The back skin was treated with DHT (10-6, 10-7, or 10-8 mol/L) every
day for 18 days in the DHT groups, while the vehicle-treated control group was treated with 40% DMSO. The back skin was photographed at days 0, 3, 6, 9, 12,
14, and 17 after treatment initiation.
Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 15284
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HFs into the anagen phase in C57BL/6 mice is induced by 10-7

mol/L DHT but inhibited by 10-6 mol/L DHT.

DHT Regulates HF Growth Through the
Wnt/b-Catenin Pathway
The effects of DHT on b-catenin, GSK3b, and p-GSK3b (ser-9)
levels in cultured human HFs and mouse HFs were analyzed
using semi-quantitative fluorescence and Western blot. In
human HFs, we found that high concentrations of DHT (10-5

and 10-6 mol/L) failed to induce the phosphorylation of GSK3b
at Ser-9 and thus inhibited b-catenin translocation into the
nucleus, while low concentrations of DHT (10-7 mol/L)
induced the phosphorylation of GSK3b at Ser-9 and thereby
promoted the nuclear translocation of b-catenin (Figure 4).
Immunofluorescence staining showed that AR is mainly
expressed in dermal papilla cells and hair matrix cells
(Figure 5). In addition, different concentrations of DHT had
no effect on GSK3b expression (P > 0.05). Furthermore, HFs
growth was inhibited by 21H7 and induced by IM12 in a dose-
dependent manner, and IM12 promoted the growth of HFs
treated with 10-6 mol/L DHT (Figures 6A–C). In addition,
IM12 (500 nM) promoted b-catenin translocation into the
nucleus and antagonized the inhibitory effect of DHT (10-6 M)
on b-catenin nuclear localization (Figures 6D, E). In mouse HFs,
we found that 10-6 mol/L DHT reduced the phosphorylation of
GSK3b at Ser-9 and thus inhibited b-catenin translocation into
the nucleus, while 10-7 mol/L DHT induced the phosphorylation
Frontiers in Pharmacology | www.frontiersin.org 5
of GSK3b at Ser-9 and thereby promoted the nuclear
translocation of b-catenin (Figure 7). In addition, different
concentrations of DHT had no effect on total GSK3b and total
b-catenin expression (P > 0.05). These results suggest that DHT
affects HF growth through the Wnt/b-catenin pathway.
DISCUSSION

Studies have found that 5aR2 is more highly expressed in the
AGA balding scalp and beard HFs in males than in nonbalding
AGA scalps (Price, 1999), so we speculated that the region-
specific expression of 5aR2 induces the distinct effects of
androgens on HF growth. However, it is difficult to assess the
influence of 5aR2 on HF growth because 5aR cannot be
maintained in culture systems in vitro. Therefore, we used
DHT in our study. We found that DHT at concentrations of
10-5 mol/L and 10-6 mol/L significantly inhibited HF growth,
while 10-7 mol/L DHT promoted HF growth compared with 10-8

mol/L DHT. Moreover, the effect of DHT on hair growth in
C57BL/6 mice is similar to that on in vitro HFs. These results
suggest that different concentrations of DHT greatly contribute
to androgen-induced HF development. Many scholars have
demonstrated that the scalp skin DHT concentration in AGA
is significantly higher than that in hair-containing scalp (Price,
1999), which is consistent with the results of our experiments
showing that high-dose DHT inhibits HF growth. However, after
FIGURE 3 | Effects of different concentrations of dihydrotestosterone (DHT) on hair follicle morphology in C57BL/6 mice. The back skin of C57BL/6 mice at 18 days
after treatment was shaved and then stained with hematoxylin and eosin. Representative HE staining images from mice treated with different concentrations of DHT
are shown. The red line refers to back skin, while the blue line represents gray skin.
January 2020 | Volume 10 | Article 1528
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treatment with finasteride, the scalp skin DHT levels decreased,
and AGA progression was delayed (Bang et al., 2004; Buchanan
and Robaire, 2010; Prahalada et al., 2015). In our study, we found
a similar phenomenon: when the DHT concentration decreased
from 10-6 mol/L to 10-7 mol/L, the HFs grew much better than in
the presence of higher DHT concentrations. In fact, the results
suggest that an appropriate level of DHT is required for normal
androgen-sensitive HF growth. Once the DHT concentration
decreased from 10-7 mol/L to 10-8 mol/L, the HF growth rate
Frontiers in Pharmacology | www.frontiersin.org 6
showed no significant difference from that in the control group,
which explains why beard growth is weaker in castrated males.

Activation of the Wnt/b-catenin pathway is important for HF
regeneration and hair shaft growth. It has been reported that HFs
cannot form when b-catenin, a key signaling molecule in this
pathway, is mutated in the hair substrate of mice. When the
mutant is induced in normal mice, the HFs do not enter the next
hair growth cycle (Huelsken et al., 2001). Moreover, the loss of b-
catenin activity directly leads to a block in the differentiation of
FIGURE 4 | Effects of different concentrations of dihydrotestosterone (DHT) on the expression of b-catenin, GSK3b, and p-GSK3b (ser9) in human HFs. The hair
follicles (HFs) were fixed and labeled with anti-b-catenin, anti-GSK3b, and anti-p-GSK3b (ser9) primary antibodies, followed by incubation with fluorescent secondary
antibodies. (A) The HFs were visualized: green, b-catenin and p-GSK3b (ser9); red, GSK3b (magnification: 200× and 400×). (B, C) The mean fluorescence intensity
of b-catenin, GSK3b, and p-GSK3b (ser9) in the matrix area. The data are presented as the mean ± SD (n = 6). Each bar represents the mean of three independent
experiments performed in triplicate. Compared with the control group, *P < 0.05. Scale bar 50 mm (200×).
January 2020 | Volume 10 | Article 1528
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HFSCs into HF cells (Povelones and Nusse, 2002; Furlong, 2005).
Thus, we concluded that DHT affects HF growth differently by
regulating the translocation of b-catenin, which is mediated by
GSK3b. GSK3b activity is determined by several factors, and it
has been demonstrated that phosphorylation at ser-9 is essential
for decreasing GSK3b activity (Shimizu and Morgan, 2004;
Mulholland et al., 2005). As expected, the Wnt/b-catenin
pathway is negatively influenced by high levels of DHT (10-5

and 10-6 mol/L) in cultured HFs. Our results are in agreement
with those of Leirós GJ et al., who found that DHT can
downregulate the expression of p-GSK3b (ser9) and b-catenin
in HFs from AGA patients (Leirós et al., 2012). Notably, HFs
treated with 10-7 mol/L DHT showed an obvious increase in the
nuclear expression of b-catenin in the hair matrix. Therefore, we
hypothesized that 10-7 mol/L DHT promotes HF growth by
activating the Wnt/b-catenin signaling pathway, while high
levels of DHT have the opposite effect. In the normal hair
follicle cycle, immunofluorescence staining indicated that AR is
expressed in the dermal papilla cells and hair matrix cells, so we
speculate that DHT might regulate Wnt/b-catenin signaling
pathway by binding with AR in these two types of cells.
However, the exact mechanism needs to be further confirmed.

To further demonstrate the role of the Wnt signaling pathway
in HF growth, we used IM12 and 21H7 to mimic the effects of
activating and inhibiting the Wnt signaling pathway (Schm?Le
et al., 2010; Tsai et al., 2014). In the presence of IM12, a b-
catenin-specific activator that impacts GSK3b, the growth rate of
HFs in vitro was significantly accelerated. Overwhelming
evidence has shown that the activation of b-catenin is
necessary to induce HFs (Celso et al., 2004). However, the
addition of the b-catenin inhibitor 21H7 markedly inhibited
the growth of HFs. David Enshell-Seijffers et al. also found that
ablation of b-catenin in HFs results in dramatic hair shortening
and thinning (Enshell-Seijffers et al., 2010). A similar positive
effect of IM12 on HFs was observed upon cotreatment with 10-6

mol/L DHT. Considering both of these results, it is conceivable
that DHT is involved in regulating HF growth by modulating the
translocation of b-catenin to the nucleus. From our results, we
conclude that the effects of DHT are closely related to its
concentration; actually, DHT can activate the Wnt pathway at
an appropriate concentration.
Frontiers in Pharmacology | www.frontiersin.org 7
Functional cross-talk between the androgen and Wnt/b-
catenin signaling pathways has been described in this study.
Our results indicate that DHT can regulate the expression of
molecules necessary for HF development, and some of these
factors involved in androgen-induced hair growth are encoded
by target genes of the Wnt/b-catenin pathway. We found that an
appropriate concentration of DHT resulted in an increase in p-
GSK3b (ser-9) levels in cultured HFs, followed by b-catenin
translocation into the nucleus and activation of the transcription
of downstream target genes (here means activate Wnt/b-catenin
pathway), which prompted faster HF growth. As shown in our
study, high-dose DHT had a negative effect on HFs that was
diminished by cotreatment with a b-catenin activator.

Previous studies have found that androgen has different
effects on hair follicles in different regions, and appropriate
concentrations of androgens can promote hair growth, while
excessive concentrations of androgens can inhibit hair growth
(Itami and Inui, 2005). Dermal papilla cells (DPC) can induce
hair follicle stem cells (HFSC) to differentiate into hair follicles,
while DHT inhibits HFSC differentiation by interfering with
Wnt pathway in a coculture model with human DPC and HFSC
(Leirós et al., 2012; Leirós et al., 2017). Of course, these studies
have given us a much clearer understanding of the growth of hair
follicles, but we also have found that these studies have not been
fully verified from the organ level. Therefore, this study verified
the effects of different concentrations DHT on the hair follicle,
and found that the expression levels of Wnt pathway protein (b-
catenin) changed significantly in DHT cultured hair follicles, and
the activator of Wnt pathway (IM12) antagonized the inhibition
of high concentration DHT on hair follicle growth in vitro, and
further confirmed that the growth of hair follicles was indeed
regulated by androgen and Wnt/b-catenin pathway at the
organ level.

Unfortunately, our experiments have not found the cause of
the regional effects of DHT on HFs. As mentioned above, the
concentration of DHT explains these differences, and AR is also
involved in the development of AGA, so there may be some
unknown mechanisms which regulate the growth of HF.
Therefore, in the coming studies, it’s necessary to elucidate the
mechanism by which DHT regulates GSK3b activity, and which
type of DHT target cells in the hair follicle will be, and what
FIGURE 5 | The expression pattern of AR in the normal human hair follicles (HFs). AR is mainly expressed in dermal papilla cells and hair matrix cells. Scale bar
50 mm (200×).
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FIGURE 6 | Dihydrotestosterone (DHT) regulates human hair follicles (HFs) growth through the Wnt/b-catenin pathway. HFs were cultured with IM12 (50, 100, or
500 nM), 21H7 (1, 2, or 4 µM), DHT (10-6 mol/L), IM12 (500 nM), or 10-6 mol/L DHT and 500 nM IM12. (A, B) Mean growth rates of hair shafts treated with IM12
and 21H7 (n = 10). (C) Mean growth rates of hair shafts treated with DHT and IM12 (n = 10). (D, E) Immunofluorescence staining and mean fluorescence intensity of
b-catenin in HFs cultured with DHT and IM12 (n = 6). Magnification: 200× and 400×. The data are presented as the mean ± SD. Each bar represents the mean of
three independent experiments performed in triplicate. Compared with the control ( 0 ) group, *P < 0.05 , &P < 0.05 and #P < 0.05. Scale bar 50 mm (200×).
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pathway of DHT could activate or inhibit the Wnt pathway.
Until now, according to previous studies and our findings, we
infer that the kinases that participate in phosphorylating GSK3b
at ser-9 may be target genes of DHT.
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