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Abstract
Little is known about the extent to which interactions between genetics and epigenetics may

affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We per-

formed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human

adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were

related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in

significant mQTLs were further related to gene expression in adipose tissue and obesity

related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs

in trans showing significant associations between genotype and DNA methylation in adi-

pose tissue after correction for multiple testing, where cis is defined as distance less than

500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type

2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2,GCKR, SORT1 and LEPR. Sig-
nificant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in

promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs

associated with expression of 86 genes in adipose tissue including CHRNA5,G6PC2,
GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with

body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and

public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates

how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-

density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of

insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This

study identifies genome-wide interactions between genetic and epigenetic variation in both
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cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)meta-

bolic traits associated with the development of obesity and diabetes.

Introduction
Genetic factors contribute to the risk of complex metabolic diseases such as obesity and type 2
diabetes. Although genome-wide association studies (GWAS) have identified numerous
genetic loci influencing the risk of developing obesity and type 2 diabetes, only a few of these
loci have been linked to the molecular mechanisms contributing to the phenotype outcome [1].
Moreover, the identified genetic loci do only explain a modest proportion of the estimated heri-
tability of these diseases and additional genetic mechanisms remain to be found. These may
include genetic variants interacting with epigenetic modifications.

The phenomenon of epigenetic modifications are of interest to study for their possible
involvement in phenotype transmission and predisposition to complex human diseases,
including obesity and type 2 diabetes [2,3]. Epigenetics has been defined as heritable changes
in gene function that occur without alterations in the DNA sequence and includes the molecu-
lar mechanism of DNAmethylation [4]. In differentiated mammalian cells, DNA methylation
occurs primarily at cytosines in CG dinucleotides, so called CpG methylation, which is associ-
ated with regulation of cell specific gene expression [5,6]. DNA methylation patterns are
mainly established early in life, but may also be dynamic and change in response to environ-
mental stimulations such as diet and exercise [7–10]. Concurrently, once epigenetic modifica-
tions are introduced they can be stable and inherited [11,12], making epigenetics a potentially
important pathogenic mechanism in complex metabolic diseases. Interestingly, twin studies
provide evidence for an underlying genetic effect on DNAmethylation patterns [13–16]. For
example using monozygotic and dizygotic twins, Grundberg et al showed that as much as 37%
of the methylation variance can be attributed to genetic factors, which is in line with previous
studies [15,16]. In addition, recent studies showed that common genetic variation regulates
DNAmethylation levels, so called methylation quantitative trait loci (mQTLs) [16–20]. How-
ever, most of these studies have been limited to analyses of ~0.1% of human CpG sites in pro-
moter regions [17–19] or restricted to SNPs located within 100 kb from analyzed CpG sites
[16]. It remains to be tested if genetic and epigenetic variation interacts throughout the genome
in human adipose tissue and subsequently affect gene expression and metabolic traits such as
BMI, lipid levels and hemoglobin A1c (HbA1c) in the studied individuals.

The aim of the present study was therefore to perform a genome-wide mQTL analysis in
human adipose tissue, investigating both cis and trans effects of genetic variation on DNA
methylation covering most genes and regions in the human genome. Identified mQTLs were
followed-up and related to gene expression in adipose tissue. Additionally, since the adipose
tissue contributes to whole body energy homeostasis by glucose uptake, triglyceride storage
and adipokine secretion, we investigated if the identified SNPs in significant mQTLs affect
metabolic traits that are associated with increased risk of obesity and type 2 diabetes in the
studied cohort. We further used a causal inference test (CIT) [21] to model the potential causal
relationships between genotype, DNA methylation and metabolic phenotypes.

The present study provides the first detailed map of genetic loci in both cis and trans posi-
tions affecting the genome-wide DNAmethylation pattern in human adipose tissue as well as
numerous metabolic traits. Identified mQTLs cover known lipid, obesity and diabetes loci. Our
study highlights that interaction analysis between genetic and epigenetic variation in a tissue of
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relevance for metabolic diseases may give new insights to biological processes affecting disease
susceptibility.

Results

Associations between genetic variation and DNAmethylation in human
adipose tissue–a genome-wide mQTL analysis
To examine and map underlying genetic control of DNAmethylation patterns in human adi-
pose tissue, we performed a genome-wide mQTL analysis (Fig 1). While most previous mQTL
studies have been limited to analysis of ~0.1% of human CpG sites [17–19] or SNPs within 100
kb from analyzed CpG sites [16] we performed the first combined cis- and trans-mQTL analy-
sis covering DNA methylation of most genes and genomic regions in human adipose tissue of
119 Scandinavian men (Table 1). Here, we pairwise associated genotype data of 592,794 com-
mon SNPs (MAF>0.05) with DNAmethylation of 477,891 CpG sites throughout the human
genome using a linear regression model including sub-cohort, age and BMI as covariates.

The cis-mQTL analysis was limited to SNPs located within 500 kb of either side of the ana-
lyzed CpG sites. Here, we detected 101,911 SNP-CpG pairs (mQTLs) showing significant asso-
ciations between genotype and the degree of DNAmethylation after correction for multiple

Fig 1. Analysis flowchart of the study.

doi:10.1371/journal.pone.0157776.g001
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testing (seeMethods), corresponding to 51,143 unique SNPs and 15,208 unique CpG sites
(Table 2 and S1 Table). Of these 15,208 significant CpG sites, 10,064 were annotated to 5,589
unique genes (Table 2) and 5,144 CpG sites were annotated to intergenic regions. The most
and least significant cis-mQTLs are shown in Fig 2A–2B.

Previously, we reported that approximately 50% of type 2 diabetes associated SNPs identi-
fied by GWAS either introduce or remove a CpG site, a so called CpG-SNP. These CpG-SNPs
were further associated with differential DNA methylation of the CpG-SNP site in human pan-
creatic islets [22]. Among the significant cis-mQTLs in the present study, 447 SNPs were
located within a CpG site, i.e. the distance between a SNP and CpG site is 0 or 1 and thereby
remove or introduce a CpG site–CpG-SNPs (S1 Table). The most significant mQTL among
these 447 cis-mQTLs is presented in Fig 2C.

When a distance analysis was performed, we found an overrepresentation (p< 2.2−16) of
SNPs in significant cis-mQTL located close to the CpG site (Fig 2D–2E), with a median dis-
tance between SNPs and CpG sites of significant cis-mQTLs of 29.6 kb. Moreover, the strongest
association signals were found for SNPs located close to a CpG site (Fig 2F).

In the trans-mQTL analysis, including SNPs located more than 500 kb from the analyzed
CpG sites, we identified 5,342 SNP-CpG pairs showing significant associations between geno-
types and the degree of DNA methylation in adipose tissue after correction for multiple testing

Table 1. Characteristics of 119 Scandinavian men included in the mQTL analysis.

Phenotype Mean ± SD Min 1st. quartile Median 3rd quartile Max

Age (years) 31.03 ± 12.3 22 24 25 35 80

Fasting Glucose (mmol/l) 4.76 ± 0.64 3.2 4.4 4.7 5 7

Fasting Insulin (pmol/l) 37.29 ± 22.43 8 23.1 33 43.3 181.3

Weight (kg) 80.86 ± 11.6 57.2 72.6 80.4 89.57 112.7

BMI (kg/m2) 24.91 ± 3.7 16.4 22.2 24.6 27.15 39

Waist (cm) 90.31 ± 11.5 68 80.75 91 98.25 129

Hip (cm) 97.55 ± 8.8 78 91.75 98 104.2 113

Waist-Hip ratio 0.9 ± 0.06 0.79 0.87 0.9 0.92 1

Cholesterol (mmol/l) 4.5 ± 0.84 2.1 3.9 4.5 5.1 7.1

Triglycerides (mmol/l) 1.14 ± 0.66 0.3 0.72 1 1.3 4.9

HDL (mmol/l) 1.16 ± 0.2 0.5 1 1.13 1.37 1.86

LDL (mmol/l) 2.8 ± 0.77 1 2.3 2.8 3.5 4.7

HbA1c (%) 4.93 ± 0.48 3.7 4.7 5 5.2 6.4

HOMA-IR 1.15 ± 0.78 0.2 0.7 1 1.4 6.5

HOMA-B 133.69 ± 226.33 19.2 56 75.6 118.9 1834

doi:10.1371/journal.pone.0157776.t001

Table 2. Number of significant mQTL results in human adipose tissue.

cis-mQTL trans-mQTL

SNP-CpG pairs 101,911 5,342

SNPs 51,143 2,735

CpG sites 15,208 596

Unique genes 5,589 375

Significance threshold < 0.05 after Bonferroni correction for multiple testing.

Correction value cis = 104,023,091

Correction value trans = 211,781,637,483.

doi:10.1371/journal.pone.0157776.t002
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(seeMethods), corresponding to 2,735 unique SNPs and 596 unique CpG sites (Table 2 and S2
Table). Among unique CpG sites of significant trans-mQTLs, 366 CpG sites were annotated to
375 unique genes (Table 2 and S2 Table) and 230 CpG sites were annotated to intergenic
regions. The most and least significant trans-mQTLs are shown in Fig 2G–2H.

Genomic distribution of significant mQTLs in human adipose tissue
DNAmethylation in proximal promoter and/or enhancer regions is generally thought to have
silencing effects on gene transcription, meanwhile DNAmethylation in the gene body might
stimulate transcriptional elongation and contribute to alternative splicing events [6]. Giving
the various functions of DNAmethylation in the context of genomic regions, it is of interest to
study the underlying mechanisms regulating DNAmethylation patterns in different genomic
regions. We therefore studied the chromosomal and genomic distribution of CpG sites in sig-
nificant mQTLs in human adipose tissue. To determine whether the genomic distribution of
CpG sites in significant mQTLs differ significantly from all analyzed CpG sites on the array, we
performed chi-squared tests. The chromosomal distribution of CpG sites in significant cis- and
trans-mQTLs is shown in Fig 3A.We found an overrepresentation of CpG sites in significant
cis-mQTLs on chromosome 6, 7, 8, 13 and 21 together with an underrepresentation on chro-
mosomes 1, 2, 3, 11, 12, 14, 15, 17, 18, 19, 20 and X when compared to the chromosomal distri-
bution of all analyzed CpG sites (Fig 3A). The highest deviation from expectation of CpGs in
significant cis-mQTLs was observed on chromosome 6 (p-value = 3.4x10-89), where the highly
polymorphic HLA region is located, a genomic region linked to numerous autoimmune dis-
eases [23,24]. CpG sites in significant trans-mQTLs were overrepresented on chromosomes 6
and Y while underrepresented on chromosomes 9 and 14 (Fig 3A).

Furthermore, the Infinium HumanMethylation450 BeadChip estimates DNA methylation
in several genomic features and the analyzed CpG sites have been annotated based on their
genomic location in relation to the nearest gene including genomic regions TSS1500 and
TSS200 (1500–201 and 200–0 bases upstream of transcription start site (TSS), respectively),
5’UTR (untraslated region), 1st exon, gene body, 3’UTR and intergenic regions [25]. In the
present study, CpG sites in significant cis-mQTLs were overrepresented in the intergenic
regions and gene body, while significantly underrepresented in the TSS1500, TSS200, 5’UTR,
1st exon and 3'UTR (Fig 3B). Among significant trans-mQTLs, we found an overrepresenta-
tion of CpGs in the intergenic region and underrepresentation in TSS1500 and gene body (Fig
3B).

The analyzed CpG sites have also been annotated based on their relation to CpG islands,
including the following regions: CpG islands, northern and southern shores, northern and
southern shelves and open sea [25]. For CpG sites in significant cis-mQTLs, we found an over-
representation in the open sea, northern- and southern shores as well as in southern shelf

Fig 2. Associations between SNPs and DNAmethylation in human adipose tissue. A genome-wide mQTL analysis in
human adipose tissue was performed by associating SNPs with DNAmethylation of CpG sites located in either cis (�500 kb) or
trans. Boxplots of (a) the top cis-mQTL, (b) the bottom cis-mQTL, and (c) the top cis-mQTL where the SNP introduces or
removes a CpG site (CpG-SNP), showing significant associations between SNPs (genotype groups, x-axis) and DNA
methylation of CpG sites (%, y-axis). (d-e) The frequency of associations (y-axis) is plotted in relation to the relative distance
between SNPs and CpG sites (kb, x-axis) of significant cis-mQTLs. In (d) the full cis-mQTL distance of 500 kb is represented and
the frequency of significant cis-mQTLs within each distance bin of 10kb are plotted, and, in (e) the region of 0-50kb is zoomed
and the frequency of significant cis-mQTLs within in each distance bin of 1kb is plotted. (f) Histogram showing the strength of
association (-log10 p-value, y-axis) in relation to distance between SNP and CpG site (kb, x-axis) of significant cis-mQTLs. The
most frequent and strongest association signals of cis-mQTLs are shown within SNPs located close to CpG sites. (g-h) Boxplots
of (g) the top trans-mQTL, and (h) the bottom trans-mQTL, showing significant associations between SNPs (genotype groups, x-
axis) and DNAmethylation of CpG sites (%, y-axis). pcorr, p-values have been corrected for multiple testing by a modified
Bonferroni correction where the LD structure of SNPs is taken into account (see methods).

doi:10.1371/journal.pone.0157776.g002
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(Fig 3C). Moreover, an underrepresentation was found in CpG islands (Fig 3C). CpGs in sig-
nificant trans-mQTLs showed overrepresentation in the open sea and underrepresentation in
northern shore as well as southern shelf (Fig 3C).

Next, we performed a KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analy-
sis to identify cellular components or biological pathways which show enrichment among

Fig 3. Distribution of CpG sites of significant mQTLs in relation to genomic regions.We examined the chromosomal and genomic
distribution of CpG sites in significant mQTLs in human adipose tissue. By using chi-squared-tests, we determined whether the observed
frequency of significant CpGs in cis- or trans-mQTLs differs from the frequency of all analyzed CpG sites for a particular genomic region. The
histograms show the distributions of CpGs in relation to (a) chromosomes, (b) nearest gene, and (c) CpG islands. *Frequencies, significantly
different (over-represented) from what expected by chance. #Frequencies, significantly different (under-represented) from what expected by
chance. Genomic region in relation to nearest gene includes: TSS 1500 and TSS 200 (sites located 1500–201 or 200–0 bases upstream of the
transcription start site (TSS) respectively), 5’UTR, 1st exon, gene body, 3’UTR and intergenic region (not mapped to any of the other regions).
Genomic region in relation to CpG island includes:CpG island, shore (flanking region of CpG island, 0–2000 bp), shelf (flanking region of
shore, 2000–4000 bp distant from CpG island) and open sea (not mapped to any of the other regions).

doi:10.1371/journal.pone.0157776.g003
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genes identified in cis- and trans-mQTL analyses in human adipose tissue. UsingWebGestalt
[26], we identified 172 significant (FDR< 0.05) KEGG pathways enriched among 5,589 genes
annotated to significant cismQTLs (S3 Table), including Metabolic pathways (Padj = 6.3x10-15)
and Pathways in Cancer (Padj = 7.3x10-42) were found among the most enriched KEGG pathways
(S3 Table). Moreover, 25 KEGG pathways were enriched among 375 genes annotated to signifi-
cant transmQTLs (S3 Table).

Candidate loci for obesity and diabetes related traits are detected among
mQTLs in human adipose tissue
Numerous SNPs associated with obesity, type 2 diabetes and related traits have previously been
identified by GWAS [1]. However, the molecular mechanisms explaining how most of these
SNPs affect gene function and disease pathology remain scarce. We therefore tested if identi-
fied SNPs in significant mQTLs in adipose tissue overlap with loci previously reported to asso-
ciate with obesity, type 2 diabetes or obesity/diabetes related traits in the GWAS catalog
(p<10−5) [27]. Out of the SNPs significantly associated with DNA methylation in the cis-
mQTL analysis and when taking proxy SNPs into account (R2>0.8, seeMethods), 19,706 over-
all, we found 231 SNPs of significant mQTLs that overlapped with at least one of the 2138
reported disease or trait locus identified in the GWAS catalog (S4 Table), which constitutes
1.17% of cis-mQTL SNPs and 10.8% of GWAS catalog SNPs. Representative mQTLs for some
of these loci are shown in Fig 4A–4J. These mQTLs include POMC and LEPR, which encode
proopiomelanocortin and the leptin receptor, respectively. Mutations in both these genes have
been associated with early onset obesity [28]. We also present mQTLs covering GIPR (encod-
ing gastric inhibitory polypeptide receptor), PARP4 (encoding poly(ADP-ribosyl)transferase-
like 1 protein), CEPT (encoding cholesteryl ester transfer protein), APOA5 (encoding apolipo-
protein A5), SORT1 (encoding sortilin 1), GCKR (encoding glucokinase regulator), FADS2
(encoding fatty acid desaturase 2), ACADS (encoding acyl-CoA dehydrogenase) and GRB10
(encoding growth factor receptor bound protein 10). SNPs in these loci have previously been
associated with BMI, T2D and/or obesity- and lipid-related traits [29–36].

Of SNPs in significant trans-mQTLs, we found 4 SNPs overlapping with reported obesity
loci in the GWAS catalog (Fig 4K and S5 Table).

The impact of identified mQTLs on mRNA expression in human adipose
tissue
It is well established that mRNA expression is regulated by both genetic variation and DNA
methylation independently [4,37]. However, the insights of how genetic and epigenetic varia-
tion interacts to influence gene expression remain limited. In order to study the impact of iden-
tified mQTLs on mRNA expression in human adipose tissue, we performed a follow-up eQTL
analysis in 118 samples with available microarray expression data (out of original 119 samples).
First, we related the 51,143 unique SNPs, showing significant association with DNA methyla-
tion in the cis-mQTL analysis, with mRNA expression of genes within 500kb (cis-distance). In
the eQTL analysis of significant cis-mQTL SNPs, we identified 926 SNP-mRNA transcript
pairs showing significant associations between genotypes and mRNA expression levels after
correction for multiple testing (seeMethods). These correspond to 635 unique SNPs and 86
unique genes, including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57 (Table 3, Fig
5 and S6 Table). CHRNA5 encodes a nicotinic acetylcholine receptor subunit and SNPs in this
locus have been associated with body weight in relation to tobacco use [38]. G6PC2 encodes
glucose-6-phosphatase catalytic subunit 2 and SNPs in this locus have been associated with gly-
cemic traits [39]. GPX7 encodes glutathione peroxidase 7 a protein involved in glutathione
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metabolism. RPL27A encodes Ribosomal protein L27A, which has been linked to human obe-
sity [40]. THNSL2 encodes threonine synthase like 2 and SNPs in this locus have been associ-
ated with obesity [41]. Additionally, ZFP57 encodes a zink finger protein and DNA
methylation and mutations in this locus are associated with transient neonatal diabetes [42].

The 2,735 unique SNPs identified in the trans-mQTL analysis were also followed-up and
related to mRNA expression of all analyzed genes. In the eQTL analysis of significant trans-
mQTL SNPs, we identified 270 significant associations between genotypes and mRNA expres-
sion levels after correction for multiple testing (seeMethod), consisting of 89 unique SNPs and
10 unique genes e.g. GSTT1,HLA-DQB1 and ZFP57 (Table 3 and S7 Table).

The impact of identified mQTLs on metabolic phenotypes
Given that adipose tissue contributes to whole body energy homeostasis by for instance insu-
lin-stimulated glucose uptake, triglyceride storage and adipokine secretion, we investigated if
the identified SNPs in significant mQTLs affect metabolic phenotypes in our study cohort.
Identified mQTL SNPs were related to obesity measurements, glycemic traits and lipid levels in
our study cohort of 119 Scandinavian men as well as looked-up in public available consortia
data from the GIANT [43,44], MAGIC [36,45,46] and GLGC [47] consortia. Out of the signifi-
cant cis-mQTLs, we found 62 SNPs associated with BMI, 185 with waist-hip ratio (WHR), 77
with fasting glucose, 62 with fasting insulin, 91 with homeostasis model of beta-cell function
(HOMA-B), 49 with HOMA-IR, 146 with HbA1c, 85 with total cholesterol, 84 with triglycer-
ides, 197 with HDL, 67 with LDL in both our study cohort and consortia data with the same
direction of allele effects and with P�0.05 (S8 Table). Several of these SNPs show genome-
wide significance in GIANT, MAGIC or GLGC. Representative associations between genotype
and some metabolic traits as well as DNA methylation in the 119 Scandinavian men are shown
in Fig 6A–6C. The SNPs presented in Fig 6 do also show genome-wide significance with
respective trait in GLGC (rs2523453, cholesterol, p = 6.5�10−08 and rs7205804, HDL,
p = 5.27−675) and MAGIC (rs11603334, fasting glucose, p = 2.9�10−08), respectively (S8 Table).

Fig 4. mQTLs in adipose tissue capture reported disease loci. Depiction of some identified mQTLs in adipose tissue of
previously reported GWAS loci associated with obesity: (a) POMC / ADCY3, (b)GIRP, and (c) PARP4; lipid profiles, waist and
metabolic syndrome: (d) CETP, (e) APOA5, (f) LEPR, (g) SORT1, (h)GCKR and (i) FADS2; and metabolic traits: (j) ACADS and (k)
GRB10. ADCY3 locus and LEPR loci were identified through proxy SNPs based on LD.

doi:10.1371/journal.pone.0157776.g004

Table 3. Number of significant eQTL results in human adipose tissue.

eQTLs of cis-mQTL-SNPs eQTLs of trans-mQTL-SNPs

SNP-mRNA transcript pairs 926 270

Unique SNPs 635 89

Unique mRNA transcripts 101 14

Unique genes 86 10

Only SNPs of significant mQTLs are included in the eQTL analysis.

SNPs of significant cis-mQTLs are regressed against mRNA expression of mRNA transcripts located in cis

(� 500kb).

SNPs of significant trans-mQTLs are regressed against mRNA expression of all mRNA transcripts.

Significance threshold < 0.05 after correction for multiple testing.

Correction value for eQTL analysis for cis-mQTL-SNPs = 934,021

Correction value for eQTL analysis for trans-mQTL-SNPs = 33,326,082.

doi:10.1371/journal.pone.0157776.t003
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Fig 5. mQTLs affect gene expression in human adipose tissue. Significant mQTL SNP-CpG pairs where
the SNP also shows significant association with gene expression in adipose tissue. The boxplots represent
some identified mQTL SNPs and associations of the same loci with mRNA expression: (a) CHRNA5, (b)
G6PC2, (c)GPX7, (d) RPL27A, (e) THNSL2 and (f) ZFP57. Annotations for these mQTLs are included in S1
Table.

doi:10.1371/journal.pone.0157776.g005

Fig 6. mQTLs in human adipose tissue affect metabolic phenotypes. The boxplots show significant mQTL SNPs associated with
metabolic phenotypes in our study cohort with p<0.05, and associations of these loci with DNAmethylation in adipose tissue for (a)
rs2523453, (b) rs7205804, (c) rs11603334.

doi:10.1371/journal.pone.0157776.g006
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Additionally, 8 loci detected in the overlap of the cis-mQTL and eQTL analysis were among
those associated with metabolic phenotypes (S8 and S9 Tables). These data show the effect of
interactions between common genetic variation and DNA methylation on gene expression and
metabolic outcome (depiction presented in Fig 7A–7E, all overlapping SNPs presented in S9
Table).

Of identified trans-mQTLs, we found 2 SNPs associated with BMI, 13 with WHR ratio, 6
with fasting glucose, 1 with fasting insulin, 2 with HOMA-IR, 42 with HbA1c, 6 with total cho-
lesterol, 7 with triglycerides, 68 with HDL, and 4 with LDL in both our study cohort and con-
sortia data with the same direction of allele effects and with P�0.05 (S10 Table).

Additionally, 2 of the identified cis-mQTL SNPS were previously found to be associated
with C-reactive protein (CRP) levels (S11 Table).

Additionally, some of the identified cis- and trans- mQTLs are annotated to candidate genes
for adipose-related traits. Out of the 157 loci previously implicated in lipid biology in GLGC
consortium [47], 48 (30%) were found among 5,589 unique genes annotated to significant cis-
mQTLs (S1 Table), and 4 among 375 unique genes annotated to significant trans-mQTLs (S2
Table).

Causality inference test (CIT)–DNAmethylation potentially mediates the
genetic impact on metabolic phenotypes
We proceeded to evaluate the potential causality relationships between genotypes (G), DNA
methylation (M) and phenotypic traits (P) using the CIT [21]. The possible relationships
between these three factors are shown in Fig 8. The CIT was performed in our cohort of 119
Scandinavian men for identified SNP-CpG pairs in the mQTL analysis where the SNP also
showed significant association with a metabolic phenotype in both our study cohort and pub-
licly available consortia data with P�0.05. For cis-mQTLs, we identified 39 SNP-CpG pairs,
corresponding to 35 unique SNPs and 22 unique CpGs, where SNP plays a causal role on meta-
bolic phenotype, mediated by DNA methylation (Table 4). Out of these 39 SNP-CpG pairs, 1
pair was significantly associated with BMI, 2 for fasting glucose, 1 for fasting insulin, 1 for
HOMA-B, 7 for HOMA-IR, 7 for HbA1c, 9 for cholesterol, 1 for triglycerides 5 for HDL and 5
for LDL (Table 4). Among the genes annotated to these SNP-CpG pairs, CDK2AP1,
HLA-DMA,MCM6, TCF19, CAMK1D and NEIL2 were found. None of the cis-mQTLs showed
a reactive relationship between a SNP and a metabolic phenotype.

Biological replication of mQTLs in human adipose tissue
To validate whether the results of mQTL analysis hold in an independent cohort, we also
looked for overlap with a recent study also showing associations between genetic variation and
DNAmethylation in human adipose tissue [16]. While both studies analyzed DNAmethyla-
tion using the Infinium HumanMethylation450 BeadChip, Grundberg et al. restricted their
mQTL analysis to SNPs located within 100 kb from analyzed CpG sites [16] and therefore it
was only possible to compare some of our results. It should also be taken into account that
while our study included men, the study by Grundberg et al. included women and the two
studies used different bioinformatic and statistical approaches, which may affect the possibility
to replicate the results. Nevertheless, among our significant cis-mQTLs, we found that 5,468
CpG sites also stand under genetic control of SNPs in the study by Grundberg et al., and out of
these 2,118 (38.6%) were associated with the same SNP in both their and our study [16].

Additionally, we recently performed an mQTL analysis in human pancreatic islets [20].
Here, we looked for overlap between the significant mQTLs identified in human adipose tissue
of the 119 men and the mQTLs previously found in human pancreatic islets [20]. Among our
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significant cis-mQTLs in adipose tissue, 39,386 were also found in pancreatic islets (S12
Table). Moreover, 1,852 significant trans-mQTLs overlapped between the two different tissues
(S13 Table).

mQTLs in human adipose tissue do also show differential DNA
methylation in patients with type 2 diabetes
We have previously identified CpG sites that are differentially methylated in adipose tissue
from subjects with type 2 diabetes compared with non-diabetic controls [15]. However, it
remains unknown if methylation of these sites may also be under genetic control. Therefore,
we further tested if these CpG sites [15] overlap with our significant cis and transmQTLs in
human adipose tissue (S1 and S2 Tables). Interestingly, we discovered that 237 CpG sites
among our significant cis-mQTLs and 7 CpG sites among our significant trans-mQTLs are
also differentially methylated in adipose tissue from subjects with type 2 diabetes (S14 Table),
suggesting that DNA methylation may mediate the genetic impact of type 2 diabetes.

mQTLs in human adipose tissue overlap with CpG sites associated with
BMI and HbA1c
We have previously identified CpG sites for which the adipose tissue methylation level associ-
ates with BMI and HbA1c [48]. Here, we examined if these CpG sites overlap with our cis and
trans-mQTLs in human adipose tissue (S1 and S2 Tables). We found that 33,058 CpG sites
previously identified as associated with BMI overlapped with 577 cis and 19 trans significant
mQTLs in current study (S15 Table). Moreover, out of 711 CpG sites associated with HbA1c,
25 and 1 CpG site overlapped with significant cis and transmQTLs respectively (S15 Table).

mQTL analyses in adipose tissue of two sub-cohorts
Since the subjects in the four sub-cohorts included in this study differ in age and BMI, we per-
formed a sub-analysis only including cohorts #1 and #2 as these subjects are phenotypically
similar. Here, we detected 66,329 mQTLs in cis showing significant associations between geno-
type and the degree of DNAmethylation after correction for multiple testing, corresponding to

Fig 7. mQTLs/eQTLs in human adipose tissue affect metabolic phenotypes. Significant mQTL SNPs
associated with both gene expression and a metabolic phenotype, with boxplots showing associations of
some of these loci with DNAmethylation, gene expression and metabolic traits: (a) rs619824, (b) rs7349405,
(c) rs7210728, (d) rs176095, (e) rs529488.

doi:10.1371/journal.pone.0157776.g007

Fig 8. CIT in human adipose tissue. Possible relationship models between genotype as a causal factor (G), DNA
methylation as the mediator factor (M) and metabolic phenotype as the phenotypic outcome (P).

doi:10.1371/journal.pone.0157776.g008
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Table 4. Identified cis-mQTLs where DNAmethylation potentially mediates the interactions between a genotype and a phenotype in human adi-
pose tissue.

Chr CpG Id CpG Gene CpG Gene
Region

SNP Id SNP Gene G vs M pcorr-
value

Phenotype G vs P p-
value

CIT causal p-
value

6 cg12929486 SLC22A16 TSS200 rs2428190 SLC22A16 1.30E-07 BMI 0.049 0.02

5 cg14825688 LEAP2 TSS1500 rs39830 UQCRQ 4.02E-06 Fasting
glucose

0.015 0.03

5 cg14825688 LEAP2 TSS1500 rs803217 - 5.20E-05 Fasting
glucose

0.018 0.03

2 cg01726273 - Intergenic rs4853438 SNRPG 3.60E-02 Fasting insulin 0.050 0.03

8 cg11123440 Intergenic rs12458 GATA4 8.99E-03 HOMA-B 0.042 0.03

12 cg10240950 C12orf76 Body rs1027949 GIT2 3.91E-02 HOMA-IR 0.036 0.05

12 cg10240950 C12orf76 Body rs10774978 TCHP 3.91E-02 HOMA-IR 0.030 0.05

12 cg10240950 C12orf76 Body rs11068984 GIT2 3.91E-02 HOMA-IR 0.017 0.05

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs11257926 CAMK1D 1.33E-03 HOMA-IR 0.021 0.04

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs17152029 CAMK1D 3.92E-04 HOMA-IR 0.003 0.01

10 cg26169081 CAMK1D;
CAMK1D

Body;Body rs17152037 CAMK1D 1.33E-03 HOMA-IR 0.005 0.04

12 cg10240950 C12orf76 Body rs2302689 ANKRD13A 3.91E-02 HOMA-IR 0.030 0.05

7 cg17372657 Intergenic rs1880296 - 2.69E-07 HbA1c 0.032 0.03

7 cg17372657 Intergenic rs2949170 - 1.79E-04 HbA1c 0.034 0.03

7 cg17372657 Intergenic rs2949192 - 9.02E-05 HbA1c 0.014 0.03

6 cg13561028 SFTA2 Body rs3130782 LOC100129065 3.68E-09 HbA1c 0.002 0.01

6 cg13561028 SFTA2 Body rs3131934 - 8.49E-08 HbA1c 0.002 0.04

16 cg04544033 - Intergenic rs556179 - 2.37E-02 HbA1c 0.014 0.03

6 cg13561028 SFTA2 Body rs7750641 TCF19 1.27E-17 HbA1c 0.028 0.02

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs10846489 CDK2AP1 4.91E-03 Cholesterol 0.013 0.04

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs10846489 CDK2AP1 2.34E-02 Cholesterol 0.013 0.04

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs1109559 - 4.84E-03 Cholesterol 0.011 0.03

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs1109559 - 1.44E-02 Cholesterol 0.011 0.03

12 cg07644039 ARL6IP4;
OGFOD2

TSS1500 rs4275659 ABCB9 2.24E-03 Cholesterol 0.010 0.02

12 cg21745287 ARL6IP4;
OGFOD2

TSS1500;3’UTR rs6488868 SBNO1 9.39E-04 Cholesterol 0.008 0.02

15 cg12371991 - Intergenic rs6494591 - 8.73E-03 Cholesterol 0.038 0.01

2 cg04490207 - Intergenic rs6712567 - 1.15E-02 Cholesterol 0.034 0.03

9 cg14341289 FSD1L TSS1500 rs885954 - 1.81E-02 Cholesterol 0.041 0.00

8 cg00820056 - Intergenic rs11787024 LY6H 6.37E-03 Triglycerides 0.033 0.04

6 cg14833385 HLA-DMA TSS1500 rs1480380 - 3.50E-17 HDL 0.007 0.03

2 cg01726273 - Intergenic rs2921711 TIA1 3.60E-02 HDL 0.037 0.04

2 cg07169764 MCM6;MCM6 1stExon;5'UTR rs309172 DARS 4.06E-07 HDL 0.011 0.01

8 cg05875700 ERICH1 Body rs3735917 ERICH1 3.17E-11 HDL 0.008 0.05

2 cg07169764 MCM6;MCM6 1stExon;5'UTR rs6750549 DARS 4.06E-07 HDL 0.010 0.01

4 cg08029340 MYL5 Body rs11726338 PIGG 9.63E-03 LDL 0.028 0.04

6 cg02525939 - Intergenic rs4710698 - 6.17E-07 LDL 0.007 0.04

6 cg04399728 - Intergenic rs4710698 - 2.69E-13 LDL 0.007 0.04

(Continued)
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36,909 unique SNPs and 11,788 unique CpG sites (S16 Table). Out of those 66,329 mQTLs,
63,714 (96%) overlapped with the analysis of all 4 cohorts.

In the trans-mQTL analysis, we identified 3,243 SNP-CpG pairs showing significant associ-
ations between genotypes and the degree of DNA methylation in adipose tissue after correction
for multiple testing, corresponding to 1,865 unique SNPs and 538 unique CpG sites (S17
Table). Out of those 3,243 mQTLs, 2,919 (90%) were previously identified in the analysis of all
4 cohorts.

mQTL analyses in adipose tissue without adjusting for BMI
In order to validate whether BMI as a covariate has a significant effect on a number of discov-
ered mQTLs, we performed a mQTL analysis of all 4 study cohorts without BMI as a covariate.
Overall, we detected 102,467 significant cismQTLs corresponding to 51,435 unique SNPs and
15,267 unique CpG sites. Out of those, 99,661 (97.2%) were also identified in the analysis
where BMI was included as a covariate (S18 Table). In trans, we discovered 5,435 significant
mQTLs, corresponding to 608 unique CpG sites and 2,765 unique SNPs, where 5,272 (97%)
were also identified in the main mQTL analysis (S19 Table).

Associations between DNAmethylation and mRNA expression in
human adipose tissue
We finally tested the direct association between DNAmethylation and gene expression in
human adipose tissue by performing a linear regression between individual mRNA transcripts
and DNA methylation of CpG sites in cis (500 kb up- and 100 kb downstream of respective
gene) including age, BMI and study cohort as covariates. We found significant associations
between DNA methylation and mRNA expression for 546 combinations (FDR<5%), consist-
ing of 473 unique CpG sites and 194 unique mRNA transcripts (S20 Table), which are anno-
tated to 173 genes.

In addition, we found that 262 CpG sites among our significant cis-mQTLs and 13 among
our significant trans-mQTLs overlapped with methylation sites associated with mRNA expres-
sion in adipose tissue (S20 Table).

Discussion
The present study highlights the importance of genome-wide interactions between genetic and
epigenetic variation and its role in human metabolism. Using CIT tests, we could for the first
time identify adipose tissue methylation-mediated relationships between genotype and meta-
bolic phenotypes, including lipid and glucose traits. Importantly, these data demonstrate how
genetic variants may mediate their effects on metabolic traits via altered DNA methylation in
human adipose tissue. Additionally, numerous identified mQTL-SNPs cover previously identi-
fied GWAS loci for obesity, lipid and diabetes related traits e.g. POMC, GIPR, GRB10, FADS2,
SORT1 and APOA5.

Table 4. (Continued)

Chr CpG Id CpG Gene CpG Gene
Region

SNP Id SNP Gene G vs M pcorr-
value

Phenotype G vs P p-
value

CIT causal p-
value

9 cg14341289 FSD1L TSS1500 rs885954 - 1.81E-02 LDL 0.005 0.00

2 cg09644356 - Intergenic rs940670 - 2.94E-06 LDL 0.001 0.03

doi:10.1371/journal.pone.0157776.t004
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Multiple SNPs identified through GWAS associate with complex metabolic disease includ-
ing obesity and type 2 diabetes [29,31,43,49–52]. However, the effect sizes of common variants
influencing these diseases are often modest and in total they only explain small proportions of
the estimated genetic predispositions to the diseases. Epigenetic factors such as DNA methyla-
tion have also been shown to be involved in the pathogenesis of various metabolic diseases
[7,9,15,29,53–60]. However, studies examining the genetic regulation of inter-individual varia-
tion in DNA methylation and its contribution to metabolic outcomes are scarce but would
likely give new insights to the field. Here, we performed a genome-wide mQTL analysis looking
at both cis and trans effects of genetic variation on DNA methylation in human adipose tissue.
To further link identified mQTLs with biological functions, we performed follow-up analyses
of significant mQTL SNPs with gene expression in adipose tissue and metabolic phenotypes in
our study cohort. We also looked for overlap with disease loci reported to associate with obesity
and diabetes related traits in GWAS. All together, we found 101,911 SNP-CpG pairs in cis and
5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA
methylation in adipose tissue demonstrating a strong genetic impact on DNA methylation in
human adipose tissue. Our data are in line with previous mQTL analyses, which also show
strong interactions between genetic and epigenetic variation [16–20,61], and in concordance,
we found an enrichment of cis-mQTLs in a short distance window between associated SNPs
and CpG sites. However, while most previous mQTLs have been limited to studying promoter
regions [17–19] or cis interactions [16], we can for the first time present mQTL results in adi-
pose tissue looking at both cis and trans effects in most genomic regions and genes. Interest-
ingly, we observe a higher than expected number of methylation sites in significant mQTLs
located in intergenic regions, in the gene body and outside of CpG islands. This observation is
in line with previous studies showing that differentially methylated sites in response to envi-
ronmental or genetic factors to a higher extent than expected are located outside CpG islands
or within intergenic and gene body regions [10,16]. It may be that promoter regions are rich in
CpG islands which are hypomethylated and are more evolutionary conserved based on their
biological function, meanwhile non-CpG islands are more methylated and dynamic [6,62–64].
Interestingly, we demonstrate for the first time an enrichment of significant mQTLs in adipose
tissue on chromosome 6. This chromosome possesses a highly polymorphic gene region coding
the HLA complexes which are known to be implicated in several autoimmune disorders and
inflammation processes [23,24]. Numerous loci identified in the cis- and trans-mQTL analysis,
as well as genes in the eQTL follow-up analysis, are linked to the HLA genes. Based on this
finding, we investigated the link between mQTLs on chromosome 6 and a measure of inflam-
mation e.g. i.e. CRP levels. Interestingly, we found that 2 SNPs in significant mQTLs cover
GWAS loci associated with CRP levels (S11 Table). However, none of them was located on
chromosome 6 [65].

Genetic association studies have improved our understanding of the biological basis of met-
abolic disease [66]. Nevertheless, the effect of numerous reported obesity and diabetes SNPs on
target genes or biology still remains unknown. Investigating the genetic control of variation in
DNAmethylation may improve our understanding of biological processes and linking loci to
tissue dependent phenotypes and diseases. Elevating, we found that several SNPs associated
with DNA methylation show impact on metabolic phenotypes in the studied cohort, including
obesity measurements, glucose- and insulin traits, as well as lipid profiles. The effect of mQTLs
on molecular phenotypes was further supported by independent replication in consortia data
of obesity measurements from GIANT [43,44], glucose traits fromMAGIC [36,45,46] and
lipid profiles from GLGC [47]. Although mQTL SNPs were only showing nominal association
to metabolic phenotypes in our study cohort, the overlap and replication in independent stud-
ies, based on consortium data, support effects of these SNPs on biological function. Indeed,
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several of these SNPs show genome-wide significance in previous GWAS [47,66–68]. These
include SNPs associated with cholesterol levels and annotated to ANKRD31 (ankyrin repeat
domain 31), HDL levels and annotated to CELSR2 (cadherin, EGF LAG seven-pass G-type
receptor 2) as well as fasting plasma glucose levels and annotated to ARAP1 (ankyrin repeat
and PH domain 1).

Given that SNPs affect DNA methylation and that DNA methylation is a dynamic process
that may change in response to environmental factors and affects phenotype transmission
[10,69], it may be possible that the SNP effect on DNAmethylation levels, and indirectly on
metabolic phenotypes, may change under different environmental conditions. It is hence possi-
ble that some of the identified mQTL SNPs overlapping with consortium data may have
escaped detection to disease phenotypes in previous GWAS studies since DNA methylation
levels was not considered. This form of gene-environment interactions could potentially affect
the SNPs impact on disease risk. Indeed, our previous data, where we identified a SNP that
introduces a CpG site in the promoter of NDUFB6, support this hypothesis [60]. Here, we
showed that while elderly carriers of the genotype that introduces a CpG site had a high degree
of methylation in the SNP-CpG site together with decreased skeletal muscle NDUFB6 expres-
sion and decreased glucose uptake, young carriers had low degree of methylation in the
SNP-CpG site together with increased skeletal muscle NDUFB6 expression and no effect on
glucose uptake. Together, this study demonstrates a clear interaction between genetic, epige-
netic and non-genetic factors. Additionally, genetic variation may carry inheritance of epige-
netic variation and thereby have an impact on the heritability of human diseases and may
explain some of the missing heritability of human complex diseases. Furthermore, we also
found that several SNPs associated with DNAmethylation in adipose tissue overlapped directly
or via proxy SNPs to previously reported disease loci of obesity related traits, including CETP
and FADS2, which are both known to be associated with total cholesterol, LDL, HDL and tri-
glyceride levels [47] These data support that genetic and epigenetic variation together influence
metabolic phenotypes and disease risk in humans.

In order to provide further insights into mechanisms of genetic and epigenetic interaction
and its impact on regulation of metabolic phenotypes, we used the CIT [21,70]. We discovered
39 significant mQTLs where DNAmethylation represents the mediator between genetic loci
and a metabolic trait. One of these mQTLs SNPs is associated with HDL regulation through
DNAmethylation of a CpG site annotated toMCM6. This is an MCM (minichromosome
maintenance) complex gene that previously has been shown to affect total cholesterol levels
[71]. Among other genes identified in the CIT analysis were TCF19, which has been associated
with type 1 diabetes through GWAS [72], and CAMK1D, which has been associated with type
2 diabetes [73] This supports the role of DNAmethylation as a direct mediator between genetic
variation and metabolic phenotypes. However, while the majority of significant cis-mQTL
SNP-CpG pairs were found to have independent effects on the analyzed phenotypes, the inde-
pendence cannot be concluded due to some limitations in our analysis. First, only a few pheno-
types were considered in the course of the analysis, and it might require other phenotypes to
discover all cause–effect relationships between SNPs, methylation and metabolic phenotype.
Second, as CIT only considers one SNP and one CpG site at a time, more complex interactions
involving several SNPs and or CpGs can be missed, which suggests that more sophisticated
analytical methods should be developed. An additional drawback of our study is the small sam-
ple size relative to the number of statistical comparisons. As the number of analyzed SNP–CpG
pairs is in the order of 1011, only the strongest interaction effects can be detected by means of
our mQTL analysis. To reduce the number of type 2 errors during multiple testing procedures,
we implemented a modified Bonferroni correction method, which took into account a linkage
disequilibrium dependency between analyzed SNPs. Additionally, we performed eQTL and
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CIT analysis only on the data that was shown to be significant in the mQTL analysis, thus
again significantly reducing number of performed statistical tests. While eQTL analyses have
been used to identify causal genetic variants for metabolic disease [74], here we provide the
first CIT analysis of genetic variation, DNA methylation in adipose tissue and metabolic traits.
Importantly, this analysis demonstrates how genetic variants mediate their effects on metabolic
traits (e.g. BMI, cholesterol, HDL, HbA1c and HOMA-IR) via altered DNA methylation in
human adipose tissue.

Interestingly, SNPs throughout the genome may introduce or delete CpG sites and thereby
affect the possibility for DNA methylation to take place [22]. These so called CpG-SNPs are
likely to show strong correlations with the degree of methylation in the SNP site. Indeed, here
we found 447 CpG-SNPs associated with DNAmethylation in adipose tissue.

Furthermore, we were able to replicate numerous of our unique CpG sites of significant cis-
mQTLs in a study by Grundberg et al. [16] confirming the biological importance of our results.
While both our study and Grundberg et al. performed mQTL analyses in human adipose tissue
using the Illumina 450K array for DNA methylation and thereby comparable, divergence in cis
boundary, sex and correction methods for multiple testing may explain some of the different
results between the studies. It should also be noted that 39,386 of our significant cis-mQTLs in
human adipose tissue were previously also identified in human pancreatic islets [20]. While
this finding shows that some SNPs affect the DNA methylation pattern in multiple tissues,
additional mQTL studies using the 450k array are needed in other tissues to test if the same
associations are seen there.

We provide for the first time a combined genome-wide cis- and trans-mQTL analysis in
human adipose tissue covering most genes and genomic regions. Our study demonstrates that
interactions between genetic and epigenetic variation influences gene expression, molecular
phenotypes and metabolic traits related to complex diseases in humans. We also provide details
on potential causal relationships between genetic and epigenetic variation on metabolic pheno-
types. Thus, DNA methylation variation may be of high importance in genetic association
studies and may improve our understanding of molecular pathways in the context of complex
human metabolic diseases.

Materials and Methods

Study samples and phenotypes
This study includes a total of 119 Scandinavian men without known disease. Their characteris-
tics are presented in Table 1. The cohort includes subjects from four sub-cohorts, all previously
described [15,48,75–77] and with DNA available from subcutaneous adipose tissue biopsies
taken in the fasted state. The characteristics of the four sub-cohorts are presented separately in
S21 Table. All study participants underwent a physical examination including measurements
of BMI, waist and WHR. Moreover, blood sampling for analysis of lipids, glucose and insulin
were done during the fasting state. Written informed consent was obtained from all partici-
pants and the research protocols were approved by the local human research ethics commit-
tees: Dnr 13/2006 (Lund University), Dnr 461/2006 (Lund University), KA 03129gm
(Köpenhavns AMT). While three of sub-cohorts are intervention studies [75–77], one sub-
cohort is a case-control cohort [15]. Only baseline samples from healthy subjects were included
in this study.

Genotype data
Genotyping was performed in DNA extracted from blood of the 121 Scandinavian men using
Illumina HumanOmniExpress BeadChip, which is a genome-wide array covering 731,412
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SNPs, together with the iScan system (Illumina, San Diego, CA, USA). Genomic DNA was
extracted from blood using the Gentra Puregene Blood Kit (Qiagen, Hilden, Germany). Geno-
types were called using GenomeStudio1 software (Illumina). All subjects passed call rate
threshold of> 98%. Sex discrepancy between reported sex and genotypic sex based on X-chro-
mosome heterozygosity was detected for two subjects and these subjects were excluded from
subsequent analyses. No subjects were found to be population outliers based on a population
stratification test. SNPs were excluded if missing calls> 5%, Hardy-Weinberg Equilibrium p-
value< 0.001 and minor allele frequency< 0.05. Overall, 592,794 SNPs for 119 subjects passed
quality control and were used for subsequent analyses. All genotype data were analyzed using
Plink software (http://pngu.mgh.harvard.edu/purcell/plink/) [78].

DNAmethylation data
Genome-wide DNAmethylation profiling was performed in genomic DNA extracted using
Qiagen DNA extraction kits (Qiagen) from adipose tissue from 119 Scandinavian men using
the Infinium HumanMethylation450 BeadChip (Illumina). The DNAmethylation array tar-
gets 485,577 probes across the genome, covering 99% of RefSeq genes and 96% of CpG islands.
Genomic DNA (500 ng) from adipose tissue was bisulfite treated using the EZ DNA methyla-
tion kit (Zymo Research, Orange, CA, USA). DNA methylation analysis of bisulfite treated
DNA was carried out with Infinium1 assay following the standard Infinium HD Assay Meth-
ylation Protocol Guide (Part #15019519). BeadChips were scanned with Illumina iScan and
raw data was imported to the GenomeStudio Methylation module software for calculation of
methylation scores represented as methylation β-values. In sample quality control, all samples
passed GenomeStudio quality control steps for bisulfite conversion efficiency, staining, hybrid-
ization, extension and specificity.

Individual probes with a mean Illumina detection p-value> 0.01 were considered not
detected and subsequently excluded from further analysis. Non-CpG methylation probes and
SNP-probes included on the array were also filtered out. After these quality control steps and
after filtering DNAmethylation data, 477,891 CpG sites remained for all included samples.
Before further analysis, the DNA methylation data was exported from GenomeStudio and sub-
sequently analyzed using Lumi package from Bioconductor [79]. Extracted methylation data

were then converted from β-values to M-values [80],M ¼ log2
maxðM;0Þþ1

maxðU ;0Þþ1

� �
, where M and U are

methylated and unmethylated channel intensities, respectively. The data was further back-
ground corrected and quantile normalized using lumi package [81]. To correct for batch
effects, COMBAT normalization method [82] was used.

mRNA expression data
Genome-wide mRNA expression profiling using the whole-transcript GeneChip1Human
Gene 1.0 ST Array (Affymetrix, Santa Clara, CA, USA) following the Affymetrix standard pro-
tocol was performed in RNA extracted from the subcutaneous adipose tissue biopsies of 118
out of 119 Scandinavian men using miRNeasy kit followed by the RNeasy MiniElute Cleanup
Kit (Qiagen) or using the RNeasy Lipid Tissue Mini Kit (Qiagen). The array data was back-
ground corrected, quantile normalized and summarized with robust multichip average (RMA)
procedure using oligo package [83] from Bioconductor. Normalized dataset was batch cor-
rected using COMBAT [82]. In total, mRNA expression of 28,779 transcripts was obtained for
subsequent analyses.
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mQTL analysis
Associations between SNPs and DNA methylation of CpG sites were modeled as a linear rela-
tionship using DNAmethylation levels as a dependent variable, SNP genotypes encoded as 0, 1
or 2 according to number of minor alleles. Due to the fact that both BMI and age can affect
DNAmethylation and, therefore, the association between SNP and DNAmethylation, age,
BMI and the sub-cohort were included as covariates. Calculations of associations were per-
formed using the MatrixEQTL library for R programming language [84].

To distinguish between local (cis) and distant (trans) mQTLs a distance less or equal to 500
kb between a SNP and CpG site was used to define cis-mQTLs. All remaining SNP-CpG pairs
were considered trans-mQTLs. In total we found 283,290,917,454 CpG–SNP pairs in the data-
set, where 112,842,462 pairs were defined to be located in cis and 283,178,074,992 in trans. The
cis- and trans-mQTL analyses were performed separately. In order to correct for multiple test-
ing, p-value significance threshold was set, accounting for number of tests performed as well as
the dependency of linkage disequilibrium (LD) between SNPs. LD-based SNP pruning was
used to take into account the linkage dependency of SNPs that are run against the same quanti-
tative trait locus in the mQTL analysis by calculating the number of independent tests based on
r2<0.9 for the SNPs. In the cis-analysis, LD based pruning of SNPs within a distance of 500 kb
from a CpG site was performed by pairwise-tagging (r2<0.9) and the total sum of all tag SNPs
connected to each CpG site was used as correction value when correcting for multiple testing.
LD calculations were performed using R trio package [85]. The correction value for the trans-
analysis was calculated as the total number of analyzed CpG sites multiplied by the number of
tag SNPs in the whole dataset (pairwise-tagging r2<0.9) and subtracted by the correction value
for the cis-analysis. Significance threshold was set to p<0.05 after correction for multiple test-
ing. All SNPs connected to each CpG site after LD-based pruning were summed and the
remaining number of 104,023,091 SNP-CpG pairs was used as correction value for multiple
testing in cis. This resulted in a significance threshold of 0.05/104,023,091 = 4.8x10-10 in cis. In
the trans-mQTL analysis, after LD-based pruning, 211,781,637,483 SNP-CpG pairs remain
and this number was used as correction value for multiple testing. This resulted in a signifi-
cance threshold of 0.05/211,781,637,483 = 2.3x10-13 in trans.

Impact of significant mQTL SNPs on mRNA expression
The relationship between SNPs found to be significantly associated with DNA methylation in
the mQTL analysis and mRNA expression was tested in 118 of the men included in the study
using a linear regression model with mRNA expression as a dependent variable, SNP genotypes
encoded as 0, 1 or 2 according to number of minor alleles, and age, BMI and sub-cohort as
covariates. Significant SNPs identified in the cis-mQTL analysis were only related to mRNA
expression transcripts of genes located within 500 kb from respective SNP (cis). Significant
SNPs identified in the trans-mQTL were related to mRNA expression transcripts of all ana-
lyzed genes. In total, 1,164,807 SNP-mRNA transcript combinations were found for significant
cis-mQTLs, and 78,710,565 SNP-mRNA transcript combinations were found for significant
trans-mQTLs. Correction value for multiple testing in the eQTL analysis was then calculated
in similar way as for the mQTL analysis taking LD-based SNP pruning (r2<0.9) into account.
In the eQTL analysis of significant cis-mQTL SNPs, the number of LD pruned SNPs (r2<0.9)
to each mRNA transcript within 500 kb were summed up and used as the correction value for
multiple testing. After LD-based pruning, 934,021 SNP-mRNA transcripts remain. This
resulted in a significance threshold of 0.05/934,021 = 5.4x10-8 in cis. In the eQTL analysis of
significant trans-mQTL SNPs, the correction value for multiple testing was calculated as the
number of all trans-mQTL SNPs pruned for LD (r2<0.9) multiplied by total number of
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analyzed mRNA transcripts giving a remaining number of 33,326,082 SNP-mRNA transcripts.
This resulted in a significance threshold of 0.05/33,326,082 = 1.5x10-9 in trans.

Impact of mQTL SNPs on metabolic phenotypes
The impact of identified SNPs in significant mQTLs on the following phenotypes; BMI, WHR,
cholesterol, triglycerides, HDL, LDL, fasting glucose, fasting insulin, HOMA-B, HOMA-IR
and HbA1c, was tested in 119 Scandinavian men included in this study. Associations between
identified SNPs in the significant mQTLs and metabolic phenotypes were modeled as a linear
relationship using metabolic phenotypes as the dependent variable, SNP genotypes encoded as
0, 1 or 2 according to number of minor alleles, and age and sub-cohort included as covariates
in all the analyses. BMI was also included as a covariate when analyzing associations between
SNPs and fasting glucose, fasting insulin, HOMA IR, HOMA-B and HbA1c. Traits for fasting
insulin, HOMA-B and HOMA-IR have been naturally log transformed in the study cohort
before analyses. Identified mQTL SNPs showing association to a metabolic phenotype in our
study cohort (p<0.05), were also looked-up in public available GWAS data from the GIANT
consortium [43,44], MAGIC investigators [36,45,46] and GLGC consortium [47], for respec-
tive trait. SNPs showing association to a metabolic phenotype with the same allelic effect sign
and with p-value<0.05 in both our study cohort and consortia data were considered detected.

Overlap between mQTL SNPs and public available GWAS data
The catalog of published GWAS data was used to search for SNPs reported to be associated
with obesity, type 2 diabetes and related metabolic traits (p<10−5). To increase reference cover-
age for overlap between datasets of identified mQTL SNPs and identified SNPs reported in
GWAS catalog, a SNP annotation and proxy (SNAP) search [86] was performed to identify
SNPs in LD with the identified mQTL SNPs. The proxy search was based on pairwise LD calcu-
lations of genotype data from the 1000 Genomes project of the CEU population panel with
r2>0.8 and distance limit of 500 kb from the query SNP.

Causal Inference Test (CIT)
The CIT was used to test if DNA methylation is a mediator between genotype variation and a
phenotypic trait [21]. The causality can be inferred if all of the following are true: 1) G and M
are associated, 2) G and P are associated, 3) G is associated with M|P and 4) G is independent
of P|M, where G is a genotype marker, M is a DNA methylation measure and P is a phenotypic
trait, provided that G is randomized [21]. Causal role of DNAmethylation is inferred if p-
value for causal relationship hypothesis is less than 0.05.

Statistical analysis
Data were analyzed using linear regression models, Pearson chi-squared test or Fisher's exact
test. All statistical calculations were performed using R programming language [87]. Results
are expressed as Box and Whiskers plots. Pathway analysis using WebGestalt [26].

Supporting Information
S1 Table. Identified cis-mQTLs. Sheet a: Identified cis-mQTL SNP-CpG pairs, including chro-
mosomal location and relation to CpG islands and gene regions. Sheet b: SNP-CpG pairs
where SNP is located in either C or G of the CpG site, so called CpG-SNPs. Sheet c: Additional
annotation data for SNPs present in sheet a, based on HumanOmniExpress-12v1_J_Gene_An-
notation_build37 (Illumina). Sheet d: Additional annotation data for CpGs present in sheet a,
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