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Abstract

Performance improves when participants respond to events that are structured in repeating sequences, suggesting that learning
can lead to proactive anticipatory preparation. Whereas most sequence-learning studies have emphasised spatial structure, most
sequences also contain a prominent temporal structure. We used MEG to investigate spatial and temporal anticipatory neural
dynamics in a modified serial reaction time (SRT) task. Performance and brain activity were compared between blocks with
learned spatial-temporal sequences and blocks with new sequences. After confirming a strong behavioural benefit of spatial-tem-
poral predictability, we show lateralisation of beta oscillations in anticipation of the response associated with the upcoming target
location and show that this also aligns to the expected timing of these forthcoming events. This effect was found both when com-
paring between repeated (learned) and new (unlearned) sequences, as well as when comparing targets that were expected after
short vs. long intervals within the repeated (learned) sequence. Our findings suggest that learning of spatial-temporal structure
leads to proactive and dynamic modulation of motor cortical excitability in anticipation of both the location and timing of events
that are relevant to guide action.

Introduction

Many actions in daily life consist of structured sequences. Examples
can be found in speech, driving a car, performing sports or playing
the piano. As sequences are repeated, performance improves. In the
laboratory, sequence learning is typically studied using the serial
reaction time (SRT) task (Nissen & Bullemer, 1987), in which the
order of sequence elements associated with predefined actions is
repeated. Typically, visual stimuli in particular spatial locations are
associated with particular button presses.
The vast majority of SRT studies to date have focused on the

learning about the spatial structure of events (see Abrahamse et al.,
2010 and Schwarb & Schumacher, 2012 for reviews). They show
that performance improves over the course of the experiment, while
the precise sequence information (and the fact that elements are
repeated) often remains implicit. Moreover, naturally occurring

sequences often also contain temporal structure. Accordingly, a
growing number of studies reveal strong benefits to performance
when both the spatial and temporal structures of the sequence repeat
(Shin & Ivry, 2002; Karabanov & Ullen, 2008; O’Reilly et al.,
2008; Kornysheva et al., 2013; Kornysheva & Diedrichsen, 2014;
Sanchez et al., 2015).
Studies to date largely overlook a fundamental complementary

question about sequence learning: How are learned spatial and tem-
poral sequences utilised by the brain to improve performance?
Learned sequences afford spatial and temporal predictions about the
locations and timings of upcoming elements, which in principle
could be used to modulate preparatory neural activity to enhance
performance.
Studies in which predictions regarding upcoming sensory input or

required motor responses are explicitly cued typically show anticipa-
tory power decreases in alpha and beta oscillations over relevant
(contralateral) sensory and/or motor areas (e.g. Pfurtscheller &
Lopes da Silva, 1999; Sauseng et al., 2005; Schoffelen, 2005; Ale-
gre et al., 2006; Thut et al., 2006; Kelly et al., 2009; Rihs et al.,
2009; Gould et al., 2011; Jenkinson & Brown, 2011; Van Ede
et al., 2011). Anticipatory decreases over sensory areas are thought
to reflect increased excitability states that benefit the processing of
the anticipated stimuli, while power decreases over motor areas are
thought to reflect enhanced motor readiness. Studies investigating
the additional influence of temporal expectations further show that
the time course of such power modulations in the alpha and beta
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frequency bands adapts to the timings used in the task, thereby
ensuring optimal preparation for the moment that targets are
expected (e.g. Schoffelen, 2005; Alegre et al., 2006; Rohenkohl &
Nobre, 2011; Van Ede et al., 2011).
We hypothesised that the hidden spatial and temporal predictions

within complex visual-motor sequences in an SRT setting would
support similar anticipatory changes in oscillatory power. In SRT
settings that manipulate spatial and temporal sequences, there is evi-
dence for a strong behavioural interaction between space and time
for improving performance (O’Reilly et al., 2008; for further evi-
dence for such spatial-temporal ‘synergies’, see also Doherty et al.,
2005; Rohenkohl et al., 2014). We thus expected that anticipatory
changes in oscillatory power would adhere to both the learned spa-
tial and temporal aspects of the sequence, that is would not only lat-
eralise depending on the predicted target/response, but also adapt to
its expected timing.
Here, we used magnetoencephalography (MEG) to investigate

these neural dynamics within visually guided action sequences.
Whole-head MEG measurements enabled us to evaluate the
respective contributions of anticipatory neural dynamics in sensory
and motor cortices. This is of interest, as both perceptual prepara-
tion and motor preparation have been argued to contribute to per-
formance improvements in SRT tasks (Howard et al., 1992;
Willingham, 1999; Hoffmann et al., 2003; Clegg, 2005; Deroost
& Soetens, 2006; Song et al., 2008; Schwarb & Schumacher,
2012).

Methods

Participants

The study was approved by the Central University Research Ethics
Committee of the University of Oxford (MSD-IDREC-C2-2014-
036), and the study was conducted in compliance with the Declara-
tion of Helsinki. All participants gave written informed consent.
Twenty-one young, healthy adults (aged 24.7 � 3.9 (SD), nine
males) completed the study. All were right handed according to
self-report, and all had normal or corrected-to-normal vision. Partici-
pants were paid £10 per hour. Each participant completed three
experimental sessions on separate days: a behavioural session, fol-
lowed by a magnetoencephalography (MEG) session taking place 1
or 2 days later, and a magnetic resonance imaging (MRI) session
within 2 weeks after the MEG session was completed. The beha-
vioural results across all three sessions have previously been pub-
lished elsewhere (see Heideman et al., 2017). The current
manuscript will focus on the data acquired in the MEG session
only.
Three participants were excluded from the MEG analysis. One

participant was excluded because of extreme fatigue, causing a high
number of mistakes (percentage correct was smaller than the mean
minus three times the standard deviation across participants).
Another participant was excluded because of a very slow mean reac-
tion time (larger than the mean plus three times the standard devia-
tion across participants). A third participant was excluded due to
technical problems during part of the data collection, resulting in
loss of trigger information. Results of eighteen participants (aged
24.7 � 4.0 (SD), eight males) were therefore included in the final
MEG data analysis, on which we report. Because the results from
the latter participant could be included in our previous publication
of the behavioural data alone (Heideman et al., 2017), we note that
the behavioural results are numerically different, although the
pattern of results is equivalent.

MEG and visual stimulation set-up

Whole-head MEG recordings were acquired in a magnetically
shielded room with normal illumination using a 306-channel Elekta
NeuroMag MEG System (Elekta, Stockholm, Sweden) at the Oxford
Centre for Human Brain Activity. A magnetic Polhemus FastTrak
3D system (VT, USA) was used for head localisation. Relative posi-
tions of three anatomical landmarks (nasion, left and right auricular
points) were measured in addition to relative positions of four head
position indicator coils.
MEG data were collected in three separate recordings of 10–

12 minutes each. During the short breaks in between, the data were
saved while participants remained seated in the MEG chair. MEG
data were sampled at 1000 Hz using a 0.03–300 Hz bandpass filter
during digitisation of the signal. ECG and horizontal and vertical
EOG were recorded. Eye movements were additionally recorded
with a video-based eye tracker at 1000 Hz (EyeLink 1000; SR
Research, ON, Canada). A four-button bimanual fibre-optic response
device was used to collect manual responses.
Stimuli were created with MATLAB (MathWorks, Natick, MA,

USA) and presented using Psychtoolbox version 3.0 (Kleiner et al.,
2007). Stimuli were back projected (Panasonic PT D7700E, Pana-
sonic, Osaka, Japan) on a 43 9 54.5 cm translucent screen placed
120 cm in front of the participant, with a spatial resolution of
1280 9 1024 and a refresh rate of 60 Hz.

Experimental procedure and stimuli

The experimental task is shown in Fig. 1a. Participants performed a
modified version of a serial reaction time (SRT) task in which they
followed the order of targets presented on a screen by pressing the
corresponding button on a button box, every time a target was pre-
sented. Four possible target locations were permanently indicated by
white square outlines (2.12° 9 2.12° of visual angle each; total
width of all stimuli: 11.66° 9 2.12° of visual angle). The squares
were arranged horizontally, with two squares presented to the left
and right of a small fixation square (0.17° 9 0.17°of visual angle),
against a grey background. Blue square targets were presented
within these outlines.
Unbeknownst to participants, the positions of the targets (and

therefore the corresponding responses) followed a twelve-element
cycle: ABACDBCADCBD, where A was the first position/left mid-
dle finger; B, the second position/left index finger; C, the third posi-
tion/right index finger; and D, the fourth position/right middle
finger. The next target was only displayed after a correct response
was made; that is, participants had to correct themselves whenever
they made a mistake. Three different response-to-stimulus intervals
(RSIs) were used: 667, 1000 and 1500 ms. In addition to the
repeated order of targets and responses, the order of RSIs also fol-
lowed a repeating twelve-element cycle: PRQPQPQRPRQR. The
spatial and temporal sequences were therefore linked at the level of
the twelve-element cycle but otherwise unrelated.
After every three repeated sequence (R) blocks, a new, unlearned

sequence was presented (N blocks). Twelve blocks (i.e. nine R
blocks and three N blocks) were presented in total. To make sure
sequence characteristics between R and N blocks were as similar as
possible (see Reed & Johnson, 1994), new (unlearned) spatial-tem-
poral sequences were used instead of (more often used) pseudo-ran-
dom sequences. Each R block contained eight repetitions of the
twelve-element standard sequence. Within each N block, a new
sequence was repeated eight times, but a different sequence was
used for each of the three N blocks. The new spatial-temporal
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sequence combinations used in N blocks were as follows: BDAC-
BADCABCD/QPRPRPQRQPQR, CBDACDBADCAB/PRQRQRPQ
PRPQ, and DBCDCABDACBA/RQPQRPRPRQPQ. Each block
contained 96 trials; therefore, 864 R trials and 288 N trials were
presented in total. Eight-second blinking breaks were inserted every
32 trials, with a longer break occurring after every four blocks. The
first two trials after each break were excluded from the analysis (see
Behavioural analysis). Each block therefore started at a different ran-
dom point within the repeated sequence, to ensure approximately
equal numbers of trial exclusions for each interval–position combi-
nation. The total session took approximately 45 minutes, including
breaks. We note that despite our efforts to carefully match the new
and repeated sequences, that because each sequence consists of

combined spatial and temporal information, there might still be
(small) structural or statistical differences between both conditions,
based on interference from preceding sequence element–interval com-
binations. However, this is not a major concern, as our main contrast
of interest is the short vs. long RSI within the repeated sequence,
which concerns an (implicitly) learned spatial-temporal association.
Furthermore, we carefully constrained our analysis, to minimise the
influence of the preceding trial (see Time-frequency analysis).

Behavioural analysis

Behavioural results for all three (behavioural, MEG and functional
MRI) sessions have previously been described in Heideman et al.

Fig. 1. Task and behavioural results. (a) Four white squares displayed on a grey background outlined four possible target locations. Each target location corre-
sponded to one of four buttons, to be pressed with the left and right middle and index fingers. Every time a blue target appeared in one of the four target loca-
tions, the corresponding button had to be pressed. Unknown to participants, both the order of targets and the order of response-to-stimulus intervals (RSIs)
followed a repeating twelve-element cycle. Three different RSI lengths were used: 667, 1000 and 1500 ms. Two different block types were presented: repeated
sequence (R) blocks, containing eight repetitions of the twelve-element cycle and new sequence (N) blocks in which a new spatial-temporal sequence was pre-
sented. (b) Reaction times per block in the MEG session (prior to this session, incidental sequence learning had already been established in a behavioural ses-
sion; see Heideman et al., 2017 for data showing the learning of the repeated sequence). Results for repeated sequence (R) blocks are shown in grey, while
results for new sequence blocks (N) are shown in red. (c) Reaction times for each of the three RSI durations, separate for repeated sequence (R) and new
sequence (N) blocks. The bottom plot reflects individual participant averages. (d) The probe cost was calculated as the relative difference between the average
of all repeated sequence (R) and all new sequence (N) blocks, for each RSI length. The bottom plot shows results for each individual participant. Error bars pre-
sent standard errors of the means (�1 SEM), calculated using the variance across participants. Asterisks indicate statistically significant effects.
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(2017). Our previous behavioural paper also included an analysis of
assessment of awareness of order and temporal information, which
was conducted after participants completed all three experimental
sessions. These analyses indicated that participants were unaware of
the temporal structure, but gained some intuition for the spatial pat-
tern because they were able to reproduce parts of the sequence
slightly above chance. In the current manuscript, we report the main
RT results for the MEG session only. The behavioural data were
analysed with MATLAB (MathWorks, Natick, MA, USA) and
SPSS version 22 (IBM Corp. Armonk, NY, USA). As only combi-
nations of three (triplets) or more stimuli were unique and allowed
for preparation for the next, upcoming stimulus, the first two trials
after each break were excluded from both the behavioural and the
MEG analysis. We also excluded trials in which incorrect responses
were given and trials with an RT shorter or larger than three times
the mean plus or minus the SD of the participant’s mean RT.

MEG analysis

Pre-processing and artefact rejection

MEG data analyses were performed using the in-house OHBA Soft-
ware Library (OSL) version 2.0, Fieldtrip (Oostenveld et al., 2011),
and custom-written MATLAB code. Using Maxfilter, MEG data
from each participant were subjected to noise reduction using spa-
tiotemporal signal space separation (TSSS). Neuromag MaxFilter
software minimises extra-cranial noise by separating signals arising
from inside and outside the helmet (Taulu et al., 2004), with the
temporal extension method additionally removing interference from
nearby sources (Taulu & Simola, 2006). MaxFilter also compensates
for the effect of head movement using continuous head position
measurements. After using MaxFilter, the data were down-sampled
to 250 Hz. A 0.1-Hz high-pass filter was applied to the data to
remove low-frequency drift. Independent component analysis (ICA)
was performed to reject artefacts associated with eye blinks, eye
movements and heartbeat. We inspected all artifactual components
visually before removing them from the data. After epoching the
data, OSL’s variance-based automated artefact detection was
applied. Trials excluded during the behavioural analysis stage,
including the first two trials after each break (see Behavioural analy-
sis), were excluded from the MEG data as well. On average
19.6 � 4.6% of trials were excluded.

Region-of-interest selection based on event-related fields

Bilateral motor and visual regions of interest (ROIs) were selected
based on event-related fields (ERFs) evoked by motor response and
targets, thereby ensuring that ROI selection was independent of the
main analysis period and signal features of interest (anticipatory
time-frequency data). Moreover, channel selection was performed
independently of condition.
ERFs were calculated separately for left (positions 1 and 2) and

right (positions 3 and 4) targets. Data for the planar gradiometer
pairs were combined, resulting in a 102-channel combined planar
gradiometer map in sensor space. A left vs. right difference ERF
was calculated for each participant separately and subsequently aver-
aged across participants. Motor ROIs were selected based on the
average left vs. right difference ERF topography in a window of
300 ms centred on the button press (see Fig. 2a). Based on the
topography, six (symmetrical) channel pairs were selected on the
left (MEG0412 + 0413, MEG0422 + 0423, MEG0432 + 0433,
MEG0442 + 0443, MEG1812 + 1813, MEG1822 + 1823) and on

the right (MEG1112 + 1113, MEG1122 + 1123, MEG1132 + 1133,
MEG1142 + 1143, MEG2212 + 2213, MEG2222 + 2223). Visual
ROIs were similarly selected based on the average left–right differ-
ence ERF topography in a window of 100–200 ms after target pre-
sentation (see Fig. 3a). We again selected six (symmetrical)
channel pairs on the left (MEG1632 + 1633, MEG1642 + 1643,
MEG1912 + 1913, MEG1922 + 1923, MEG1942 + 1943, MEG
2042 + 2043) and on the right (MEG2032 + 2033, MEG2312 +
2313, MEG2322 + 2323, MEG2342 + 2343, MEG2432 + 2433,
MEG2442 + 2443).

Time-frequency analysis

Time-frequency analysis was performed on Hanning-tapered data
using a short-time Fourier transform for frequencies between 4 and
45 Hz (in 0.5 Hz steps). A fixed sliding time window of 300 ms
was advanced over the data in steps of 67 ms. Power time series in
planar gradiometer pairs were combined (Cartesian sum), resulting
in a 102-channel combined planer gradiometer map in sensor space.
Because each button press was immediately followed by the start of

the following trial, no clean baseline period was present in the data. All
data were therefore explored by looking at power differences between
contralateral and ipsilateral ROIs only. For each ROI, we computed rel-
ative contrasts between contralateral and ipsilateral expected visual tar-
gets ([[contra - ipsi]/[contra + ipsi]]*100), and subsequently averaged
across both ROIs. We also calculated this contra vs. ipsi contrast for
each symmetrical channel pair (symmetrical along the midline) to
obtain the corresponding contra vs. ipsi topography plots.
We took particular care to equate the influence of previous button

presses on the current trial between conditions. Because of the nat-
ure of spatial-temporal sequence learning, conditions differed with
regard to the proportion of trials in which the previous response was
made with the same or the opposite hand and differed with regard
to the RSI on the previous trial. Effects relating to previous trials
can influence both behaviour and brain activity (see, e.g. Van der
Lubbe et al., 2004; Los, 2010), and can in principle introduce spuri-
ous findings. In order to avoid any effects related to different pro-
portions of preceding responses or RSI, we limited our initial
analysis to a subset of trials in which all relevant parameters were
equated. We only analysed trials in which the previous response (de-
picted at time point 0 in Fig. 2 and Fig. 3) was on the opposite
hand. In addition, we only analysed short and long RSI trials (667
and 1500 ms), where the RSI on the previous trial was of intermedi-
ate length (1000 ms). For R blocks, on average 118 � 2 (SE) trials
per RSI per participant were included, and for N blocks, this was
20 � 0.4 trials per RSI per participant.
The main period of interest was the first 667 ms after the button

press to the previous target (i.e. the time period corresponding to the
short RSI). This is the time period during which spatial-temporal
expectations (induced by the sequence structure) differ between
repeated and new sequences, and between short and long RSIs in
repeated blocks. Differences between conditions were evaluated
using Fieldtrip’s nonparametric cluster-based permutation tests,
which circumvent the multiple comparisons problem by testing the
full time-frequency space under a single permutation distribution of
the largest cluster (Maris & Oostenveld, 2007). We used 1000 per-
mutations with a two-tailed alpha level of 0.05.

Post hoc analyses

In addition to the main analysis described above, we performed
two post hoc analyses on our data. First, we evaluated the
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relation between contra vs. ipsi beta power differences and our
behavioural results (RTs) by investigating trial-by-trial Pearson’s
correlations for the short interval in the repeated condition for
each time-frequency point. We limited our analysis to the same
subset of trials as described above. These results were evaluated
using Fieldtrip’s nonparametric cluster-based permutation tests on
the correlation values.
Secondly, to evaluate whether the beta suppression in our

experiment might show a parametric effect, we conducted an
additional analysis for the repeated sequence condition using all
thee RSI lengths. We again only included trials where the previ-
ous response was on the opposite hand. For this analysis, it was
necessary to relax the criterion that the previous RSI had to be
of intermediate length. Contrasts were again calculated as relative
contrasts (see above) and evaluated using Fieldtrip’s nonparamet-
ric cluster-based permutation tests. To quantify the influence of
temporal expectations, we investigated magnitude (power) differ-
ences in the early interval after the previous sequence element,

with the rationale that when targets are expected early (as com-
pared to later), power modulations should be more pronounced in
the early interval. Therefore, in addition, we extracted the data of
interest in an a priori defined pre-target window (i.e. beta band
activity [15–28 Hz] in the window immediately preceding the first
possible target [400–667 ms after the previous response]) to
directly compare contra vs. ipsi differences between conditions in
a repeated-measures ANOVA.

Results

Participants took part in a multisession experiment involving a spa-
tial-temporal SRT task. A previous behavioural publication (Heide-
man et al., 2017) describes the behavioural results for all three
(behavioural, MEG and fMRI) sessions. In the current manuscript,
we report results for the MEG session only and focus on anticipa-
tory neural dynamics related to the utilisation of incidentally
acquired combined spatial and temporal sequences.

Fig. 2. MEG results for the power difference between contralateral and ipsilateral motor channels. (a) Topography for the ERF difference between left vs. right
motor responses in the ERF averaged for a 300-ms window centred on the button press (collapsed across RSIs). The symmetrical left and right motor channels
that were selected as the motor region-of-interest (ROI) in the MEG analysis are marked in black. (b) Schematic of the data depicted in c. TFR plots reflect fre-
quencies between 5 and 45 Hz, locked to the preceding button press, which always occurred with the opposite hand, compared to the (anticipated) current tar-
get. Results are shown for targets that occurred either after a short RSI (667 ms) or after a long RSI (1500 ms), and were always preceded by a medium RSI.
Topographies show averages for the beta (15 - 28 Hz, shown on the left) and alpha (8–12 Hz, shown on the right) frequency bands, for a window between 400
and 667 ms after the button press (i.e. just before a ‘short target’ would be presented). (c) Time–frequency representation (TFR) plots for contra vs. ipsi ROI
channels (relative to the target location and therefore response side), shown separately for the repeated sequence condition (first column), the new sequence con-
dition (second column) and for the repeated vs. new contrast (third column). Rows depict results for the short RSI (top row), the long RSI (second row), and
the difference between the short and the long RSI (bottom row). Significant clusters are outlined in white. Topographies similarly reflect results for contralateral
vs. ipsilateral activity in symmetrical channel pairs (for convenience, plotted in the right channel element of each channel pair).
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Behavioural results

RTs as a function of block type and RSI are shown in Fig. 1b.
Learning in SRT tasks can be expressed in two ways. First, learning
is often shown by a decrease in RTs over the course of the first
block(s) of the experiment (see Heideman et al., 2017; for the learn-
ing results for the behavioural session preceding the MEG session).
In addition, learning in SRT tasks can be shown by introducing a
new or random sequence instead of the usual, repeated sequence. In
this study, we did this in three blocks (red bars, Fig. 1b). Paired-
samples t-test confirmed that RTs in blocks with new sequences
(new blocks; N) were larger than RTs in blocks with the standard,
repeated sequence (repeated blocks; R; t(17) = 5.35, P < 0.0001),
indicating that participants utilised the learned spatial-temporal
sequence structure in the R blocks.

To establish the specific utilisation of the temporal aspects of the
learned sequence structure, we investigated differences in ‘probe
costs’ (quantified as the difference between N vs. R blocks) for the
different RSIs that were used in the task (667, 1000 and 1500 ms).
Figure 1c and d shows the RTs and probe costs as a function of
RSI, with group averages shown at the top, and results for individ-
ual participants at the bottom. A repeated-measures ANOVA with
the factors RSI (667, 1000 or 1500 ms) and block type (R or N)
revealed main effects of both RSI (F2,16 = 10.72, P = 0.001) and
block type (F1,17 = 34.25, P < 0.0001), and, importantly, an interac-
tion between RSI and block type (F2,16 = 10.92, P = 0.001). This
interaction between RSI and block type is best appreciated by look-
ing at the probe cost as a function of the different RSIs. Probe costs
differed significantly between RSIs (F2,16 = 8.02, P = 0.004), with

Fig. 3. MEG results for the power difference between contralateral and ipsilateral visual channels. Same conventions as in Fig. 2, except all contrasts involve
the difference between contra and ipsilateral visual ROIs (as opposed to motor ROIs). Visual ROIs were based on the ERF difference between left vs. right tar-
gets in the 100–200 ms window after target presentation, as depicted in panel a. Corresponding topographies for alpha and beta are shown in Fig. 2.
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follow-up t-tests showing that probe costs for the short RSI were
larger than probe costs for the medium RSI (M � SE = 43 � 8 ms
vs. 23 � 6 ms; t(17) = 4.95, P = 0.0001) and the long RSI
(M � SE = 43 � 8 ms vs. 19 � 4 ms; t(17) = 3.04, P = 0.007.
Benefits in response times for the medium and long RSI conditions
did not differ (M � SE = 23 � 6 ms vs. 19 � 4 ms; t(17) = 0.71,
P = 0.490).
These data suggest that the largest behavioural benefit from the

learned spatial-temporal sequence is obtained for targets occurring
after a short RSI. This is in line with the typical observation in cued
temporal orienting tasks (Coull & Nobre, 1998; Miniussi et al.,
1999; Correa et al., 2006; Nobre, 2010; Rohenkohl et al., 2014) in
which the beneficial effect of valid temporal foreknowledge is most
pronounced at the short interval, but is much weaker at the later
interval as a result of concurrent hazard rate-based expectations (see
Heideman et al., 2017 for further discussion). Based on these data,
we looked for anticipatory neural dynamics that would adhere to a
similar pattern, with the strongest anticipatory modulations occurring
early after each response when the next target is also expected early
(i.e. at the short RSI).
After the final experimental session, we assessed to what degree

the spatial and temporal sequence information remained implicit to
participants (see Heideman et al., 2017 for a full description of the
assessment and results). Our assessment of awareness of spatial
(spatial) sequence revealed that, although participants did not gener-
ally believe they gained explicit knowledge about the repeated order
(confidence ratings were low), they were able to perform a sequence
generation and prediction of next target task slightly above chance.
This was, however, not the case for the temporal structure. In addi-
tion to very low confidence ratings, participants performed at chance
level when asked to reproduce the temporal structure of the task.
All temporally specific modulations (including interactions between
incidentally acquired temporal and spatial structure) are therefore
considered to reflect implicit learning in this study.

MEG results

Motor preparation

Left and right motor ROIs (Fig. 2a) were selected based on the
topography of ERFs evoked by left vs. right responses in a 300-ms
window centred on the button press. We used these ROIs to extract
anticipatory contra- and ipsilateral motor activity.
Figure 2c shows the time- and frequency-resolved normalised

power differences between contralateral and ipsilateral ROI channels
(contra vs. ipsi), as a function of block type (columns) and RSI
(rows). Data are locked to the previous button press, such that the
expected target and motor response (in repeated blocks) occur either
early or late after this event. Contra- and ipsilateral ROIs are defined
relative to the upcoming response (which was always opposite to
the previous response; see Time-frequency analysis). Topographies
mark the same contra vs. ipsi difference (evaluated for each sym-
metrical channel pair), averaged over the indicated time-frequency
windows depicted in Fig. 2b. Statistical testing was performed on
the time-frequency matrices using cluster-based permutation statis-
tics (Maris & Oostenveld, 2007). Significant clusters are outlined in
white.
In both the repeated and the new blocks, for both the short and

the long RSI, we observed a clear modulation of power that was lar-
gely restricted to the beta band. Beta power in the first 200 ms after
the response (time point 0 in Fig. 2c) was larger contralateral than
ipsilateral (repeated short: two-sided cluster P = 0.044; repeated

long: two-sided cluster P = 0.014; new short: two-sided cluster
P = 0.036; new long: two-sided cluster P = 0.014), followed by a
prolonged period with less power contralateral than ipsilateral (two-
sided cluster P < 0.001 for all four conditions). We must immedi-
ately point out that this is most likely a consequence of our analysis
pipeline, in which we only included trials in which the previous
response was made with the opposite hand compared to the upcom-
ing response. Instead, we were particularly interested in the differ-
ences in this modulation when the expected RSI was short or long
(in repeated blocks) and between repeated and new trials (particu-
larly for the short RSI, given our behavioural results). Critically,
these contrasts of interest are not confounded by the previous
response, because both the previous response side (always the oppo-
site hand) and the previous RSI (always the intermediate RSI) were
carefully equated in these four conditions.
We first considered the difference between short and long RSI tri-

als within repeated sequences (Fig. 2c, left column, bottom panel).
Based on our behavioural results, we hypothesised that participants
would show a stronger engagement of their motor system (as
reflected in lower contralateral, relative to ipsilateral, alpha and beta
power) early after their response, when the next target/response was
expected to follow after a short, compared to a long RSI. In accor-
dance with this, we observed a significant cluster (two-sided cluster
P < 0.001), revealing a stronger lateralisation (less power contralat-
eral than ipsilateral) in short compared to long RSI trials. This effect
was most prominent in the beta band and started well ahead of the
anticipated target/response. The topography of this modulation was
centred on the selected motor channels (indicating an origin in
motor or pre-motor cortices), and this was the case for modulations
in both the beta and the alpha band.
In contrast to these results, and according to our predictions, no

significant short vs. long RSI difference was observed for the new
blocks (Fig. 2c, middle column, bottom panel). In new blocks, par-
ticipants could not predict the upcoming RSI. Moreover, the contrast
of the RSI effects between repeated and new blocks (third column,
bottom panel) showed that the interaction between RSI and block
type also survived statistical testing (two-sided cluster P = 0.006).
This pattern of results was replicated in the complementary con-

trast between repeated and new blocks, when considering the short
RSI (Fig. 2c, right column, upper panel; two-sided cluster
P < 0.001). The topography of this contrast was again centred on
the selected motor channels and seemed particularly pronounced in
the beta band.

Visual anticipation

Because the spatial aspects of the task involved both a lateralised
visual stimulus and a related lateralised motor response, one might
expect that the utilisation of the learned spatial-temporal sequence
structural might additionally modulate anticipatory perceptual
dynamics in visual sites. Putative concurrent neural dynamics of
visual anticipation would be expected to be most pronounced in the
alpha band (Worden et al., 2000; Sauseng et al., 2005; Thut et al.,
2006; Wyart & Tallon-Baudry, 2008; Kelly et al., 2009; Jensen &
Mazaheri, 2010; Gould et al., 2011). Yet, the alpha-based topogra-
phies in Fig. 2c revealed a largely motor origin of the anticipatory
dynamics. To assess further the potential dynamics associated with
visual anticipation, we additionally repeated the analysis performed
over contralateral and ipsilateral motor channels with contralateral
and ipsilateral visual ROIs.
Left and right visual ROIs (Fig. 3a) were selected from the left

vs. right target topography in a window 100 to 200 ms after target
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presentation and were used to extract anticipatory contra- and ipsi-
lateral visual activity. Time-frequency plots of the normalised power
differences between contra and ipsi ROI channels (Fig. 3c) are again
shown as a function of block type (rows) and RSI (columns). Data
are similarly locked to the previous button press, with the upcoming
target/response occurring on the opposite side. Upcoming targets
were again presented either after a short (667 ms) or long
(1500 ms) RSI.
In contrast to the motor ROI results, in the visual ROIs differ-

ences in anticipatory activity between conditions were less convinc-
ing. Only the difference between the short and long RSI for
repeated trials survived statistical comparison (two-sided cluster
P < 0.002), but this difference could not convincingly be attributed
to an anticipatory effect. Indeed, when inspecting the alpha topogra-
phies in Fig. 2c it is clear that (at least) the pre-target activity in this
cluster may include a bleed through from more central (pre-) motor
areas, where this anticipatory modulation by expected target/motor
timing is most pronounced.

Trialwise correlations with reaction time

To investigate whether the contra vs. ipsi beta power difference
was indeed associated with improved performance, we performed a
post hoc analysis of the correlation between power and RTs, focus-
ing on short RSI trials in repeated blocks. If it is such that lower
contra vs. ipsi beta power (putatively reflecting stronger expecta-
tion) confers an RT benefit (i.e. lower RT), then this should show
as a positive correlation. For this purpose, we calculated the trial-
by-trial Pearson correlation for each time-frequency point. Results
are shown in Fig. 4, with significant clusters outlined in white.
These results clearly show a significant correlation both pre- and
post-target (two-sided cluster P = 0.050 pre-target and two-sided
cluster P = 0.020 post-target), indicating that participants responded
more quickly when there was a larger contra vs. ipsi difference in
beta power. In addition, RTs correlated negatively with post-target
low-frequency power (putatively, the ERF; P = 0.038). The topog-
raphy of this pre-target effect (the effect in which we were particu-
larly interested) again confirmed a localisation to the (pre-)motor
areas.

Beta modulations in the medium interval

To evaluate whether beta modulations in our experiment varied
parametrically according to the learned RSI, we reran our analysis
for the repeated condition using all three RSI lengths. Data are
shown in Fig. 5, for the same motor ROIs that were selected in
Fig. 2. Figure 5a follows the same convention as Fig. 2, except that
it also includes data from the medium RSI condition (note that for
this analysis, we had to relax the constrain that the previous RSI
should be the medium RSI).
Figure 5b (top) shows the group average of the contra vs. ipsi

beta power difference for the same time-frequency window as used
for the topographies in Fig. 5a, as well as Fig. 2. Results for indi-
vidual participants are shown at the bottom. A repeated-measures
ANOVA showed a significant effect of RSI (F2,16 = 12.08,
P < 0.0001). Follow-up t-tests showed that the contra vs. ipsi beta
power difference (here plotted as a positive effect) was significantly
larger for the short, compared to the medium (t(17) = 3.24,
P = 0.005) and long RSI (t(17) = 5.02, P = 0.0001) and also dif-
fered significantly between the medium and long RSI (t(17) = 2.94,
P = 0.009). These results show that the strength of beta modulation
differed depending on temporal expectation in a parametric fashion:
the earlier a target is expected, the stronger the beta modulation
early after the preceding sequence element.

Discussion

We set out to investigate anticipatory oscillatory dynamics related to
the use of incidentally acquired, hidden, spatial-temporal sequences.
Behavioural data suggest that predictions in learned spatial-temporal
sequences are used proactively and dynamically to enhance perfor-
mance. Similar to the effects in spatial-temporal orienting studies
using explicit cues, performance benefits in our SRT task were
strongest for short (vs. medium and long) intervals (see Heideman
et al., 2017 for elaboration). In line with these results, our MEG
data revealed anticipatory power modulations in the beta band
(lower contra- vs. ipsilateral power) that adapted in a parametric
fashion to the expected location and timing of elements within the
visual-motor sequence. This difference was observed when

Fig. 4. Trial-by-trial correlations between power and RT for the short RSI (667 ms) in the repeated condition. The data show the Pearson correlation coeffi-
cient for each time-frequency point between 5 and 45 Hz, for the contra vs. ipsi contrast, locked to the previous button press. Data are plotted for the motor
ROI channels shown in Fig. 2a. The topography shows the average for the beta (15–28 Hz) frequency band, for a window between 400 and 667 ms after the
button press (i.e. just before the presentation of the short target). Significant clusters are outlined in white. The topography reflects results for contralateral vs.
ipsilateral activity in symmetrical channel pairs.
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comparing the short RSI for learned (repeated) vs. unlearned (new)
sequences (i.e. ‘early’ vs. ‘no’ expectation), as well as when com-
paring short and long RSIs for the repeated sequence (i.e. ‘early’ vs.
‘late’ expectation). We further show that responses to elements that
were expected after a short preceding interval were faster in trials in
which beta was more suppressed in contralateral (relative to ipsilat-
eral) motor cortical sites – suggesting a role for these anticipatory
beta modulations in mediating the observed performance benefits.
These results advance the literature in two key ways. First, they

complement the motor sequence-learning literature, by focusing on
neural dynamics of sequence utilisation as opposed to sequence
learning. Second, they reveal that typical behavioural and EEG/
MEG patterns observed with explicit spatial and temporal cueing
generalise to settings involving complex, incidentally acquired
sequences. By doing so, they reveal that canonical neural dynamics
of motor preparation flexibly adapt to learned spatial and temporal
sequence structure, even when this structure remains largely implicit
and even when interelement intervals are variable (i.e. non-rhyth
mic). We elaborate below.

Neural dynamics of the utilisation of predictive spatial-temporal
sequence structure

Most prior neuroimaging work investigating the neural basis of beha-
vioural performance benefits associated with incidentally acquired
sequence structure (typically in SRT tasks) focused on the learning
of such sequence information. Moreover, most of these studies only
investigated this for spatial structure. Complementing this work, we
were particularly interested how, once such sequence structure has
been acquired, this learned information (in our case both spatial- and
temporal structure) is subsequently used to optimise behaviour.
Hemodynamic imaging techniques like fMRI have been useful for

revealing areas and networks involved in learning in SRT tasks (e.g.
Schendan et al., 2003; Gheysen et al., 2010; Hardwick et al., 2013)
and for studying how spatial and temporal sequence features are rep-
resented (Kornysheva & Diedrichsen, 2014; Bednark et al., 2015).
MRI is a useful tool for looking at brain areas involved in learning,
which generally happens on a slow timescale, over the course of
several blocks. However, it is not well suited for the investigation of

Fig. 5. Beta power differences between contralateral and ipsilateral motor channels for all three RSIs. (a) TFR plots reflect frequencies between 5 and 45 Hz,
locked to the preceding button press, which always occurred with the opposite hand, compared to the (anticipated) current target. Data are shown for the motor
ROI channel selection shown in Fig. 2a. Results are shown for targets that occurred either after a short RSI (667 ms; top plot), medium RSI (1000 ms; middle
plot) or a long RSI (1500 ms; bottom plot). Significant clusters are outlined in white. Topographies show averages for the beta (15–28 Hz) band, for a window
between 400 and 667 ms after the button press. (b) Beta power difference between contralateral and ipsilateral motor channels for the same time and frequency
selection as used for the topographies in a. The bottom plot shows individual participant data. Asterisks indicate statistically significant effects.
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fast temporal dynamics, which is essential when studying how these
representations are used to guide behaviour, while sequences are
unfolding. By turning to high-temporal resolution MEG measure-
ments, we were able to study precisely this.
Although electrophysiological methods have been used to study

learning in SRT tasks, these too have focussed primarily on the
acquisition of spatial structure. An EEG study looking at lateralised
readiness potentials within learned visual-motor sequences also found
that participants showed initial activation of incorrect (but expected)
responses when they were presented with a deviant item (Eimer
et al., 1996). Pollok et al. (2014) observed a stepwise decline of
alpha desynchronisation associated with motor learning. Furthermore,
in their study the improvement of reaction times varied linearly with
the amount of beta desynchronisation, particularly during consolida-
tion. Another recent study reported a reduction in alpha and theta
power over posterior areas with learning for sequenced blocks (com-
pared to random blocks), together with a reduction in alpha-to-low-
gamma phase–amplitude coupling over right parietal and bilateral
frontal areas (Tzvi et al., 2016). The authors suggest that the reduced
phase–amplitude coupling reflects a shift away from visually guided
motor selection, towards implementation of the learned motor
sequence. This study, however, did not look at beta activity.
The present study complements these studies in three key ways.

First, it looks at power modulations reflecting the utilisation of the
incidentally learned structure, rather than at the learning per se. Sec-
ond, it looks at dynamic changes in neural activity at a much finer
timescale, associated with spatial and temporal contingencies
between successive sequences elements rather than changes in the
state of brain activity over extended blocks of learning. Third, it con-
siders both the temporal and spatial structure of sequences, showing
that preparation is specific to precise target–interval combinations.

Anticipatory spatial-temporal beta modulations in hidden
spatial-temporal sequences

The main finding in the present study is that anticipatory power
modulations in the beta band adapt to predictive sequential structure,
with both spatial and temporal specificity. The effects point to
proactive utilisation of spatial and temporal predictions embedded in
sequences, in a way that resembles the use of explicit cues about
the location and timing of upcoming targets or motor responses. It
is well known that motor (and somatosensory) preparation is associ-
ated with attenuated alpha and beta power over corresponding motor
and sensory regions, both when preparing voluntary movements and
in anticipation of task-relevant targets (Jasper & Penfield, 1949;
Pfurtscheller & Lopes da Silva, 1999; Jones et al., 2010; Van Ede
et al., 2010, 2011; Jenkinson & Brown, 2011; Kilavik et al., 2013).
Moreover, an increasing number of studies have shown that these
modulations are not only sensitive to spatial expectations (showing
larger attenuation in contralateral vs. ipsilateral sites; e.g. Nagamine
et al., 1996; Taniguchi et al., 2000; Doyle et al., 2005; Alegre
et al., 2006; Jurkiewicz et al., 2006; Zhang et al., 2008; Van Ede
et al., 2011, 2010), but also to temporal expectations (e.g. Schoffe-
len, 2005; Alegre et al., 2006; Van Ede et al., 2011). If you know
that a target requiring a response will appear shortly, beta power
decreases earlier than when this target is expected only later, similar
to the difference between short, medium and long RSIs for the
repeated sequence in the current study. Interestingly, interval timing
in perceptually guided motor tasks has been reported to be encoded
by neurons in medial pre-motor cortex (e.g. Merchant et al., 2013)
which may provide the possible source for instantiating the temporal
alignment of the anticipatory beta modulation reported here.

Previous studies using regular, isochronous rhythmic sequence
have also shown modulation of oscillatory power (e.g. Praamstra
et al., 2006; Heideman et al., 2015). These studies also show that
temporal regularities can modulate neural excitability in the absence
of explicit temporal cues, showing that that beta power starts to
decrease earlier in a faster, compared to a slower rhythmic stream.
However, in these studies the spatial (motor) element was random,
and therefore, motor preparation was spatially (effector) unspecific.
Our demonstration of spatially and temporally specific modulation

of motor preparation in complex spatial-temporal sequences comple-
ments findings using rhythmic sequences in two important ways. Our
results show that proactive and flexible temporal modulation of brain
activity by an implicit temporal structure does not require a simple,
constant rhythm. Isochronous rhythms have been proposed to be able
to align to endogenous, naturally occurring brain rhythms to regulate
neural excitability in a rhythmic fashion (Schroeder & Lakatos,
2009; Schroeder et al., 2010). Although this may indeed be a potent
mechanism for modulating excitability to enhance performance to
naturally occurring rhythmic stimulation (e.g. Lakatos et al., 2008,
2009; Stefanics et al., 2010; Besle et al., 2011; Cravo et al., 2013),
this would not be sufficient to support the effects observed in the
context of our more complex spatial-temporal sequence. Our tempo-
ral sequence only repeated every 12 elements, and the specific inter-
vals were not in a harmonic relation to one another.
The second intriguing and important aspect of our results is that

temporal modulations following the hidden sequential structure of
the task were spatially specific. This occurred despite the fact that
the spatiotemporal contingencies were complex, with temporal-motor
associations being specific to the different positions across the
twelve items of orthogonal spatial and temporal sequences. Comple-
mentary studies looking specifically at interactions between spatial
and temporal information have shown that such combined effects
are especially powerful (i.e. ‘super-additive’; Doherty et al., 2005;
O’Reilly et al., 2008; Rohenkohl et al., 2014), in comparison with
either type of information in isolation. Following the strong synergy
observed between spatial and temporal sequences in behavioural
effects (O’Reilly et al., 2008), we hypothesise that the temporal pre-
dictions in our task strongly potentiate the modulation of anticipa-
tory motor preparation. It will be interesting to verify this in future
studies by comparing markers of motor preparation in sequences
with both spatial and temporal structure to sequences with either
feature in isolation. Note that the current task does not allow us to
make such a distinction, because both spatial and temporal
sequences were always present, that is, we can only establish an
effect of spatial-temporal expectations. Another limitation of the cur-
rent task is that due to our trial selection procedure, only a small
number of trials (i.e. 20 per RSI) could be included for the new
sequence conditions. At the same time, we note that we find an
effect despite this limited number and, moreover, that our main con-
trast of interest (repeated short vs. long) included 118 trials per RSI.

The nature of proactive anticipation in SRT tasks

Using whole-head MEG recordings, we were able to evaluate what
type of anticipation (perceptual and/or motor) was particularly
important for performance in our SRT task. In the literature, there
are different proposals regarding exactly what information is
acquired – whether more perceptual or motor-related in nature
(Abrahamse et al., 2010; Schwarb & Schumacher, 2012). Not sur-
prisingly, the debate has not fully been resolved and, most likely,
the nature of the mechanisms will be strongly influenced by specific
task parameters and demands. However, it is clear that the sequence
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of motor responses or learned stimulus-response rules play an
important role in sequence learning (Schwarb & Schumacher, 2012).
While it seems that perceptual sequences, in some cases, can be
learned independently of an accompanying motor sequence (e.g.
Howard et al., 1992; Song et al., 2008), others failed to show inde-
pendent perceptual learning (Willingham, 1999).
In the context of the current task, there was surprisingly little evi-

dence of visual anticipation, despite there being ample opportunity
for visual spatial orienting given the layout of the stimuli and their
correspondence to the finger movements. We found that the utilisa-
tion of the learned spatial-temporal structure proceeded primarily
through motor preparation, as was evident in the strong beta modu-
lations that were found over central sites. It may be, however, that
the relative contribution of visual and motor areas changes over the
course of learning. In the current task, we were not able to assess
this possibility as the learning primarily took place in the preceding
behavioural session.
To conclude, we have shown that despite the fact that spatial-

temporal predictions remained largely implicit, learned task struc-
ture dynamically modulates the time course of lateralised motor cor-
tical beta activity and enhances performance. In future research it
will be important to establish how these proactive anticipatory spa-
tial-temporal modulations emerge and evolve over the course of
learning. It will also be important to use even better controlled
tasks, to be able to disentangle contributions of different contra-
and ipsilateral motor areas. In addition, it will be interesting to use
more realistic tasks, to see how these predictions hold in more natu-
ralistic settings, where a less arbitrary sequence of behaviours is
learned.
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