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Abstract: Although genetic transformation has opened up a new era for cotton molecular breeding,
it still suffers from the limitation problem of long transformation periods, which slows down the
generation of new cotton germplasms. In this study, LT gene (SV40 large T antigen), which promotes
the transformation efficiency of animal cells, was codon-optimized. Its overexpression vector was
transformed into cotton. It was observed that EC (embryogenic callus) formation period was 33%
shorter and transformation efficiency was slightly higher in the LT T0 generation than that of control.
RNA-seq data of NEC (non-embryonic callus) and EC from LT and control revealed that more DEGs
(differential expression genes) in NEC were identified than that of EC, indicating LT mainly functioned
in NEC. Further KEGG, GO, and transcription factor analyses showed that DEGs were significantly
enriched in brassinosteroid biosynthesis pathways and that bHLH, MYB, and AP2/ERF were the
top three gene families, which are involved in EC formation. In addition, the key genes related to
the auxin pathway were differentially expressed only in LT overexpression NEC, which caused early
response, biosynthesis, and transportation of the hormone, resulting in EC earlier formation. In
summary, the results demonstrated that LT can promote somatic embryogenesis in cotton, which
provides a new strategy for improving cotton transformation and shortening EC formation time.

Keywords: upland cotton; LT gene; NEC (non-embryonic callus); EC (embryogenic callus);
somatic embryogenesis

1. Introduction

A variety of plant explants can induce somatic embryogenesis through in vitro culture.
The induction of somatic embryogenesis in vitro is considered to be the direct evidence
of plant cell totipotency [1]. Callus could be induced from pericyclic cell, stem cells, and
young embryonic epidermis by exogenous hormone treatment [2]. Subsequently, non-
embryogenic cells transdifferentiate into tightly formed embryogenic cells inside and
outside the callus mass. The single or multiple embryogenic cells re-differentiate into
somatic embryos in the absence of hormones [3]. Recent studies have found the conversion
of somatic cell to embryonic cell is preconditioned by three factors, namely regulatory
factors to derepress the inhibition of embryonic determinants, the expression of embryonic
characteristic genes, and the induction of auxin [4]. Somatic embryogenesis is also mainly
determined by three factors, including the developmental period of explants, the induction
of hormones, and the expression of embryonic transcription factors [5]. In addition, the
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somatic cells can also be induced by ectopic expression of embryonic regulators such as
WUS, LEC1, LEC2, etc. [6].

Hypocotyl is widely used as an explant in agrobacterium-mediated genetic transfor-
mation in cotton. Based on this method, a number of cotton varieties with abiotic and
biotic resistance have been cultivated, opening up a brand-new era for cotton molecular
breeding. With the widespread application of gene editing technology, the demand for
cotton transformation continues to expand [1]. However, genotype dependence and long
transformation periods severely impede the wide application of agrobacterium-mediated
transformation in cotton. The long transformation period greatly delays functional genomic
study in cotton, which in turn hinders the breeding of new varieties. To tackle this challenge,
numerous studies have been conducted to explore the molecular mechanism underpinning
somatic embryogenesis in cotton. Most of the studies focused on the identification of
genes promoting embryogenic callus (EC) formation, yet few research was reported on
shortening the EC formation. The GhLEC1–GhGhCKI–GhTCP15–GhPIF4 regulatory network
was recently identified in cotton, which was responsible for somatic embryogenesis via the
regulation of auxin homeostasis [7]. Another study demonstrated that overexpression of
GhL1L1 promoted embryonic callus formation and plant regeneration in cotton, possibly
through regulating the biosynthesis of fatty acids [8].

LT (SV40 Large T Antigen) is known as a hexamer oncoprotein derivative of the poly-
omavirus SV40, which can form complexes with tumor suppressor P53 and retinoblast
protein Rb and inhibit their function in cell differentiation. The overexpression of LT
promoted the chromatin accessibility of somatic reprogramming regulators in the mouse,
thereby enhancing the efficiency of reprogramming [9]. It may also contribute to the prolifer-
ation of induced pluripotent stem cells and shorten the time for cell reprogramming [10,11].
The Agrobacterium rhizogenes oncogenes ORF13, which contains L×C×E motifs (the
same as LT motif), increase enhanced proliferation of root tip meristem cells in tomato. LT
can also induce the differentiation of leaf epidermis in tobacco [12]. Based on the above
findings, it is speculated that LT may have a positive impact on somatic embryogenesis
in plant. In this study, we explored the role of LT in cotton somatic embryogenesis and its
possible application in cotton breeding.

2. Materials and Methods
2.1. Construction of LT Over-Expression Construct in pBI121

The LT was cloned in pSG5 Large T (Addgene 9053) [9] and then codon-optimized for
better translation efficiency in cotton. The optimized gene was digested with BamHI and
SacI restriction enzymes and ligated into the pBI121 vector. The constructed pBI121-LT and
empty control vector were transformed into Agrobacterium tumefaciens strain GV3101
by chemical transformation, and positive colonies were confirmed by PCR and Sanger
sequencing. Thereafter, positive clones were used for cotton transformation [13].

2.2. Genetic Transformation of LT in Gossypium Hirsutum

Hypocotyl was selected as an explant for cotton transformation. The transformation
was carried out in triplicates with 50 explants for each replicate. Hypocotyls were sub-
merged in agrobacterium suspension (OD between 0.3–0.5) for 15 min, then they were
separated from the suspension and transferred to sterilized dry filter paper to remove any
residual bacterium. Subsequently, the infected hypocotyls without residual bacterium sus-
pension were placed on sterile filter paper soaked with MS medium containing 0.1 mg L−1

2,4-D and 0.1 mg L−1 Kinetin (KT), at pH 5.6. After 48 h incubation in the dark at 22 ◦C, the
hypocotyl were transferred to solid MS medium containing 0.1 mg L−1 2,4-D, 0.1 mg L−1

KT, 50 mg L−1 kanamycin (Ka), and 500 mg L−1 Ceftiofur (Cef), and grown under a 16 h
(70 µmol m−2 s−1) photoperiod for 90 days at 28 ◦C. Then the calli were transferred to MSB
medium supplemented with 1.9 g L−1 potassium nitrate (KNO3), 3% (w/v) glucose, and
0.25% (w/v) phytagel, and sub-cultured for 90 days. Upon the emergence of cotyledon
embryo, they were transferred to fresh MSB medium (without NH4NO3) supplemented
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with 1.9 g L−1 KNO3, 3% (w/v) glucose [14,15], 0.5 g L−1 asparagine, 1.0 g L−1 glutamine,
3% (w/v) glucose, and 0.25% (w/v) phytagel for seedling growth [16,17]. The transgenic
calli were identified by PCR using gene-specific primers based on LT sequences. qRT-PCR
was used to check the expression pattern of LT across different tissues.

2.3. Library Preparation for Transcriptome Sequencing and Data Analysis

Generally, non-embryonic callus (NEC) and EC from both LT and control were col-
lected for library sequencing using 3 µg RNA per sample for sample preparations. Each
sample included 3 biological replicates. NEBNext® UltraTM RNA Library Prep Kit for
Illumina® (NEB, San Diego, CA, USA) was used for sequencing libraries construction
according to the kit’s instruction manual. Firstly, the enrichment of mRNA was performed
using poly-T oligo magnetic beads. Random hexamer primer and M-MuLV Reverse Tran-
scriptase were used for first strand cDNA synthesis. Subsequently, second strand cDNA
was synthesized by DNA Polymerase I and RNase H AMPure XP system (Beckman Coul-
ter, Beverly, CA, USA) was used for library fragments purification with an aim to enrich
cDNA fragments 250~300 bp in length. Library quality was determined using the Agilent
Bioanalyzer 2100 system. Paired-end (PE) sequencing of the library was performed on an
Illumina HiSeq sequencing platform.

Quality filtering was made for raw reads where low-quality reads, such as reads with
adapters and reads with average lower QC metrics, were removed. Clean reads were
then mapped to the reference genome of Gossypium hirsutum using Hisat2 v2.0.5. Read
counts statistics for each gene was performed using FeatureCounts v1.5.0-p3. To quantify
the expression level of each gene, normalization of gene expression was calculated using
FPKM (fragments per kilobase per million fragments). Differential expression analysis was
performed using DESeq2 software based on three replicate data.

2.4. Validation of Candidate Genes Expression by qPCR

All samples used for qRT-PCR in this study were set with three biological replicates.
Total RNA was isolated using the Tiangen plant RNA extraction kit (Tiangen, Beijing,
China). RNA quality was determined by 1% agarose gel electrophoresis. About 2 µg
of RNA was used for cDNA synthesis using the Takara first strand cDNA synthesis kit.
SYBR Green mix was used to prepare the reaction mix and qPCR was performed on a
Chromo4 real-time PCR detection system (CFX96 Bio-Rad, Hercules, CA, USA). The qPCR
operation condition was programmed as, 95 ◦C for 5 min, 39 cycles consisting of 95 ◦C
for 15 s, 59 ◦C for 30 s, followed by a thermal denaturing step. The ubiquitin gene UBI3
was selected as internal reference for normalization based on its stable expression across
different tissues. The relative expression was calculated using the 2-∆∆Ct method and
relevant primer sequences for qPCR are listed in Supplementary Table S1. The error values
of qRT-PCR data were calculated with SPSS Statistics 20.0 (SPSS, Chicago, IL, USA).

3. Results
3.1. Codon Optimization and Vector Construction of LT Gene

The LT gene was codon-optimized based on cotton amino acid preference. The opti-
mized LT gene sequence was compared with the original sequence, and results showed that
the identity was 78.5%, and gaps was 2.0% (Supplementary Figure S1). Codon Used Adjust-
ment of original sequence was 0.82, while the optimized sequence was 0.92 (Figure 1a,b).
The relative codon used distribution was shown to be different, for example TTT, TTA, and
AAA codons were widely used in the original sequence, but not in the optimized sequence
(Figure 1c,d). The GC content was also changed considerably, with average GC content
of the original sequence being 37.85% (A: 33.52%, T: 28.63%, G: 22.61%, C: 15.23%) and
that of the optimized sequence being 39.63% (A: 29.48%, T: 30.89%, G: 22.47%, C: 17.16%)
(Figure 1e,f). The optimized LT gene was cloned into the overexpression vector pBI121, and
the entry vector without LT gene was used as a control (Figure 1g).
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Figure 1. Codon optimization and vector construction of LT gene. (a) Original codon usage adjusted.
(b) Optimized codon usage adjusted. (c) Original sequence codon. (d) Optimized Sequence codon.
(e) Original GC content. (f) Optimized GC content. (g) Vector map of LT gene over-expression and
control, the vector uses the CaMV 35S promoter and the kanR resistance gene.

3.2. LT Transformation Promotes Early EC Formation

The LT overexpression and the control vector were introduced into cotton hypocotyl
via agrobacterium-mediated transformation (Figure 2a). Hypocotyl was transferred to cal-
lus induce medium (CIM) for callus induction (Figure 2b). After 90 days of culture on CIM,
the calli were transferred to differentiation medium and embryonic callus was observed
at 60 days (Figure 2c). The cotyledon embryo emerged at 30 days after being cultured on
the medium for seedling growth (Figure 2d). About 11 calli transformed, with LT being
sampled for DNA extraction and subsequent PCR identification of positive transgenic
calli, of which nine calli tested positive as shown by 470 bp target bands (Figure 2e). The
positive PCR product was sent for sequencing, and the results indicated LT was successfully
introduced into cotton.

The long transformation period of cotton is primarily attributed to the late emergence
of EC, requiring almost half a year period. Briefly, it took 100 days to induce the EC
after LT transformation, which was 33% shorter than that of the control (Figure 2f,g,i). LT
gene overexpression and control vector transformation experiments were carried out three
times. Each time, 50 hypocotyls were infected by each vector, then the proportion of callus
survival and the number of ECs were counted (Table 1). On an average, every 50 NEC
in LT T0 generation can induce 3.7 EC while every 49 NEC in control can only obtain 2.3
EC (Figure 2h). In general, our results revealed that overexpression of LT can promote EC
formation and acquisition of somatic embryogenesis (Figure 2i).
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Figure 2. LT transformation promotes EC formation. (a) Cotton hypocotyl. (b) NEC of cotton. (c)
EC of cotton. (d) Cotyledon embryo of cotton. (e) Validation of eleven EC by PCR. (f) EC of LT
transformed T0 generation. (g) NEC of control T0 generation. (h) Significant difference analysis of
NEC and EC numbers. (i) LT transformation promotes EC formation.

Table 1. Transformation data for LT and control vector.

Hypocotyl/Number NEC/Number NEC Acquisition
Probability EC/Number EC Acquisition

Probability
EC Formation

Time/Day

LT_vetor_1 50 50 1 4 0.08 100
LT_vetor_2 50 50 1 4 0.08 100
LT_vetor_3 50 49 0.98 3 0.06 100

control_vetor_1 50 50 1 2 0.04 150
control_vetor_2 50 49 0.98 3 0.06 150
control_vetor_3 50 48 0.96 2 0.04 150
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3.3. Identification of Differentially Expressed Genes during Somatic Embryogenesis

The differentially expressed genes (DEGs) were obtained from the comparison of EC-
LT vs. NEC-LT, EC-LT vs. EC-control, NEC-LT vs. NEC-control, and EC-control vs. NEC-
control. The number of up-regulated and down-regulated DEGs were 8832/8775, 86/125,
8730/7503, and 10046/7526, respectively (Figure 3a). The Venn diagrams were subsequently
constructed based on the four group DEGs, identifying uniquely or commonly expressed
genes among them (Figure 3b,c). Ribonuclease 3-like protein 3 (rtl3) and cell division
topological specificity factor (minE), which are related to cell division, were significantly
differentially expressed, indicative of active cell division during somatic embryogenesis
in cotton. In addition, GO and KEGG enrichment analysis were conducted for DEGs of
LT vs. control (Figure 4). In NEC and EC, GO were enriched in ribonuclease T2 activity,
nucleosome, microtubule motor activity, DNA replication, and other items, corresponding
to mitosis and meiosis biological process. KEGG was enriched in photosynthesis, N-
glycan biosynthesis, brassinosteroid biosynthesis and other pathways, showing energy
consumption and Brassinolide (BR) signaling were required for callus proliferation and
embryonic differentiation.
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Figure 3. Numbers of differentially expressed genes during somatic embryogenesis. (a) The DEG
numbers of LT/EC vs. LT/NEC, LT/EC vs. control/EC, LT/NEC vs. control/NEC, and control/EC
vs. control/NEC. (b) The Venn diagram of four groups with down-regulated genes. (c) The Venn
diagram of four groups with up-regulated genes.

It is a well-established fact that transcription factors (TFs) play a critically important
role in embryogenic callus induction by the regulation of cell reprogramming at different
levels. Firstly, differentially expressed TFs from all samples were pooled and the overall
number of genes in each TF family was counted. A number of 1911 TFs were differentially
expressed among the four samples, where bHLH, AP2/ERF, MYB, WRKY, and NAC were
the top five most enriched TF gene families (Figure 5a). Notably, dramatic changes in
the expression of TFs were observed in NEC between LT and controls. Therefore, more
attention was paid to the comparison of these two samples (Figure 5b,c). Briefly, 516 TFs
were upregulated in LT/NEC, while 679 TFs were downregulated. Among the upregulated
TF families, bHLH, WRKY, MYB, AP2/ERF, and NAC ranked among the top five TF
gene families. Although WOX gene family was not the top ranked gene family, WUS
and WOX-related TFs were significantly upregulated in LT/NEC, which were reported
to be involved in somatic embryogenesis. Meanwhile, several members of GRFs’ gene
family were upregulated, which was recently reported to improve genetic transformation
efficiency in various crop species. Lastly, for downregulated TF gene families, AP2/ERF,
bHLH, MYB, NAC, and HD-ZIP were overrepresented in the category. Interestingly, four
gene families (bHLH, MYB, AP2/ERF, and NAC) were both enriched in the upregulated
and downregulated category, indicating these four gene families might play key roles in
callus formation and regeneration.
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Figure 4. GO and KEGG enrichment analysis of differential expressed genes during somatic em-
bryogenesis. (a) GO enrichment analysis of DEG between LT/EC and control/EC. (b) KEGG en-
richment analysis of DEG between LT/EC and control/EC. (c) GO enrichment analysis of DEG
between LT/NEC and control/NEC. (d) KEGG enrichment analysis of DEG between LT/NEC and
control/NEC.

3.4. Analysis of Gene Expression Pattern Associated with Auxin Pathways

Auxin has a pivotal role in the initiation of somatic embryogenesis via the estab-
lishment of asymmetric distribution patterns in plant. In addition, massive epigenetic
modifications were activated in response to auxin signaling and further triggered the
reshuffle of chromatin structure, rendering the extensive genetic reprogramming of the cell
transcriptional state. Among the four groups of DEGs, the key genes in the auxin pathway
were extracted for the heat map. Results indicated that more DEGs were identified in the
NEC stage between LT and control in comparison with EC stage, implying widespread
transcriptome reprogramming occurred predominantly in NEC (Figure 6). ARF, IAA, and
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GH3 genes are auxin early response factors involved in auxin signaling and homeosta-
sis, while PIN and YUC genes are mainly responsible for auxin polar transportation and
biosynthesis. Auxin perception and polar transport play a key role in the initiation of
somatic embryogenesis. About 29 IAA, 12 ARF, 14 GH3, 3 PIN, and 3 YUC were found
to be differentially expressed during somatic embryogenesis in cotton. Most of the ARFs
were highly expressed in LT/NEC while they were down-regulated in control/NEC. The
same expression pattern was observed in the YUC gene. Notably, the candidate gene ARF5
(Gh_A05G171100, Gh_D05G188200) were upregulated in LT/NEC (more than three times in
comparison with control/NEC). Two PIN1 and YUC10 genes were also significantly upreg-
ulated in LT/NEC in comparison with control/NEC. Interestingly, IAA, GH3, and PIN gene
families were mostly downregulated in LT/NEC when compared with control/NEC. Our
data demonstrates genes associated with auxin signaling, polar transport, and biosynthesis
may play varied roles in LT-induced somatic embryogenesis.
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Figure 5. Transcription factors’ (TFs) analysis of differential expressed genes during somatic em-
bryogenesis. (a) All TFs among the four samples. (b) Up-regulated TFs among the four samples.
(c) Down-regulated TFs among the four samples.

3.5. qRT-PCR Validation of Auxin Related DEGs

To confirm the reliability and accuracy of transcriptome data, eight DEGs (LT, Gh_A05-
G200700_IAA8, Gh_D05G217400_IAA8, Gh_A05G171100_ARF5, Gh_D05G188200_ARF5,
Gh_A11G052700_GH3.1, Gh_D11G002900_PIN1, and Gh_A08G134400_YUC10) were se-
lected for qPCR validation (Figure 7). IAA8 and ARF5 are important auxin signaling
response factors mediating plant perceptions of hormones. IAA8 was downregulated in
LT overexpression NEC, while ARF5 was upregulated. GH3.1, PIN1, and YUC10 plays
an important role in auxin transport. qPCR relative expression analysis revealed a similar
trend with RNA-seq data.
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4. Discussion

After LT was transformed into cotton, we observed that the formation time of EC
could be shortened by 33% on an average. The transcriptome data of LT transgenic calli
showed that the auxin-related genes and bHLH, AP2/ERF, and MYB TFs were differentially
expressed, which have been proven to play an active role in somatic embryogenesis. The
experiment preliminarily elucidated the molecular mechanism that LT could shorten the
formation time of EC in cotton.

BR is a natural product widely distributed in plant species and plays an important
regulatory role in cell division and differentiation [18] Accumulating evidence indicates
plants are more sensitive to exogenous BR upon the increase of endogenous auxin content.
In this study, KEGG analysis revealed DEGs were enriched in brassinosteroid biosynthesis
pathway. We speculated cross talk between BR and auxin might mediated the early
induction of embryonic patterning.

The bHLH proteins are a superfamily of transcription factors that are widely identified
in eukaryotes [19]. Recent study showed that they actively participated in transcriptional
regulation of many biological process, ranging from cell proliferation to cell lineage spec-
ification [20]. Overall, there are 147 bHLH family members identified in Arabidopsis,
constituting one of the largest transcription factor families in Arabidopsis [21]. The bHLH
gene family accounts for the largest proportion in differentially expressed genes during
somatic embryogenesis, followed by AP2/ERF and MYB [22]. Similarly, our study in cotton
showed that the bHLH gene family, which accounted for 16.7% of DEGs, ranked as the top
one enriched group in 466 DEGs during somatic embryogenesis, followed by the MYB and
AP2/ERF gene family.

ARF is considered to be the key protein regulating auxin response genes [23,24].
ARF can specifically bind to the early auxin response factor Aux/IAA response element
TGTCTC sequence and regulate the expression of auxin-related genes. At high auxin levels,
Aux/IAA is degraded by 26S protease and ARF is released to regulate the expression of
auxin related genes [25,26]. In the process of plant callus formation, ARF activates the
expression of LBD family genes, and LBD gene induces the expression of transcription
factor E2Fa, which plays an important role in the cell cycle, so as to promote the proliferation
of callus [27,28]. Ploense et al. confirmed the role of IAA18 in embryonic apical pattern
formation by inhibiting the activity of ARF5 and other ARFs [29]. Our study indicated ARF
was highly expressed while IAA was almost undetectable in the NEC of LT, which was
consistent with the previous research. In addition, it is speculated that all IAA and ARF
genes in the heatmap play an important role in cotton somatic embryogenesis.

AtGH3.1, AtGH3.5 (AtGH3a), and AtGH3.17 can catalyze the adenosylation of IAA or
the connection with amino acids, and the combination of IAA and amino acids leads to the
inactivation of IAA [30]. GH3 protein in Arabidopsis thaliana has plant auxin aminotrans-
ferase activity, and GH3 protein in other plants has been proved to have this activity [31,32].
Our experiment found that the expression of GH3 genes were down-regulated during NEC
of LT, resulting in the accumulation of auxin and promoting the early emergence of EC.

PIN1 protein plays a key role in the polar transport of auxin from the top of the stem
to the base. It is reported that the high expression of PIN1 enables auxin to be transported
from the protostratified cells of the proembryo to the radicle protocells by polar transport,
regulating the formation of radicle [33,34]. In addition, YUC gene family can catalyze the
direct conversion of indole pyruvate to IAA [35,36]. Ectopic overexpression of LEC1 in
Arabidopsis induces young zygotic embryos to produce somatic embryos by promoting the
expression of auxin-synthesis related genes YUC (YUC1, YUC4, and YUC10) [37]. Our
experiment found that two PIN1 homologous genes were up-regulated and three YUC10
homologous genes were down-regulated in the NEC of LT, which led to polar distribution
and synthesis of auxin, and promoted the emergence of EC.
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5. Conclusions

Although genetic transformation has opened up a new era for cotton molecular
breeding, it still suffers from the problem of long transformation periods, which impede
the generation of new cotton germplasms. Previous literature reported that the LT gene,
derived from polyoma virus SV40, could not only promote the proliferation of animal
embryonic stem cells, but also induce the differentiation of tobacco leaf epidermis. In this
experiment, LT overexpression vector, optimized by codon, was transformed into cotton.
It was found that transgenic LT gene leads to DEGs, not only enriched in brassinosteroid
biosynthesis pathways and bHLH, MYB, and AP2/ERF gene families, but also led to
the early response, expression, and transportation of auxin, resulting in EC formation
earlier (Figure 8).
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