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ABSTRACT

Objective: We executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the

community-driven development and large-scale evaluation of automatic text processing methods for the classi-

fication and normalization of health-related text from social media. An additional objective was to publicly re-

lease manually annotated data.

Materials and Methods: We organized 3 independent subtasks: automatic classification of self-reports of 1) ad-

verse drug reactions (ADRs) and 2) medication consumption, from medication-mentioning tweets, and 3) nor-

malization of ADR expressions. Training data consisted of 15 717 annotated tweets for (1), 10 260 for (2), and

6650 ADR phrases and identifiers for (3); and exhibited typical properties of social-media-based health-related

texts. Systems were evaluated using 9961, 7513, and 2500 instances for the 3 subtasks, respectively. We evalu-

ated performances of classes of methods and ensembles of system combinations following the shared tasks.

Results: Among 55 system runs, the best system scores for the 3 subtasks were 0.435 (ADR class F1-score) for

subtask-1, 0.693 (micro-averaged F1-score over two classes) for subtask-2, and 88.5% (accuracy) for subtask-3.

Ensembles of system combinations obtained best scores of 0.476, 0.702, and 88.7%, outperforming individual

systems.

Discussion: Among individual systems, support vector machines and convolutional neural networks showed

high performance. Performance gains achieved by ensembles of system combinations suggest that such strate-

gies may be suitable for operational systems relying on difficult text classification tasks (eg, subtask-1).
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Conclusions: Data imbalance and lack of context remain challenges for natural language processing of social

media text. Annotated data from the shared task have been made available as reference standards for future

studies (http://dx.doi.org/10.17632/rxwfb3tysd.1).
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BACKGROUND AND SIGNIFICANCE

Social media have enabled vast numbers of people, anywhere, from

any demographic group, to broadcast time-stamped messages on

any topic, in any language, and with little or no filter. The Pew So-

cial Media Fact Sheet published in 2017 revealed that approximately

70% of the population in the United States actively uses social me-

dia,1 and the user base is seeing continuous growth globally. Their

earlier research suggested that “health and medicine” is one of the

most popular topics of discussion in social media, with 37% of

adults identifying it as the most interesting topic.2 Due to the pres-

ence of vast amounts of health-related information, it is being in-

creasingly utilized as a data source for monitoring health trends and

opinions. Social media traffic is being used or considered for many

health-related applications, such as public health monitoring,3

tracking of disease outbreaks,4,5 charting behavioral factors such as

smoking,6,7 responding to mental health issues,8,9 and pharmacovi-

gilance.10 The social media revolution has coincided with drastic

advancements in the fields of natural language processing (NLP) and

data analytics, and, within the health domain, biomedical data sci-

ence.11 However, despite recent advances, performing complex

health-related tasks from social media is not trivial. There are 2 pri-

mary hurdles along the way for such tasks: 1) picking up a signal,

and 2) drawing conclusions from the signal. This paper concentrates

entirely on (1), as it describes considerations and solutions for re-

representing noisy textual messages into formalized and pure data

elements. However, we briefly want to shift focus to (2). Drawing

conclusions from social media signals is not without risk due to sev-

eral types of bias or sources of error outside the text representations.

A patient alleging an adverse drug event may be wrong (deliberately

or not) on the drug intake details, the symptoms themselves (includ-

ing misdiagnoses), or the attribution of causality between the drug

and the alleged reaction. In addition, reporting biases may exist,

varying among drugs, symptoms, or subpopulations. Despite these

caveats, social media traffic is very likely to contain signals that we

cannot afford to ignore. Additionally, the availability of large vol-

umes of data makes it a rewarding resource for the development and

evaluation of data-centric health-related NLP systems. While inno-

vative approaches have been proposed, there is still substantial prog-

ress to be made in this domain. In this paper, we report the design,

results, and insights obtained from the execution of a community-

shared task that focused on progressing the state of the art in NLP

of health-related social media text.

Shared tasks and evaluation workshops have been a popular ap-

proach for progressing NLP methods on specialized tasks. They have

proven to be effective in providing clear benchmarks in rapidly evolv-

ing areas. Their benefits to participating researchers include a reduc-

tion in their individual data annotation and system evaluation

overhead. The benefits to the field include the very objective evalua-

tion, using standardized data, metrics, and protocols. Successes of

general-domain NLP shared tasks, such as Computational Natural

Language Learning (CONLL),12 Text Analysis Conference (TAC),13

and the International Workshop on Semantic Evaluation (SemEval)14

have inspired domain-specific counterparts. In the broader medical

domain, these include BioASQ,15 BioCreative,16 CLEF eHealth,17 and

i2b2,18 which have significantly advanced health-related NLP.19

Through the Social Media Mining for Health (SMM4H) shared

tasks, we aimed to further extend these efforts to NLP from

health-related social media. While medical text is itself complex,

text originating from social media presents additional challenges to

NLP, such as typographic errors, ad hoc abbreviations, phonetic

substitutions, use of colloquial language, ungrammatical structures,

and the use of emoticons.20 For text classification, data imbalance

due to noise and usage of non-standard expressions typically lead to

the underperformance of systems10,21 on social media texts. Concept

normalization from this resource, which is the task of assigning stan-

dard identifiers to text spans, is among the least explored topics.22

Within medical NLP, tools utilizing lexicons and knowledge bases

such as MetaMap23 and cTAKES24 have been used for identifying

and grouping distinct lexical representations of identical concepts.

Such tools are effective for formal texts from sources such as medical

literature, but they perform poorly when applied to social media

texts.25

The SMM4H-2017 shared tasks were focused on text classification

and concept normalization from health-related posts. The text classifi-

cation tasks involved the categorization of tweets mentioning potential

adverse drug reactions (ADRs) and medication consumption. The con-

cept normalization task required systems to map ADR expressions to

standard IDs. In this paper, we expand on the SMM4H-2017 shared

task overview26 by presenting analyses of the performances of the sys-

tems and classes of systems, additional experiments, and the insights

obtained and their implications for informatics research.

MATERIALS AND METHODS

Data and annotations
We collected all the data from Twitter via the public streaming API,

using generic and trade names for medications, along with their

common misspellings, totaling over 250 keywords. For subtasks-1

and -2, the annotated datasets for training were made available to

the public with our prior publications,21,27,28 while subtask-3 in-

cluded previously unpublished data. Evaluation data were not made

public at the time of the workshop. Following the completion of

the workshop, we have made all annotations publicly available

(http://dx.doi.org/10.17632/rxwfb3tysd.1).

Subtask-1 included 25 678 tweets annotated to indicate the pres-

ence or absence of ADRs (these ADRs are as reported by the users

and do not prove causality). The annotation was performed by 2

annotators with inter-annotator agreement (IAA) of j ¼ 0.69

(Cohen’s kappa29) computed over 1082 overlapping tweets.

Subtask-2 included 17 773 annotated tweets categorized into

3 classes—definite intake (clear evidence of personal consumption),

possible intake (likely that the user consumed the medication, but

the evidence is unclear), and no intake (no evidence of personal con-

sumption). IAA was j ¼ 0.88 for 2 annotators, computed over
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1026 tweets. We double-annotated only a sample of the tweets be-

cause of the significant time cost of manual annotation. The annota-

tors followed guidelines that were prepared iteratively until no

further improvement in annotation agreement could be achieved.1

Figure 1 illustrates the distribution of classes over the training and

evaluation sets for the 2 subtasks. To ensure that the datasets

present the challenges faced by operational systems employed on

social media data, we sampled multiple times from a database con-

tinuously collecting data. For subtask-1, we used 2 such samples as

training data and 1 for evaluation. For subtask-2, to incorporate

medication consumption information from a diverse set of users, we

drew the training and test sets from distinct users with no overlap.

Training data for subtask-3 consisted of manually curated ADR

expressions from tweets mapped to MedDRA30 (Medical Dictionary

for Regulatory Activities) Preferred Terms (PTs). Automatic extraction

of ADRs from Twitter has been extensively studied in the recent past,

with reported high scores on standard datasets.31,32 However, the

extracted ADRs are often non-standard, creative, or colloquial, and uti-

lizing them for downstream tasks such as signal generation requires nor-

malization, which has been an under-addressed problem. Therefore, we

focused on the latter, and we provided pre-extracted ADR expressions

with the mappings as input for this subtask. We chose MedDRA as our

mapping source because it is specifically designed for documentation

and safety monitoring of medicinal products, and is the reference termi-

nology used by regulatory authorities and the pharmaceutical industry

for coding ADRs.33 MedDRA has a hierarchical structure, with Lower

Level Terms (LLTs) presenting the most fine-grained level reflecting

how an observation might be reported in practice (eg, “tummy ache”).

Over 70 000 LLTs in this resource are mapped to 22 500 PTs, which

represent individual medical concepts such as symptoms (eg,

“abdominal pain”). The training set consisted of 6650 phrases mapped

to 472 PTs (14.09 mentions per concept on average). The evaluation set

consisted of 2500 mentions mapped to 254 PTs (9.84 mentions per con-

cept).2 Figure 2 presents sample instances for the 3 subtasks, along with

their manually assigned categories.

Task descriptions and evaluations
Subtask-1 was a binary text classification task for which systems

were required to predict if a tweet mentions an alleged ADR or not.

Such classification tasks are important because most of the

medication-mentioning chatter on social media, including Twitter,

is noise. Systems were evaluated on their ability to accurately detect

tweets belonging to the ADR class using the class-specific F1-score

metric, which is based on the true positive (tp), false negative (fn)

and false positive (fp) counts:

recall ¼ tp

tpþ fn
; precision ¼ tp

tpþ fp
;

F1-score ¼ 2 � recall � precision

recall þ precision

Subtask-2 involved 3-class text classification, and systems were

required to classify mentions of personal medical consumption from

tweets, most of which do not explicitly express personal consump-

tion. The evaluation focused on assessing systems’ abilities to detect

the definite and possible cases of consumption, and thus relied on

micro-averaged F1-score for the 2 classes. For subtask-3, given an

ADR expression, systems were required to identify the mapping for

the expression in the MedDRA vocabulary. The evaluation metric

for this task was accuracy (ie, proportion of correctly identified

MedDRA PTs in the evaluation set).

Methodologies and system descriptions
Subtasks-1 and -2: text classification

For subtasks-1 and -2, high-scoring systems frequently used support

vector machines (SVMs), deep neural networks (DNNs), and classi-

fier ensembles. We now provide further details of the methods, par-

ticularly focusing on the high-performing systems, and selected

methods and features.

Approaches and features. For the traditional classifiers (eg, SVMs),

high-performing systems utilized lexical features such as word and

character n-grams, negations, punctuations, and word clusters34

along with specialized domain-specific and semantic features. NRC-

Canada,35 the top-performing team for subtask-1, extended its exist-

ing state-of-the-art sentiment analysis36 and stance detection37

systems, and incorporated features such as: n-grams generalized

over domain terms (ie, words or phrases representing medications

from the RxNorm list or entries from the ADR lexicon21 are

replaced with <MED> and <ADR>, respectively), pre-trained

word embeddings, and word clusters25 obtained from one million

tweets that mention medications. In addition, for subtask-2, the

team’s systems utilized sentiment features—sentiment association

scores obtained from existing manually and automatically created

lexicons, including Hu and Liu Lexicon,38 Norms of Valence,

Figure 1. Class distributions for subtasks-1 and -2.

1 Guidelines are available at http://diego.asu.edu/guidelines/adr_

guidelines.pdf (task 1) and https://healthlanguageprocessing.org/

twitter-med-intake/ (task 2) (Last accessed: 8/8/2018).

2 Further details about MedDRA available at: https://www.meddra.org/

sites/default/files/guidance/file/intguide_21_0_english.pdf. (Last accessed:

6/7/2018)
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Arousal, and Dominance,39 labMT,40 and NRC Emoticon Lexicon.36

The UKNLP (University of Kentucky) systems41 used similar feature

sets (eg, the ADR lexicon) along with 2 additional features: the sum

of words’ pointwise mutual information (PMI)42 scores as a real-

valued feature based on the training examples and their class member-

ship; and handcrafted lexical pairs of drug mentions (subtask-2 only)

preceded by pronouns (the count of first, second, and third personal

pronouns with and without negation followed by a drug mention).

The system from the TurkuNLP (University of Turku) team43 for

subtask-2 was based on an ensemble of convolutional neural networks

(CNNs) applied on sequences of words and characters. The model also

relied on pre-trained word embeddings and term frequency-inverse doc-

ument frequency (TF-IDF) weighted bag-of-words representations with

singular-value-decomposition-based dimensionality reduction.33,34 The

InfyNLP team (Infosys Ltd), top-performers for subtask-2, employed

double-stacked ensembles of shallow CNNs.44 Multiple candidate

ensembles of 5 shallow CNNs were first trained, using random search

for parameter optimization. The top k best performing ensembles, as

per cross-validation on the training data, were then stacked to make

predictions on the test set. The team used publicly available pre-trained

word embeddings45,46 to represent words in the network, with no ad-

ditional features or text representations. The primary differences

between the team’s method and other CNN-based approaches

were the use of shallow networks, while most other implementa-

tions were deep, as well as the use of random search to generate

many candidate models for the double-stacked ensembles.

Strategies for addressing data imbalance. For subtask-1, a key chal-

lenge was data imbalance, as only approximately 10% of the tweets

presented ADRs. NRC-Canada used undersampling to rebalance the

class ratio from about 1: 10 to 1: 2. Other methods for dealing with

data imbalance included cost-sensitive training (CSaRUS; Arizona

State University) and minority oversampling47 (NTTMU; multiple uni-

versities, Taiwan), but without much success. For both classification

tasks, most teams also incorporated classifier ensembles (eg, by

combining votes from multiple classifier predictions or via model

averaging) to improve performance over the smaller class(es).

Subtask-3: normalization

Methods utilized for subtask-3 consisted of a multinomial logistic

regression model, 3 variants of recurrent neural networks (RNNs),

Figure 2. Sample instances and their categories for the 3 subtasks. Medication names are shown in bold-face.
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and an ensemble of the 2 types of models. The gnTeam (University

of Manchester) performed lexical normalization to correct misspell-

ings and convert out-of-vocabulary words to their closest candidates

before converting the phrases into dense vector representations using

several publicly available sources.48 Following the generation of this

representation, the team applied multinomial logistic regression, an

RNN classifier with bidirectional gated recurrent units (GRUs), and

an ensemble of the 2. For the ensemble, the final predictions were

made based on the highest average value for each class derived from

predicted probabilities of the base learners. The UKNLP systems

employed a deep RNN model that realized a hierarchical composi-

tion in which an example phrase was segmented into N constituent

words, and each word was treated as a sequence of characters. In

contrast to gnTeam’s GRUs, their systems used long short-term

memory (LSTM) units,49 and, for a variant of the system, utilized

additional publicly available data for training.

Baselines, ensembles, and system extensions

For each subtask, we implemented 3 baseline systems for compari-

son against the submitted systems. For subtasks-1 and -2, we imple-

mented naı̈ve bayes, SVMs, and random forest classifiers. We used

only preprocessed (lowercased and stemmed) bag-of-words features,

and, for the latter 2 classifiers, we performed basic parameter opti-

mization via grid search. For subtask-3, our baseline systems relied

on exact lexical matching: the first with MedDRA PTs, the second

with LLTs, and the third with the training set annotations.

Following the execution of the shared task evaluations, we

implemented multiple voting-based ensemble classifiers, using the

system submissions as input. Our objective was to assess how com-

binations of optimized systems performed relative to individual sys-

tems, and to explore strategies by which system predictions could be

combined to maximize performance. For subtask-1, we combined

groups of system predictions (eg, all and top n), and used different

thresholds of votes for the ADR class (eg, majority and greater than

n votes) to make predictions. We performed a similar set of experi-

ments for subtasks-2 and -3, and because they are multi-class prob-

lems, we used only majority voting for prediction.

Following the shared task evaluations, teams with the top-

performing systems were invited to perform additional experiments

using fully annotated training sets (in addition to those publicly

available). This enabled the teams to experiment with different sys-

tem settings and optimization methods, which were not possible ear-

lier due to the time constraint imposed by the submission deadline.

The test set annotations were shared with the selected teams pri-

vately for evaluation. Performances of these extended systems along

with summaries of the extensions, relative to their reported methods

in the shared task descriptions,35,41,43,44 are presented in the next

section.

RESULTS

Shared task system performances
Fifty-five system runs from 13 teams were accepted for evaluation

(24 submissions from 9 teams for subtask-1; 26 from 10 for

subtask-2; and 5 submissions from 2 for subtask-3). We categorized

the methods employed by the individual submitted systems into 5

categories: CNN, SVM, RNN, Other, and Ensembles, where

“Other” represents traditional classification approaches such as lo-

gistic regression and k-nearest neighbor, and “Ensembles” includes

stacks of ensembles. Figure 3 shows the relative distributions of

these categories of approaches employed by the submitted systems.

For individual systems, NRC-Canada’s SVM-based approach,

which utilized engineered domain-specific features and parameter

optimization via 5-fold cross-validation over part of the training set,

obtained the highest ADR F1-score of 0.435. InfyNLP’s ensemble of

shallow CNNs topped subtask-2 with a micro-averaged F1-score of

0.693. For subtask-3, all submitted systems showed similar perform-

ances, with an ensemble of RNN and logistic regression obtaining

the best accuracy. Tables 1–3 present the performances of selected

submissions for the subtasks, along with the performances of the

baseline systems and post-workshop ensembles. We show only the

top-performing systems for subtasks-1 and -2; full set of results and

exclusion criteria for the shared task can be found in the overview

Figure 3. Percentage distributions for 5 categories of approaches attempted

by teams for the shared tasks.

Table 1. Performance metrics for selected system submissions for

subtask-1, baselines, and system ensembles. Precision, recall, and

F1-score over the ADR class are shown. The top F1-score among all

systems is shown in bold. Detailed discussions about the

approaches can be found in the system description papers refer-

enced

System/Team

ADR

precision

ADR

recall

ADR

F1-score

Baseline 1: Naı̈ve Bayes 0.774 0.098 0.174

Baseline 2: SVMs with RBF kernel 0.501 0.215 0.219

Baseline 3: Random Forest 0.429 0.066 0.115

NRC-Canada35 0.392 0.488 0.435

CSaRUS-CNN50 (Arizona State

University)

0.437 0.393 0.414

NorthEasternNLP51 (NorthEastern

University)

0.395 0.431 0.412

UKNLP41 (University of Kentucky) 0.498 0.337 0.402

TsuiLab52 (University of Pittsburgh) 0.336 0.348 0.342

Ensemble all: best configuration

(>6 ADR votes)

0.435 0.492 0.461

Ensemble top 7: majority vote (>3) 0.529 0.398 0.454

Ensemble top 7: >2 ADR votes 0.462 0.492 0.4760.476

Ensemble top 5: majority vote (>2) 0.521 0.415 0.462

Ensemble top 5: at least 1 ADR vote 0.304 0.641 0.413

Ensemble top 3: >1 ADR vote 0.464 0.441 0.452
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paper and associated system descriptions.26,35,41,43,44,54 Figure 4

illustrates the distributions of all the individual system scores.

Tables 1–3 illustrate that for all 3 subtasks, some combination of

system ensembles outperform the top system. For subtask-1, the best

ADR F1-score (0.476) on the test dataset was obtained by taking the

top 7 systems and using a voting threshold of 2 (Table 1). For

subtask-2, majority voting from the top 10 systems obtained the

highest F1-score (0.702). For subtask-3, both ensembles outper-

formed the individual submissions (accuracy ¼ 88.7%), albeit

marginally.

Post-workshop follow-up modifications
Both the UKNLP and NRC-Canada teams were able to marginally

improve the performances of their systems for subtask-1 by using

additional data or by modifying their systems. The NRC-Canada

team reported that ensembles of 7 to 9 classifiers, each trained on a

random sub-sample of the majority class to reduce class imbalance

to 1: 2, outperformed their top-performing system. The UKNLP

team reported that the additional training data improved the perfor-

mance of their logistic regression classifier for the task, which conse-

quently improved the performance of the logistic regression and

CNN ensembles, increasing the best ADR F1-score to 0.459

(þ0.057).

For subtask-2, NRC-Canada reported that domain-generalized

n-grams showed significant increases in performance, while senti-

ment lexicons were not useful. For CNN-based systems (eg,

UKNLP, TurkuNLP, and InfyNLP), incorporation of additional

training data showed slight improvements in performances. Only

UKNLP attempted a system extension for subtask-3, and they

slightly improved accuracy by employing a CNN instead of an

LSTM at the character level for the hierarchical composition. None

of these system extensions performed better than the multi-system

ensembles presented in Tables 1–3. Table 4 summarizes the system

extensions and their performances.

DISCUSSION

In this section, we outline the findings of the error analyses per-

formed on the top-performing systems, pointing out the key chal-

lenges that we have identified. We then summarize the insights

obtained and the implications of these for health informatics re-

search.

Error analysis
For subtasks-1 and -2, the most common reason for false negatives

was the use of infrequent, creative expressions (eg, “i have metfor-

min tummy today: -(”). Low recall due to false negatives was partic-

ularly problematic for subtask-1, and systems also frequently

misclassified rarely occurring ADRs. False positives were caused

mostly by classifiers mistaking ADRs for related concepts such as

symptoms (eg, “headache”) and beneficial effects (ie, “hair loss

reversal”). Lack of context in the length-limited posts poses prob-

Table 2. Performance metrics for selected system submissions for subtask-2, baselines, and system ensembles. Micro-averaged precision,

recall, and F1-scores are shown for the definite intake (class 1) and possible intake (class 2) classes. The highest F1-score over the evaluation

dataset is shown in bold. Detailed discussions about the approaches can be found in the system description papers referenced (when

available)

System/Team

Micro-averaged precision

for classes 1 and 2

Micro-averaged recall

for classes 1 and 2

Micro-averaged F1-score

for classes 1 and 2

Baseline 1: Naı̈ve Bayes 0.359 0.503 0.419

Baseline 2: SVMs 0.652 0.436 0.523

Baseline 3: Random Forest 0.628 0.487 0.549

InfyNLP44 (Infosys Ltd) 0.725 0.664 0.693

UKNLP41 (University of Kentucky) 0.701 0.677 0.689

NRC-Canada35 0.708 0.642 0.673

TJIIP (Tongji University, China) 0.691 0.641 0.665

TurkuNLP43 (University of Turku) 0.701 0.630 0.663

CSaRUS-CNN50 (Arizona State University) 0.709 0.604 0.652

NTTMU53 (Multiple Universities, Taiwan) 0.690 0.554 0.614

Ensemble all: majority vote 0.736 0.657 0.694

Ensemble top 10: majority vote 0.726 0.679 0.7020.702

Ensemble top 7: majority vote 0.724 0.673 0.697

Ensemble top 5: majority vote 0.723 0.667 0.694

Ensemble top submissions from top

5 teams: majority vote

0.727 0.673 0.699

Table 3. System performances for subtask-3, including baselines

and ensembles. Summary approaches and accuracies over the

evaluation set are presented. Best performance is shown in bold

Team Approach summary Accuracy (%)

Baseline 1 Exact lexical match with

MedDRA PT

11.6

Baseline 2 Exact lexical match with

MedDRA LLT or PT

25.1

Baseline 3 Match with training set

annotation

63.5

gnTeam54 (University

of Manchester)

Multinomial Logistic

Regression

87.7

RNN with GRU 85.5

Ensemble 88.5

UKNLP41 (University

of Kentucky)

Hierarchical RNN with

LSTM

87.2

Hierarchical RNN with

LSTM and external data

86.7

Ensemble All systems 88.788.7

Top 3 88.788.7
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lems for annotators as well as the systems. For subtask-1, the rela-

tively low IAA results from ambiguous expressions of ADRs without

clear contexts (eg, “headache & xanex :(!”). The IAA results in sys-

tems having low performance ceilings for this subtask and also sug-

gests that the annotations in the dataset may not be completely

reliable, as judgments made in the absence of supporting information

are often subjective. Better representations of the posts (eg, with sup-

porting context) and future improvements in core NLP methods spe-

cialized for social media texts may result in improved performances in

downstream tasks such as classification, by enabling systems to better

capture contexts and dependencies. For subtask-2, additional com-

mon causes for misclassification were inexplicit mentions about medi-

cation consumption, or explicit consumption mentions without clear

indications about who took the medication. Instances of the “possible

intake” class, which were also difficult to manually categorize, suf-

fered particularly from lack of supporting contextual information.

Lack of context at the tweet level is a known challenge for NLP of

Twitter text, as users often express complete thoughts over multiple

posts. Future research should investigate if incorporating surrounding

tweets in the classification model improves overall performance.

For normalization, all systems frequently misclassified closely re-

lated concepts (eg, Insomnia and Somnolence) and antonymous con-

cepts (eg, Insomnia and Hypersomnia). For example, in the phrase

“sleep for X hours,” only the number of hours spent in sleep can dif-

ferentiate Hypersomnia (more than 8) from Insomnia (less than 4),

and it is challenging to incorporate this knowledge into the machine

learning models. Lack of training data for rarely occurring concepts

was another cause of errors. For example, the concept “Night

sweats” was frequently misclassified (usually as “Hyperhidrosis”),

and it occurred only twice in the training set, never explicitly

mentioning the word night (eg, “waking up in a pool of your own

sweat”). Overall, analyses of the errors made by the systems suggest

that contextual information is perhaps even more crucial for nor-

malization than classification. The design of the dataset for this sub-

task does not enable systems to incorporate additional context, and

future research should explore the impact of such information.

Summary of insights gained
The shared task evaluations and post-workshop experiments pro-

vided us with insights relevant to future social-media-based text

processing tasks beyond the sub-domain of pharmacovigilance. The

following list summarizes these insights.

• SVMs, with engineered features and majority-class undersam-

pling, outperformed DNNs for subtask-1. Despite the recent

advances in text classification using DNNs,55 such approaches

still underperform for highly imbalanced datasets and may not

(yet) be suitable for discovering rare health categories/concepts.
• For tasks with balanced data, DNNs are likely to be more effec-

tive than traditional approaches such as SVMs. However, the

performances of the different approaches were comparable for

subtask-2, and we did not observe any specific set of configura-

tions that performed better.
• Neural-network-based approaches, without requiring any

task-specific feature engineering, show low variance in text

classification tasks (Figure 5), while SVM performances are very

dependent on the feature engineering, weighting, and sampling

strategies.

Table 4. Summary of system extensions and changes in performance compared to the original shared task systems

Team Subtask (evaluation metric) Extension description Score Performance change

NRC-Canada 1 (ADR F1-score) Ensemble of 7 classifiers with random

undersampling of the majority class to

imbalance ratio of 1: 2

0.456 þ0.021

UKNLP 1 (ADR F1-score) Additional training data, logistic regression

and CNN ensembles

0.459 þ0.057

InfyNLP 2 (micro-averaged F1-score for

classes 1 and 2)

Additional training data, increased number

of random search runs

0.692 �0.001

NRC-Canada 2 (micro-averaged F1-score for classes 1 and 2) Additional training data 0.679 þ0.0058

UKNLP 2 (micro-averaged F1-score for

classes 1 and 2)

Additional training data (and removed all

non-ASCII characters from tweets)

0.694 þ0.005

TurkuNLP 2 (micro-averaged F1-score for classes 1 and 2) Additional training data 0.665 þ0.002

UKNLP 3 (accuracy) CNN instead of LSTM at the character level

for hierarchical composition

87.7% þ0.5

Figure 4. Distributions of system scores for the 3 subtasks (1, 2, and 3, respectively, from left to right).
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• For text normalization, supervised methods vastly outperform

lexicon-based and unsupervised approaches proposed in the

past.56

• Large-scale annotation efforts are required to enable systems to

accurately identify rare concepts.
• Ensembles of classifiers invariably outperform individual ones, as

shown by the post-workshop experiments. However, training

and optimizing multiple classifiers, rather than 1, imposes sub-

stantial time costs. Therefore, they may be suited only for partic-

ularly challenging tasks (eg, subtask-1), where individual

classifiers perform significantly worse than human agreement.

Implications for health informatics research

As the volume of health-related data in social media continues to

grow, it has become imperative to introduce and evaluate NLP

methods that can effectively derive knowledge from it for opera-

tional tasks.19,57 Due to the difficulty associated with mining knowl-

edge from social media, earlier approaches primarily attempted to

utilize the volume for public health tasks, using keyword-based

approaches.58 Text classification is a widely used application of ma-

chine learning for extracting information from text, while concept

normalization approaches are particularly relevant for social media

data due to the necessity of mapping creative expressions to stan-

dard forms. While the shared tasks focused on text classification

and normalization approaches relevant for the sub-domain of phar-

macovigilance, the properties of the texts provided for these tasks

are generalizable to many health-related social media tasks. For ex-

ample, many text classification problems suffer from data imbal-

ance,59 which was a key characteristic of the data for subtask-1. The

supervised concept normalization approaches developed by the

shared task participants significantly outperformed past efforts, sug-

gesting that our efforts have helped to progress the state of the art in

NLP research in this domain. The generalized insights obtained

from the large-scale evaluations we reported will serve as guidance,

and the public release of the evaluation data with this manuscript

will serve as reference standards for future health-related studies

from social media.

CONCLUSION

The SMM4H-2017 shared tasks enabled us to advance the current

state of NLP methods for mining health-related knowledge from so-

cial media texts. We provided training and evaluation data, which

exhibited some of the common properties of health-related social

media data, for 3 text mining tasks. The public release of the data

through the shared tasks enabled the NLP community to participate

and evaluate machine learning methods and strategies for optimiz-

ing performances on text from this domain. Use of standardized

datasets enabled the fast evaluation and ranking of distinct ad-

vanced NLP approaches and provided valuable insights regarding

the effectiveness of the specific approaches for the given tasks. We

have provided a summary of the key findings and lessons learned

from the execution of the shared tasks, which will benefit future re-

search attempting to utilize social media big data for health-related

activities.

The progress achieved and the insights obtained through the exe-

cution of the shared tasks demonstrate the usefulness of such

community-driven developments over publicly released data. We

will use the lessons learned to design future shared tasks, such as the

inclusion of more contextual information along with the essential

texts. Our future efforts will also focus on releasing more health-

related annotated datasets from social media.
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