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An 8-gene DNA methylation
signature predicts the
recurrence risk of
cervical cancer

Jing-Hang Ma1,2, Yu Huang1, Lu-Yao Liu1 and
Zhen Feng1

Abstract

Objective: This study examined the predictive utility of DNA methylation for cervical cancer

recurrence.

Methods: DNA methylation and RNA expression data for patients with cervical cancer were

downloaded from The Cancer Genome Atlas. Differentially methylated genes (DMGs) and dif-

ferentially expressed genes were screened and extracted via correlation analysis. A support

vector machine (SVM)-based recurrence prediction model was established using the selected

DMGs. Cox regression analysis and receiver operating characteristic curve analysis were used for

self-evaluation. The Gene Expression Omnibus (GEO) database was applied for external valida-

tion. Functional enrichment was determined using Gene Ontology and Kyoto Encyclopedia of

Genes and Genomes enrichment analyses.

Results: An eight-gene DNA methylation signature identified patients with a high risk of recur-

rence (area under the curve¼ 0.833). The SVM score was an independent risk factor for recur-

rence (hazard ratio [HR]¼ 0.418; 95% confidence interval [CI]¼ 0.26–0.67). The independent

GEO database analysis further supported the result.

Conclusion: An eight-gene DNA methylation signature predictive of cervical cancer recurrence

was identified in this study, and this signature may help identify patients at high risk of recurrence

and improve clinical treatment.
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Introduction

Cervical cancer is the leading cause of
cancer-related death in women, being
responsible for more than 500,000 diagno-
ses and 260,000 deaths each year world-
wide.1 Surgery is the main treatment for
early-stage cervical cancer. For patients at
high risk of recurrence, radiotherapy alone
or in combination with chemotherapy is
also needed.2 It has been reported that the
recurrence rate of cervical cancer is 20% to
30%, and this rate increases with disease
progression. Patients with recurrent disease
always have poor prognoses, and therapeu-
tic methods with sufficient response rates
are limited.3–5

At present, staging systems (FIGO or
TNM staging) together with the “Sedlis
criteria” and other risk factors are generally
used to identify patients with cervical
cancer at high risk of recurrence according
to clinical and pathological characteristics
to guide adjuvant treatment.6,7 These
assessments of recurrence risk undoubtedly
provide predictive value; however, they are
less accurate for predicting cancer recur-
rence than genetic, epigenetic, and molecu-
lar biomarkers. Therefore, it is necessary to
identify biomarkers for predicting recur-
rence risk and determining treatment strat-
egies to improve patients’ prognoses.8,9

DNA methylation regulates gene tran-
scription without changing the DNA
sequence. Abnormal hypermethylation of
tumor suppressor genes and hypomethyla-
tion of oncogenes are vital during the early
tumorigenesis process,10,11 and related

epigenetic drugs have proven effective in

the treatment of cervical cancer.12

Compared with the complex variability in

RNA expression between individual

patients,13 DNA methylation is relatively

stable, and pervasive modification across

tumor types is associated with the patho-

genesis and progression of cancer and is

related to patient prognosis and outcome.13

Researchers have explored the relationships

between DNA methylation and cervical

cancer, including the biological function of

genes,14–16 methylation-based tumor classi-

fication,17,18 and radiotherapy-related pre-

dictors.19 However, few studies have

sought to develop recurrence prediction

models for DNA methylation in cervical

cancer, which is of clinical significance to

help clinicians identify high-risk patients

and implement active treatment.
In this study, we used DNA methylation

and related RNA expression datasets for

patients with cervical cancer from The

Cancer Genome Atlas (TCGA) to identify

an epigenetic signature for recurrence risk

prediction.

Materials and methods

Sample selection and data processing

DNA methylation datasets, RNA expres-

sion datasets, and clinical information for

patients with cervical cancer used for

modeling were downloaded from TCGA

(https://portal.gdc.cancer.gov/)20 using the

FireBrowse Data Portal (http://firebrowse.
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org/).21 Infinium HumanMethylation450

BeadChip (Illumina, San Diego, CA,

USA) sequencing technology was used to

obtain 312 DNA methylation profiles, and

HiSeq2000 (Illumina) was used to analyze

307 mRNA-seq profiles.
All samples in TCGA were collected

from patients with primary cervical

tumors, with tumor purity ranging from

22% to 96%.20 We excluded samples

from patients with missing survival infor-

mation and included samples according

to the recurrence status and disease-free

survival.
All data used in the study were obtained

from public databases, which are open

source. Thus, the requirement for ethical

approval was waived.

Differential methylation analysis and

differential expression analysis

DNA methylation datasets and RNA

expression datasets from TCGA were ana-

lyzed using R version 3.6.0 (R Foundation

for Statistical Computing, Vienna, Austria).

Genes with differences in DNA methylation

levels (b values) significant at P< 0.01 with

an absolute log fold change exceeding 0.025

were considered differentially methylated

genes (DMGs). Genes with differences in

RNA expression significant at P< 0.01

with absolute log fold change exceeding

0.4 were considered differentially expressed

genes (DEGs). The log fold change thresh-

olds were set to identify genes proximately

ranked in the top 1%. DMGs overlapping

with DEGs were extracted for the correla-

tion analysis. We used the lm function in R

to fit the linear model. Genes with a signif-

icant negative correlation between DMGs

and DEGs were further chosen to establish

the support vector machine (SVM)-based

prediction model.

SVM model

SVM is a machine-learning algorithm that

offers a direct approach to binary classifi-

cation.22 The SVM considers data as points

in a high-dimensional space and finds an

optimal hyperplane to separate data into

classes.
The eight selected DMGs from patients

in the TCGA database were denoted as 135

pairs (x1, y1), (x2, y2), . . ., (x135, y135). xi2R8

denotes the eight-dimensional data that

represent the methylation levels of eight

DMGs in the ith sample, and yi2{�1,1}

represents the labels of classification. Each

pair (xi, yi) was mapped onto data points in

the eight-dimensional space and used to

train the SVM-based prediction model with-

out cross-validation. The model found the

optimal linear hyperplane P0{x: u(x)¼ 0}

in the feature space, where u was the linear

transformation. Points satisfying {x: u(x)>
0} or {x: u(x)<0} belonged to the class

y¼ 1 or y¼�1, respectively (the graphical

illustration is presented in Figure 3b).
We extracted the u function along with

its coefficients from the linear SVM model

and generated the SVM score to predict the

classification. The SVM score was calculat-

ed using the b values of the eight DMGs

and their coefficients in the trained SVM

model. A constant bias was also introduced.

A sample was classified into the low-risk or

high-risk class if the SVM score was >0 or

�0, respectively. In this work, we used the

e1071 package in R,23 which contained the

svm function.

Recurrent signature validation

The confusion matrix was constructed to

further confirm the prediction of the SVM

classifier model. The receiver operating

characteristic (ROC) curve and the area

under the curve (AUC) were used to

assess the fit of the SVM-based prediction

model.24 A t-test and Fisher’s exact test
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were used to identify clinical features affect-
ing recurrence. The terms significant at
P< 0.05 were retained for further multivar-
iate Cox regression analysis.

Data visualization using t-distributed
stochastic neighbor embedding (t-SNE)

The t-SNE algorithm,25 a nonlinear dimen-
sionality reduction algorithm, was used to
maintain the topological structure in the
high dimension and map each datum onto

several different, but related, low-
dimensional manifolds because an SVM
plot cannot visualize the eight-dimensional
data of the eight DMGs.

We used the Rtsne package in R.26 The

parameter “perplexity,” which balanced
attention between local and global aspects
of the data and which was an estimate of
the approximately 30 closest neighbors each
data point had, was set to 30. The number
of iterations was 10,000.

External validation of the Gene
Expression Omnibus (GEO) database

We searched cervical cancer datasets con-
taining both DNA methylation and surviv-
al information across the GEO database,
and the only GSE30759 dataset (Illumina
Infinium 27k Human Methylation

BeadChip for DNA methylation profiles)
with 63 samples of primary cervical cancer
tissue satisfied such conditions. We prepro-
cessed the samples as described for TGCA
datasets. Nonrecurrence was indicated by
recurrence-free survival of at least 2 years,
and all other patients were considered to
have recurrent cancer.

The recurrence-related methylated genes
in the GEO dataset overlapped with the
eight reference genes obtained from the
training model using TCGA dataset. Three
genes, namely LOC100132215, TIGIT, and
ZFYVE21, in the GEO dataset were found
to not have probes. We calculated the

average DNA methylation levels of these
three genes in TCGA dataset and subtracted
them from the SVM score threshold accord-
ing to equation 2, eventually generating the
reduced SVM score threshold.

We analyzed the distribution of the
methylation levels for the other five genes
in both datasets. We found four genes with
similar distributions in both datasets. We
then normalized the levels in the GEO data-
set to those in TCGA datasets to avoid bias.
Normalization of the methylation value of
genes from the ith sample in the GEO data-
set was performed as follows:

b0iGene;GEO ¼ hbGene;TCGAi
hbGene;GEOi

� biGene;GEO (1)

Of the five genes, MPHOSPH10 was
excluded because of the large differences
in its methylation between the two datasets.
Similarly, we subtracted the average DNA
methylation level of MPHOSPH10 in
TCGA dataset to further update the
reduced SVM score threshold.

Functional enrichment analysis

Gene Ontology (GO) enrichment analysis27

was performed to identify the function of
DMGs, including biological process (BP),
cellular component (CC), and molecular
function (MF). Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment
analysis was performed to identify KEGG
pathways. The Database for Annotation,
Visualization and Integrated Discovery
was used to perform GO and KEGG
enrichment analyses (https://david.ncifcrf.
gov/).28 The enrichment functions and
pathways were considered significant at
P< 0.05.

Results

The study procedures are presented in
Figure 1. After screening and filtration, 85
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patients who had been followed up for

more than 2 years without recurrence were

included in the no recurrence group, and 50

patients with evidence of recurrence were

included in the recurrence group based on

prior findings that recurrence usually

occurs in the first 2 years after completing

treatment.29,30

Identification of DMGs and DEGs

To identify the DMGs and DEGs between

the recurrence and no recurrence groups,

we screened 24,278 DNA-methylated

genes and 20,104 RNA expression datasets

from TCGA database (Figure 2a). Volcano

plots were employed to present the distribu-

tion of fold changes in DNA methylation or

gene expression in each group (Figure 2b,

c). In total, 305 DMGs (P< 0.01; absolute

log fold change> 0.025) and 262 DEGs

(P< 0.01; absolute log fold change> 0.4)

were extracted. Eleven hypermethylated

genes and five hypomethylated genes

overlapped with the DEGs, and DNA

methylation and mRNA expression levels

were negatively correlated (P< 0.05) in

eight of these genes (ZFYVE21, C17orf62,

PDIA6, CUL7, TIGIT, MPHOSPH10,

LOC100132215, and CD3E), as presented

in Figure 2d, e. These eight DNA-

methylated genes were used to further

establish the recurrence prediction model.

The SVM-based prediction model of DNA

methylation

The b values of the eight selected DNA

methylation sites from 135 patients in

TCGA dataset were visualized by a heat

map using the pheatmap package in R

(www.r-project.org) (Figure 3a). We trained

the SVM model according to the recurrence

outcomes (Figure 3b). The confusion

matrix is presented in Figure 3c, and the

ROC curve (AUC¼ 0.833) is presented in

Figure 3d. The SVM score was generated to

predict the recurrence rate with the b values

Figure 1. Flowchart of the whole analysis process.
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of the eight DNA-methylated genes using

the following formula:

SVMscore ¼ 0:48� bC17orf62 � 0:61� bCD3E

þ 0:17� bCUL7 þ 0:37
� bLOC100132215 þ 0:12
� bMPHOSPH10 þ 0:25� bPDIA6
� 0:49� bTIGIT þ 0:49
� bZFYVE21 � 0:74

(2)

Univariate and multivariate analyses

The clinical features and SVM scores of

these patients were analyzed by univariate

analysis (Table 1). The SVM score, FIGO

stage, N stage, M stage, and pathologic

grade were risk factors for recurrence

(P< 0.05) in univariate analysis.

Multivariate Cox regression analysis was

further conducted using these risk factors.

The SVM score (hazard ratio [HR]¼ 0.42;

95% confidence interval [CI]¼ 0.26–0.67,

P< 0.001), and N stage (HR¼ 3.31; 95%

CI ¼1.17–9.33, P< 0.05) were independent

risk factors for recurrence (Table 1).

Visualizing the model using t-SNE

The results of our training model with

t-SNE are presented in Figure 4. The eight-

dimensional data were mapped onto a two-

dimensional space using the dimensionality

reduction method. Samples in each group

are represented as a data point in red or

blue. The results revealed that samples

closer to the bottom left were more likely

to be from patients in the recurrence group.

External validation of the GEO database

An independent external GEO cohort

(GSE30759) was applied to validate the

SVM-based recurrence prediction model

Figure 2. Selection of DMGs in recurrent and nonrecurrent cervical cancer samples. (a) Venn diagram of
overlapping DEGs and DMGs. (b) Volcano plot of DMGs. (c) Volcano plot of DEGs. (d) Coefficient distri-
bution of the gene signatures. (e) The correlation between gene expression and DNA methylation levels in
cervical cancer.
DMG, differentially methylated gene; DEG, differentially expressed gene.
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of DNA methylation. A flowchart represen-

tation of the overall procedure is presented

in Figure 5a. Three genes without the

probes in the GEO dataset were replaced

by the corresponding mean values in

TCGA dataset (LOC100132215: 0.91;

TIGIT: 0.91; and ZFYVE21: 0.98) to

adjust the threshold of the reduced SVM

score. As presented in Figure 5b, the meth-

ylation levels of the four genes (b1: PDIA6;

b2: CUL7, b3: CD3E, and b4: C17orf62)

with similar distributions in two datasets

formed the reduced SVM score. The mean

value of MPHOSPH10 (b5: TCGA: 0.71�
0.11; GEO: 0.02� 0.01) in TCGA dataset

was subtracted to further update the

reduced SVM score threshold.
As illustrated in Figure 5c, the initial

threshold of the SVM score was 0 on the

basis of eight genes. The cost of missing

genes was the range of uncertainty around

the threshold, in which a sample indicated a

high or low risk of recurrence. To improve

the identification of high-risk patients, we

considered samples within the same region

as those from patients at high risk.

Therefore, the reduced SVM score formula

for the GEO dataset was as follows:

THGEO
reduced ¼ 0:74� 0:37� hbTCGA;highLOC100132215i

þ 0:49� hbTCGA;highTIGIT i � 0:49

� hbTCGA;highZFYVE21 i � 0:12

� hbTCGA;highMPHOSPH10i
(3)

In the aforementioned equation, “high”

denotes all samples at high risk, and h. . .i
indicates the average. The reduced SVM

score threshold for the four genes in the

Figure 3. Establishment of the prediction model. (a) Heat map of eight methylation-related genes in
patients with cervical cancer. (b) Schematic of the SVM algorithm. (c) The confusion matrix of the
prediction model. Positive: recurrence. (d) ROC curve of the prediction model, AUC¼ 0.833.
SVM, support vector machine; ROC, receiver operating characteristic; AUC, area under the curve.
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GEO dataset THGEO
reduced, instead of the initial

threshold 0 for the eight genes in the TCGA

dataset, equaled 0.304. The b values of the

four genes (C17orf62, CD3E, CUL7, and

PDIA6) from the GEO dataset then shifted

the mean value to 1 in the TCGA dataset,

avoiding bias.
Recurrence-free survival was significant-

ly longer in the low-risk group

(THGEO
reduced > 0:304) than in the high-risk

group (THGEO
reduced � 0:304) in the recurrence

curve (P¼ 0.039; Figure 5d). ROC curve

analysis was also performed on the predic-

tion result (Figure 5e), and the AUC

was 0.773.

GO and KEGG analyses

To research the biological function of

DMGs, DAVID was used to perform GO

analysis for MFs, BPs, and CCs. MFs

(P< 0.05; Figure 6a) were enriched in pro-

tein binding, poly(A) RNA binding, protein

homodimerization activity, and GTPase

activator activity. BPs (P< 0.05; Figure 6b)

were enriched in the regulation of transcrip-

tion, signal transduction, and positive regu-

lation of GTPase activity immune response.

CCs (P< 0.05; Figure 6c) were enriched in

the plasma membrane, cytosol, and nucleo-

plasm membrane. The results of KEGG

analysis (Figure 6d) suggested that the

DMGs were enriched in human T-lympho-

tropic virus 1 infection, cytokine–cytokine

receptor interaction, T-cell receptor signal-

ing (TCR) pathway, and natural killer cell-

mediated cytotoxicity.

Discussion

DNA methylation is a major epigenetic

mechanism that plays important roles in

Figure 4. Visualization of the eight-dimensional variables using the t-SNE algorithm. Points in red represent
patients with recurrence, and those in blue represent patients without recurrence.
t-SNE, t-distributed stochastic neighbor embedding.
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various biological processes, such as the
regulation of gene expression,31 cell differ-
entiation,32 and inflammation.33 DNA
methylation generally occurs at CpG sites,
which are unmethylated or hypomethylated
in normal cells.34 Hypermethylation of
these CpG sites may silence tumor suppres-
sor genes and lead to carcinogenesis;35

therefore, the identification of abnormally

methylated genes will contribute to disease
diagnosis, the prediction of prognosis, and
the selection of cancer treatment.

In this study, we comprehensively
screened data for patients with cervical
cancer from TCGA dataset by comparing
patients with and without recurrence. We
used the SVM machine-learning algorithm
along with the generated SVM scores to

Figure 5. External validation of the GEO dataset. (a) Flowchart for the external validation. (b) The dis-
tribution of the methylation levels for the five genes in both TCGA dataset (upper) and the GEO dataset
(lower). (c) Threshold shift in the procedure. (d) Survival analysis of the GEO dataset using the prediction
model. (e) ROC curve of external validation with the AUC.
GEO, Gene Expression Omnibus; TCGA; The Cancer Genome Atlas; ROC, receiver operating character-
istic; AUC, area under the curve.
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establish the prediction model. The SVM

score was identified as an independent risk

factor for recurrence via Cox regression

analysis. By contrast, FIGO, T, and M

stages were not independently predictive

of recurrence, which implied that the SVM

score was more closely related to tumor

recurrence than the traditional tumor stag-

ing system. Furthermore, the SVM score is

a robust and reliable predictor of recurrence

regardless of the pathological type, and it is

independent of N staging. The ROC curve

illustrated that the model had a high degree

of fit. Independent datasets in GEO further

supported the model in survival analysis. In

clinical applications, this model will allow

clinicians to screen patients at high risk of

recurrence using eight DNA methylation

biomarkers.
The eight DEGs, namely, ZFYVE21,

C17orf62, PDIA6, CUL7, CD3E, TIGIT,

MPHOSPH10, and LOC100132215, were

found to be differentially affected by

DNA methylation between patients with

and without recurrence. Some of these

genes have been reported to be dysregulated

in cancer or other diseases. ZFYVE21 is

located on chromosome 14 and is associat-

ed with the metastasis of colorectal carcino-

ma36 and malignancy of renal cell

carcinoma.37 C17orf62 regulates NADPH
oxidase in phagocytes and contributes to

the development of chronic granulomatous

disease.38 CD3E is an immunoreceptor with

a tyrosine-based activation motif (ITAM)

in its TCR signal-triggering module that

affects overall survival in patients with sev-

eral cancer types, including cervical

cancer.39 TIGIT is expressed on the surface

of T-cells and natural killer cells and is

associated with the reduction in natural
kill cell-mediated cytotoxicity and an

increase in regulatory T-cell suppression.39

CUL7 is an oncogene that promotes cancer

cell survival by promoting caspase-8 ubiqui-

tination.39 LOC100132215 is correlated

with gene expression in cancerous breast

tissues.40 MPHOSPH10 is involved in ribo-

somal RNA processing during mitosis.41

PDIA40 promotes the proliferation and

growth of various types of human cancer
cells by activating the Wnt/b-catenin

Figure 6. Results of GO and KEGG pathway analyses of DMGs in cervical cancer. The GO terms in (a)
MFs, (b) BPs, and (c) CCs. (d) In the results of KEGG pathway analysis, the x-axis represents the rich factor;
different colors represent the �log10(p-value), and the size of the point represents the number of genes.
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function; CC,
cellular component.
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signaling pathway.39 The role of most of
these genes in cervical cancer has not been
revealed, and further research is needed to
determine their biological functions and
mechanisms.

Limitations

There were some limitations in this study.
First, to differentiate patients with cervical
cancer with and without recurrence, we
excluded patients without recurrence who
had a short follow-up time, which led to a
decrease in the number of samples. Because
the follow-up time was not sufficiently long,
patients without recurrence within the first
2 years after treatment comprised the no
recurrence group, which may cause devia-
tion to some extent. Second, all genes used
for modeling methylation from TCGA were
not in the external validation datasets from
GEO because of the different chips used;
therefore, we had to assume that the GEO
dataset has the same distribution as the
TCGA dataset for LOC100132215,
TIGIT, and ZFYVE21. In addition, the his-
togram (Figure 5b) revealed a large differ-
ence in MPHOSPH10 methylation between
the GEO and TCGA datasets. We calculat-
ed the average b value in the TCGA dataset
and used it in the validation set. Further
experimental studies of these genes are
needed to clarify their functions and mech-
anisms in cervical cancer.

Conclusions

In this study, we identified eight recurrence-
related DNA methylation biomarkers in
cervical cancer through a comprehensive
analysis and established a recurrence pre-
diction model using machine learning.
This work offers a preliminary but effective
approach to predict cancer recurrence using
a few biomarkers, which may help clinicians
identify high-risk patients and implement
active treatment.
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