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Cytoskeletal dynamics are key to the
establishment of cell polarity and

the consequent coordination of protru-
sion and contraction that drives cell
migration. During these events, the
actin and microtubule cytoskeleton act
in concert with the cellular machinery
that controls endo-and exocytosis, thus
regulating polarized traffic of mem-
branes and membrane-associated pro-
teins. Small GTPases of the Rho family
orchestrate cytoskeletal dynamics. Rho
GTPase signaling is tightly regulated
and mislocalization or constitutive
activation may lead to, for example,
morphogenetic abnormalities, tumor cell
metastasis or apoptosis. There is increas-
ing evidence that traffic to and from the
plasma membrane constitutes an import-
ant mechanism controlling Rho GTPase
activation and signaling. This brief over-
view discusses a group of proteins that
function at the interface between mem-
brane dynamics and RhoGTPase signal-
ing. These proteins all share a so-called
BAR domain, which is a lipid and pro-
tein binding region that also harbors
membrane deforming activity. In the past
15 years, a growing number of BAR
domain proteins have been identified and
found to regulate Rho GTPase signaling.
The studies discussed here define several
modes of RhoGTPase regulation through
BAR-domain containing proteins, identi-
fying the BAR domain as an important
regulatory unit bridging membrane traffic
and cytoskeletal dynamics.

Introduction

Rho GTPases constitute a distinct sub-
family within the superfamily of Ras-related

small GTPases and are involved in the
regulation of cell polarity and motility
through their effects on the actin cytos-
keleton, membrane traffic and cell adhe-
sion.1,2 RhoGTPases act as molecular
switches, cycling between an inactive
GDP-bound state and an active GTP-
bound state. This transition is regulated
by guanine-nucleotide-exchange factors
(GEFs) that promote the exchange of
GDP for GTP3 and by GTPase activating
proteins (GAPs) that stimulate the low
intrinsic GTPase activity.4 While acti-
vated Rho GTPases generally are localized
at the plasma membrane, inactive Rho
GTPases, with some exceptions, e.g.,
RhoB, associate with a cytosolic chaper-
one Rho guanine nucleotide dissociation
inhibitor (RhoGDI).5

Increasing evidence indicates that traffic
to and from the plasma membrane is an
important event controlling Rho GTPase
signaling. For example, active Rac1 resides
in cholesterol-enriched membrane domains6

and cell detachment can trigger inter-
nalization of these domains resulting in
the inactivation of Rac1. Thus, interna-
lization plays a key role in the regulation
of Rac1 activity. In line with this, it was
shown that the large GTPase Dynamin,
which is involved in endocytosis, plays
an indispensable role in Rac1 traffic.
Dynamin inhibition results in an increase
in Rac1 activity.7 This is accompanied by
a relocation of active Rac1 to aberrant
dorsal ruffles which results in inhibition
of cell spreading and lamellipodia forma-
tion.7 Conversely, Rho GTPases control
endocytosis and membrane dynamics.
For example, Cdc42 regulates the uptake
of GPI-anchored proteins and bacterial
toxins via the CLIC/GEEC pathway
which functions independently from
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clathrin or Caveolin-mediated internaliza-
tion.8 Furthermore, constitutively active
Rac1 and RhoA can inhibit clathrin-
mediated endocytosis.9,10 Thus, mem-
brane traffic and its regulation are tightly
linked to RhoGTPase activation and
signaling.

In a recent study, we showed that the
adaptor protein PACSIN2 regulates the
activity of Rac1. PACSIN2 is an F-BAR
and SH3-domain-containing protein which
is involved in membrane dynamics such
as tubulation and internalization. Our
findings suggest that PACSIN2 controls
cell spreading and migration by targeting
Rac1 to intracellular compartments for
GAP-mediated inactivation.11 PACSIN2 is
part of the BAR-domain family of proteins
that are important regulators of membrane
dynamics. Currently, this family comprises
proteins encoding one of six classes of BAR-
domains: the archetypical BAR domain, or
N-BAR, BAR-PH, PX-BAR, F-BAR and
I-BAR domains.12 BAR-domain proteins
are capable of sensing membrane curvature
and, by binding as banana-shaped dimers
to phospholipids (the specificity of lipid
binding depends on the type of BAR
protein), they can further promote curva-
ture, which eventually leads either to mem-
brane invagination or protrusion depending
on the type of BAR domain.13 As most
BAR domain proteins can form dimers
and contain one or more protein-binding
scaffolding/adaptor domains, they link

membrane dynamics to signaling proteins
that control actin dynamics. As a result,
many BAR-domain containing proteins
are potentially important regulators of Rho
GTPase-dependent signaling.

Here, we discuss the role of BAR-
domain proteins in the regulation of Rho
GTPases. So far, two classes of BAR-
domain proteins have been characterized
that affect Rho GTPase function: proteins
harboring a BAR domain that regulate
Rho GTPase function (Table 1) and
proteins that, in addition to their BAR
domain, encode a RhoGAP/GEF domain
and regulate Rho GTPase activity (Table 2).

Regulation of RhoGTPase
Function by BAR Domain Proteins
that Lack a RhoGAP/GEF Domain

Over the past 15 years, several BAR-
domain-containing proteins have been

described that regulate the function of
RhoGTPases (Table 1). These proteins are
all structurally related and encode, next to
the common BAR domain, one or more
adaptor- or scaffolding domains (Fig. 1).
Recently, we have shown that the F-BAR
domain protein PACSIN2 specifically
interacts, through its SH3 domain, with
the small GTPase Rac1. Via its F-BAR
domain, PACSIN2 can bind to and induce
invagination of the plasma membrane. We
found that in HeLa cells, loss of PACSIN2
expression increases Rac1GTP levels and,
as a consequence, promotes spreading and
migration of cells. The effect of PACSIN2
on Rac1 activity depends on their asso-
ciation as well as on membrane binding,
since a PACSIN2 BAR-domain mutant,
deficient in membrane tubulation, fails to
inactivate Rac1. Furthermore, we showed
that inactivation of Rac1 by PACSIN2 is
prevented when dynamin is inhibited. Our

Table 1. BAR-Domain-containing proteins lacking a RhoGAP/GEF domain that regulate Rho GTPases

Name Regulates/Target BAR Type Accession # References

PACSIN2 Rac1 F-BAR Q9UNF0 11

CIP4 Cdc42 F-BAR Q15642 14, 16

Toca-1 Cdc42 F-BAR Q5T0N5 15, 17

Nwk Cdc42 F-BAR Q9VSU8 20

IRSp53 Cdc42, Rac1 I-BAR Q9UQB8 21–24

MIM (B) Rac1, not Cdc42 I-BAR O43312 25, 27

Abba-1 Rac 1 I-BAR Q765P7 26, 28

This table shows BAR-domain-containing proteins involved in regulation of Rho GTPases. GTPase
specificity, the type of BAR domain and the Uniprot KB accession number are indicated.

Table 2. BAR-domain-containing proteins that harbor a RhoGAP or RhoGEF domain

Name Synonym Regulates/Target BAR Type GEF/GAP Accession # References

srGAP1 ARHGAP13 Cdc42, RhoA, not Rac1 F-BAR GAP Q7Z6B7 33

srGAP2/FNBP2 ARHGAP34 Rac1, not RhoA, not Cdc42 F-BAR GAP O75044 31

srGAP3/WRP ARHGAP14 Rac1, not RhoA, not Cdc42 F-BAR GAP O43295 30, 34

srGAP4/p115 ARHGAP4 RhoA, not Cdc42, not Rac1 F-BAR GAP Q86UY3 32, 35

RICH1/Nadrin ARHGAP17 Cdc42, Rac1, RhoA BAR GAP Q68EM7 37–39

RICH2 ARHGAP44 Rac BAR GAP Q17R89 41

Oligophrenin-1 ARHGAP41 Cdc42, Rac1, Rhoa BAR GAP O60890 46

GRAF1 ARHGAP26 Cdc42, RhoA BAR GAP Q9UNA1 43, 45

GRAF2/PSGAP ARHGAP10 Cdc42, RhoA BAR GAP A1A4S6 49

GRAF3 ARHGAP42 unknown BAR GAP A6NI28

GMIP ARHGAP46 RhoA BAR GAP Q9P107 50, 53

SH3BP1 ARHGAP43 Rac1/2, RhoG, Cdc42, not Rho BAR GAP Q9Y3L3 51, 54

Tuba/DNMBP ARHGEF36 Cdc42, not Rac1, RhoA BAR GEF Q6XZF7 55–57

This table shows BAR-domain-containing proteins, harboring a GAP/GEF domain, involved in regulation of Rho GTPases. GTPase specificity, the type of BAR
domain, presence of GAP/GEF domain, ARHGAP synonym and the Uniprot KB accession number are indicated.
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data, therefore, suggest a model in which
PACSIN2, in conjunction with dynamin,
promotes internalization of Rac1GTP,
subsequently targeting it to intracellular
sites for GAP-mediated inactivation.11

Another family of F-BAR domain-
containing proteins that controls
RhoGTPase function is the CIP4 family,
consisting of CIP4 and Toca-1. Both
CIP4 and Toca-1 interact with the small
GTPase Cdc42 in fibroblasts,14,15 regulat-
ing Cdc42-dependent actin reorganiza-
tion.15,16 Activated Cdc42 interacts with
Toca-1 and the N-WASP-WIP (WASP-
interacting protein) complex which leads
to activation of N-WASP and Arp2/3-
mediated actin polymerization.15 Similar
to Toca-1, CIP4 is an effector of activated
Cdc42.14 In addition, CIP4 promotes
formation of invadopodia in breast cancer
cells through the activation of N-WASP.16

Both CIP4 and Toca-1 localize to mem-
branes via their F-BAR domains where
they act as scaffolding proteins for

N-WASP and Cdc42. Whether the
F-BAR domain is dispensable for this
function remains to be established.
However, it is worth mentioning that
binding of Cdc42 and N-WASP to Toca-1
regulates its tubulating capacity which
depends on its F-BAR domain as an
F-BAR domain mutant failed to induce
tubulation even in presence of activated
Cdc42 and N-WASP.17 Interestingly, a
third family member, FBP17 (forming-
binding protein 17), is involved in actin
reorganization as well. Similar to CIP4
and Toca-1, FBP17 localizes to sites of
membrane curvature via its F-BAR
domain and targets the N-WASP-WIP
complex to the membrane, stimulating
Arp2/3-dependent actin polymerization.18

However, unlike Toca-1 and CIP4,
FBP17 does not interact with Cdc42,19

leaving its mode of regulation to be
established.

Another F-BAR domain protein that
acts in conjunction with Cdc42 is Nwk

(Nervous Wreck). Nwk is present at the
Drosophila larval neuromuscular junction.
The mammalian genome encodes two
Nwk homologs but these have not been
characterized yet.20 Drosophila Nwk inter-
acts with various endocytic proteins via its
SH3 domain and promotes, together with
Cdc42, WASP-mediated actin polymeriza-
tion, which is important in the regulation
of synaptic morphology.20 The exact
role of the F-BAR domain and whether
Nwk physically interacts with Cdc42,
similar to CIP4 and Toca-1, remains to
be established.

In addition to the proteins discussed
above, one other family of BAR domain-
containing proteins has been described to
control RhoGTPase function. This family
consists of IRSp53, MIM(B) and Abba.
They all share an N-terminal IMD
domain which is also known as I-BAR
domain. IRSp53 is an effector of both
Rac1 and Cdc42 and binds to active
Rac1 via the I-BAR domain and to active

Figure 1. BAR-Domain proteins lacking a RhoGAP/GEF domain that regulate Rho GTPase function. Several BAR-domain-containing proteins have been
shown to regulate Rho GTPase function. These proteins encode, in addition to their common BAR domain, one or more adaptor or scaffolding domains.
Abbreviations for domains are as follows: CRIB, Cdc42/Rac1 interactive binding domain; F-BAR, Fes/CIP4 homology Bin/Amphiphysin/Rvs; I-BAR, inverted-
Bin/Amphiphysin/Rvs; HR1, homology region 1 (Cdc42-binding domain); SH3, Src homology 3; WH2 (like), Wiskott-Aldrich homology 2 (like). Numbers
indicate the number of amino acids. Drawings are not to scale.
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Cdc42 via its CRIB domain.21,22 IRSp53
mediates the interaction between Rac1
and WAVE2 (via its SH3 domain) which
is important because WAVE proteins,
unlike WASP, lack a GTPase binding
domain (GBD). IRSp53 thus couples
Rac1 to WAVE2 resulting in proper actin
polymerization and formation of lamelli-
podia.22,23 In addition to its function in
Rac1-dependent actin dynamics, IRSp53
also acts as a Cdc42 effector stimulating
the formation of filopodia by coupling
membrane protrusion (mediated by the
I-BAR domain) with actin dynamics
through SH3-domain mediated interac-
tions with proteins such as N-WASP.21,24

Thus, whereas the IRSp53 I-BAR domain
is involved in both Rac1 binding and
formation of protrusions (by creating
outward curvature), for Cdc4, the I-BAR
domain mainly functions to create out-
ward curvature. Via its CRIB domain,
IRSp53 targets activated Cdc42 to these
sites.

Unlike IRSp53, which mediates signals
from both Rac1 and Cdc42, Abba and
MIM(B) interact with Rac1 but not with
Cdc42. Whereas Abba associates to GTP-
bound Rac1, MIM(B) binds Rac1 in a
nucleotide-independent fashion.25,26 MIM
(B) binds and bundles actin filaments
and induces membrane protrusions
through the interaction with and activa-
tion of Rac1 (both processes mediated via
the IMD/I-BAR domain). Moreover,
MIM(B) acts as a scaffold protein to
recruit Rac1 effectors that drive actin
assembly.25,27 Abba regulates plasma-
membrane- and actin dynamics as well
and interacts with Rac1 via its IMD/I-
BAR domain, similar to MIM(B).28 Abba
localizes with active Rac1 in membrane
ruffles and was shown to bind to both
wild-type and constitutively active Rac1.26

PDGF treatment enhanced the Abba-Rac1
interaction and an Abba mutant, deficient
in Rac1 binding, prevented Rac1 activa-
tion and induction of membrane ruffling
by PDGF.26 These results reveal an
important role for Abba in Rac1 signaling
downstream of the PDGF receptor.

Thus, it is clear that BAR-domain
proteins play key roles in regulating
RhoGTPases and that the BAR domain
itself is important for this function.
Although BAR-domain proteins have

similar structures, the mechanisms by
which they regulate GTPases differ.
Whereas some are targeted, via their
BAR domain, to specific sites to control
GTPase traffic (e.g., PACSIN2), or act in
concert with GTPases to ensure efficient
activation of downstream signaling (e.g.,
Toca-1), others form a physical link via
their BAR domain between GTPases and
their upstream activators (e.g., Abba)
or downstream effectors (e.g., IRSp53).
Moreover, some of the BAR-domain
proteins (e.g., Toca-1) act either as positive
regulators or signal transducers, whereas
others (e.g., PACSIN2) serve to down-
regulate GTPase output.

Regulation of RhoGTPase
Function and Activation by BAR

Domain-Containing GAPs or GEFs

A large number of RhoGEF and RhoGAP
proteins have been identified so far.3,29

More recently, several of these GAP/GEF
proteins were shown to contain a BAR
domain as well (Table 2) and to have
important functions in controlling the
activity and consequently the function of
RhoGTPases. Similar to the BAR-domain
proteins described in the previous section,
these BAR-GAP/GEF proteins are struc-
turally similar in that they all harbor a
BAR domain, a GAP/GEF domain, and
one or more scaffolding domains/regions
(Fig. 2).

The Slit-Robo (sr)GAPs are critical
for neuronal migration because of their
inactivation of RhoGTPases. Four differ-
ent family members (srGAP1-4) have
been characterized.30-33 Slit proteins are
secreted, cell or extracellular matrix-
associated proteins that guide neuronal
migration through binding to the trans-
membrane Robo receptors. Slit proteins
increase the interaction between Robo1
and srGAP1 which results in the activation
of srGAP1 and consequent inactivation
of GTPases.33 Whereas srGAP1 regulates
Cdc42, both srGAP2 and srGAP3 mediate
their function through inactivation of
Rac1. The srGAP2 F-BAR domain pro-
motes formation of filopodia-like mem-
brane protrusions and neurite outgrowth
in cortical neurons.31 Thus, the F-BAR
and RhoGAP domain of srGAP2 cooper-
ate to regulate neuronal cell migration.

The third family member, srGAP3/WRP,
is part of the WAVE1 complex.34 WAVE1
induces actin polymerization downstream
of activated Rac1.35 As part of the WAVE1
complex, srGAP3/WRP functions as a
signal-termination factor for Rac1 through
its Rac1-GAP activity.34 Furthermore,
srGAP3/WRP regulates spine develop-
ment through F-BAR domain-dependent
formation of dendritic filopodia, and
loss of srGAP3/WRP results in impaired
long-term memory in mice.30 Finally,
the less-well characterized srGAP family
member srGAP4/p115, is predominantly
expressed in hematopoietic cells and was
shown to stimulate the intrinsic GTPase
activity of RhoA and to inhibit stress-
fiber formation.32 Furthermore, srGAP4/
p115 associates to MEKK1, thereby
reducing MEKK1-induced signaling to
the transcription factor AP-1.36 However,
additional studies are necessary to under-
stand the biological function of srGAP4/
p115 and the role of the F-BAR domain in
this process.

Similar to srGAPs, RICH1 (also called
Nadrin), is a BAR domain-containing
protein which also posseses a RhoGAP
domain. RICH1 shows GAP activity
toward Cdc42, Rac1, and RhoA.37,38 3T3
fibroblasts expressing full-length RICH1
or its isolated GAP domain were unable to
form membrane ruffles after PDGF stimu-
lation.38 Furthermore, RICH1 localizes to
tight- and adherens junctions in epithelial
cells, mediated through its interaction
with the adaptor protein Amot. RICH1
associates via its BAR domain with the
ACCH domain of Amot.39,40 This inter-
action inhibits RICH1 function prevent-
ing RICH1 from properly downregulating
activated Cdc42. In addition, Amot
induces relocalization of the polarity
proteins Pals1 and Par-3. Thus, RICH1
in conjunction with Amot maintains the
integrity of tight junctions through the
regulation of Cdc42 activity and traffick-
ing of polarity proteins.39 As an additional
member of this family RICH2, a RacGAP,
was identified as a regulator of the actin
cytoskeleton in epithelial cells. RICH2
and Ezrin interact with the integral
membrane protein CD317 linking it to
the actin cytoskeleton at the apical surface
of polarized epithelial cells.41 As RICH2
inhibits formation of Rac1-induced
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membrane ruffles,38 its presence in this
complex possibly ensures proper regu-
lation of actin cytoskeleton remodeling
at the apical side of polarized epithelial
cells. The exact role of the BAR domain
is not known in this process although it
could well be that RICH2 is targeted to
the membrane (where it interacts with
CD317) via the lipid-binding properties
of the BAR domain.

In addition to the srGAP family and the
RICH family, one more family of BAR-
domain containing RhoGAP proteins is
expressed in mammalian cells. The GRAF
(GTPase regulator associated with focal

adhesion kinase-1) family consists of four
members, GRAF 1-3 and Oligophrenin-1.
GRAF proteins play a role in the clathrin-
independent endocytosis pathway CLIC/
GEEC.42 GRAF1 exhibits GAP activity
toward RhoA and Cdc42 and binds to
Focal Adhesion Kinase (FAK) via its SH3
domain.43 Moreover, GRAF1 regulates
the uptake of, for example, GPI-anchored
proteins and bacterial toxins via the CLIC/
GEEC pathway and internalization via this
pathway was shown to be dependent
on Cdc42 activation.8,44 Through its
BAR domain, GRAF1 localizes to tubular
and vesicular membranes that define the

CLIC/GEEC pathway. Here, GRAF1
regulates internalization of cargo by regu-
lating the activity of Cdc42 via its GAP
domain. Depletion of GRAF1, leading to
impaired CLIC/GEEC function, reduces
cell spreading and migration45 indicating
the importance of well-coordinated mem-
brane dynamics and protein traffic in the
control of cell shape and motility.

A close relative of GRAF1, Oligophrenin-
1, stimulates GTP hydrolysis of Cdc42,
Rac1, and RhoA.46 Through the regula-
tion of GTPase activity and the interac-
tion with endophilin A1, Oligophrenin-1
controls synaptic vesicle endocytosis.47

Figure 2. BAR-Domain-containing RhoGAP/GEF proteins. Several BAR-domain proteins have been characterized that harbor, in addition to their BAR
domain, a RhoGAP/GEF domain also. In addition, they encode of one or more scaffolding or adaptor domains. Abbreviations for domains are as follows:
BAR, Bin/Amphiphysin/Rvs; C1, cysteine-rich phorbol ester binding; F-BAR, Fes/CIP4 homology Bin/Amphiphysin/Rvs; PH, pleckstrin homology; RhoGAP,
Rho GTPase activating protein; RhoGEF, Rho guanine-nucleotide-exchange factors; SH3, Src homology 3. Numbers indicate the number of amino acids.
Drawings are not to scale.

www.landesbioscience.com Small GTPases 49



© 2012 Landes Bioscience.

Do not distribute.

Oligophrenin-1 was also shown to be
involved in cognitive impairment.46 As
malfunctions in synaptic vesicle recycling
are linked to cognitive defects48 it could
well be that Oligophrenin-1-associated
cognitive impairment is caused by a
defect in synaptic vesicle traffic due to
improper Oligophrenin-1 signaling. A
third GRAF family member, GRAF2,
also known as PSGAP, has been shown
to interact with PYK2 which is structur-
ally related to FAK. PYK2 binds to the
GRAF2 SH3 domain thereby inhibiting
its RhoGAP function. This results in
activation of Cdc42 and cytoskeletal
reorganization.49 The exact role of the
GRAF2 BAR domain needs further
investigation, but it could well be
involved in targeting of GRAF2 to sites
where GTPase regulation is required.

Finally, two more BAR-RhoGAP pro-
teins have been characterized so far,
GMIP and SH3BP1.50,51 GMIP associates
with the Ras-related protein Gem which is
involved in regulating voltage-gated Ca2+

channels and cytoskeletal reorganization
(Aresta et al., 2002; Beguin et al.,
2001).50,52 Gem, which binds Ezrin at
the plasma membrane, downregulates
RhoA-dependent stress fibers via its inter-
action with GMIP which exhibits GAP
activity toward RhoA but not Cdc42 and
Rac1.50,53 The exact role of the GMIP
BAR domain remains unclear. However,
it was shown that the GMIP-Gem
interaction is mediated via the GMIP
N-terminal part which harbors the BAR
domain.50 Similar to IRSp53,22 GMIP
possibly uses its BAR domain for pro-
tein-protein interactions.

SH3BP1 exhibits GAP activity toward
the Rac family GTPases and was shown
to inhibit PDGF-induced membrane
ruffling.51 Furthermore, it was shown that
SH3BP1 binds Exo84 and Sec8, both
exocyst components, in a BAR domain-
dependent fashion.54 Together with the
exocyst, SH3BP1 is targeted to the leading
edge of polarized, motile cells. Here it
mediates cell migration by regulating the
activity of Rac1. Loss of SH3BP1 causes
formation of disorganized instable protru-
sions.54 Thus at the leading edge, in con-
cert with GEF-mediated activation of Rac1,
SH3BP1 ensures proper Rac1 inactivation
to mediate efficient cell migration.

Whereas several RhoGAP proteins
encode BAR domains, only one BAR-
RhoGEF protein, called Tuba, has been
described so far. Tuba has four N-terminal
SH3 domains, a central DH domain
followed by a BAR domain and two
C-terminal SH3 domains (Fig. 2). Tuba
was shown to exhibit GEF activity toward
Cdc42 but not Rac1 and RhoA.55,56 As
Tuba can bind both Dynamin and actin-
regulatory proteins such as N-WASP and
WAVE1,56 Tuba was proposed to be an
important link between endocytosis,
actin dynamics, and GTPase signaling.56

Furthermore, Tuba activates Cdc42 and
subsequently atypical PKC, thereby regu-
lating polarized spindle orientation in
epithelial cells.57 To be functional,
RhoGEF proteins generally need a DH-
PH motif. The DH domain forms the
catalytic core while the PH domain can
be involved in plasma membrane targeting
and in protein-protein interactions.3 In
general, DH domains without adjacent
PH domains are less active than those
that are flanked by a PH domain.3

Intriguingly, it was shown that the Tuba
DH domain showed little activity com-
pared with the DH-BAR fragment.56

This suggests that the BAR domain of
Tuba acts as a substitute for a PH domain.

It is clear that BAR-GAP/GEF proteins
are important regulators of GTPase activa-
tion and consequent signaling. In general,
the BAR domain is important for the
targeting to membranes and to sites of
actin dynamics where they can induce
membrane curvature. In addition, the
BAR domain can mediate protein-protein
interactions. Thus, the BAR domain and
GAP/GEF domain cooperate to regulate
processes dependent on membrane traffic
and actin remodeling including cell
spreading, cell polarization and motility.
It is perhaps not coincidental that appar-
ently more RhoGAPs than RhoGEFs
encode BAR domains. GTPase activation
is generally associated with the trans-
location to the plasma membrane.
Although it is not as firmly established
that turning off GTPase signaling requires
the reverse process, e.g., GTPase inter-
nalization, there is accumulating support
for this notion, based on previous studies
showing that e.g., dynamin, caveolin-1
and PACSIN2 are all required for proper

Rac1 inactivation. The fact that also
many RhoGAPs encode BAR domains
therefore suggest a functional link between
membrane traffic and termination of
GTPase signaling.

Concluding Remarks

Over the past 15 years, a series of BAR
domain-containing proteins have been
characterized that are linked to Rho
GTPase signaling pathways. The BAR
domain itself, through its capacity to
bind lipids as well as proteins, plays an
important role in the regulation of
Rho GTPase activity and output. BAR
domains play important roles in the
targeting of proteins to specific regions
within the plasma membrane where actin
remodeling is necessary (e.g., for formation
of protrusions or stimulating endocytosis).
At these sites, BAR-domain proteins can
control Rho GTPase activity, either by
regulating the activation status of Rho
GTPases, as some of these proteins harbor
a RhoGAP/GEF domain, or by linking
Rho GTPases to their upstream activators
(e.g., growth factor signaling) or to their
downstream effectors (e.g., the actin
machinery proteins such as WASP pro-
teins and the Arp2/3 complex). Strikingly,
the Rho GTPase-regulating BAR domain
proteins identified so far all harbor BAR,
F-BAR, or I-BAR domains but not any
of the other types of BAR domain. In
conclusion, BAR-domain proteins are
emerging as an important group of
RhoGTPase regulators. As this field is
relatively young and many previously
identified proteins are now found to also
include a BAR domain, it is very likely that
in the near future more BAR-domain
proteins that regulate Rho GTPase signal-
ing will be identified. The challenge then
lies in defining their contribution to
the promotion or inhibition of localized
GTPase signaling.
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kinase 2 substrate in neurons 2; PDGF,
platelet derived growth factor; PH,

pleckstrin homology; PSGAP, PH and
SH3 domain-containing RhoGAP pro-
tein; PYK2, protein tyrosine kinase 2;
SH3, Src homology 3; SH3BP1, SH3-
domain binding protein 1; srGAP, slit-
robo GAP; Toca-1, transducer of
Cdc42-dependent actin assembly-1;
WASP, Wiskott-Aldrich syndrome pro-
tein; WH2, Wiskott-Aldrich homology 2;
WIP, WASP interacting protein; WRP,
WAVE-associated Rac GAP
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