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Abstract

The NaCl cotransporter (NCC) is essential for sodium reabsorption at the distal convoluted tubules (DCT), and its
phosphorylation increases its transport activity and apical membrane localization. Although insulin has been reported to
increase sodium reabsorption in the kidney, the linkage between insulin and NCC phosphorylation has not yet been
investigated. This study examined whether insulin regulates NCC phosphorylation. In cultured mpkDCT cells, insulin
increased phosphorylation of STE20/SPS1-related proline-alanine-rich kinase (SPAK) and NCC in a dose-dependent manner.
This insulin-induced phosphorylation of NCC was suppressed in WNK4 and SPAK knockdown cells. In addition, Ly294002, a
PI3K inhibitor, decreased the insulin effect on SPAK and NCC phosphorylation, indicating that insulin induces
phosphorylation of SPAK and NCC through PI3K and WNK4 in mpkDCT cells. Moreover, acute insulin administration to
mice increased phosphorylation of oxidative stress-responsive kinase-1 (OSR1), SPAK and NCC in the kidney. Time-course
experiments in mpkDCT cells and mice suggested that SPAK is upstream of NCC in this insulin-induced NCC
phosphorylation mechanism, which was confirmed by the lack of insulin-induced NCC phosphorylation in SPAK knockout
mice. Moreover, insulin administration to WNK4 hypomorphic mice did not increase phosphorylation of OSR1, SPAK and
NCC in the kidney, suggesting that WNK4 is also involved in the insulin-induced OSR1, SPAK and NCC phosphorylation
mechanism in vivo. The present results demonstrated that insulin is a potent regulator of NCC phosphorylation in the
kidney, and that WNK4 and SPAK are involved in this mechanism of NCC phosphorylation by insulin.
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Introduction

The NaCl cotransporter (NCC) is expressed in the distal

convoluted tubules (DCT) and plays a major role in renal electrolyte

balance [1]. As previously reported [2,3], it is well known that NCC

phosphorylation results in increased NCC localization at the cell

membrane and increased cotransporter activity. Recently, several

physiological regulators of NCC phosphorylation have been

reported. We have reported that NCC phosphorylation was

increased by a low-salt diet and decreased by a high-salt diet,

through regulation by aldosterone, which is a strong regulator of

NCC phosphorylation [4]. In addition, we and other groups found

that angiotensin II is another regulator of NCC phosphorylation

[5,6,7]. Moreover, Vallon et al. reported that administration of

either a low-sodium or a low-potassium diet increased NCC

phosphorylation in mice through serum and glucocorticoid

inducible kinase 1 (SGK1) [8]. Vasopressin has also been reported

as a regulator of NCC phosphorylation [2].

Insulin is known to regulate renal sodium reabsorption. In fact,

insulin infusion increases sodium reabsorption in the kidney

[9,10,11,12]. Although it has been reported that insulin increases

the activity of epithelial Na channel (ENaC) in the collecting duct

[11,12], a linkage between insulin and NCC phosphorylation has

not been reported yet.

Pseudohypoaldosteronism type II (PHAII) is an autosomal

dominant disease characterized by hypertension due to increased

renal salt reabsorption, and hyperkalemia [13,14,15]. Mutations in

with-no-lysine kinase 1 (WNK1) and with-no-lysine kinase 4

(WNK4) have been shown to cause PHAII [16]. Recently, we

generated WNK4D561A/+ knock-in mice, an ideal mouse model of

PHAII, and found that the pathogenesis of PHAII is the

constitutive activation of the WNK-OSR1/SPAK kinases-NaCl

cotransporter (NCC) cascade, resulting in gain of function of NCC

[3]. In both OSR1 and SPAK kinase-dead knock-in and SPAK

knockout, it was recently demonstrated that OSR1 and SPAK
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kinases have a major role in NCC phosphorylation in the kidney

[17,18].

In this study, we investigated whether insulin regulates the NCC

phosphorylation. Acute insulin stimulation was found to increase

SPAK and NCC phosphorylation in cultured mouse distal

convoluted mpkDCT cells [7,19]. Furthermore, increased phos-

phorylation of OSR1, SPAK and NCC in insulin-administered

mice kidney was also confirmed. This insulin-stimulated OSR1,

SPAK and NCC phosphorylation was not found in the kidneys

from WNK4 hypomorphic and SPAK knockout mice, respective-

ly, indicating that WNK4 and SPAK are involved in NCC

phosphorylation by insulin in vivo. These results indicate that

insulin is a substantial regulator of the WNK-OSR1/SPAK-NCC

phosphorylation cascade in vivo in the kidney.

Results

Insulin increased phosphorylation of SPAK and NCC in
mpkDCT cells

To determine whether insulin regulates NCC phosphorylation,

mpkDCT cells that endogenously express OSR1, SPAK and NCC

were used. First, to evaluate the effect of insulin on SPAK and

NCC phosphorylation in mpkDCT cells, a time-course experi-

ment after the stimulation by insulin was performed (Figure 1).

Five minutes after insulin addition, there was a significant increase

in SPAK phosphorylation levels, which increased to maximum

levels 15 min after insulin stimulation and declined to basal levels

over the following 6 h. However, expression and phosphorylation

of OSR1 were not increased in mpkDCT cells by 100 nM insulin

(data not shown). Similar to SPAK, NCC phosphorylation

increased after insulin stimulation. However, after insulin

stimulation, increased NCC phosphorylation in mpkDCT cells

reached the maximum levels at 60 min, indicating that increased

NCC phosphorylation occurred after increased SPAK phosphor-

ylation and suggesting that SPAK is upstream of NCC in the

phosphorylation cascade in this insulin-induced NCC phosphor-

ylation mechanism. It was also confirmed that insulin-stimulated

phosphorylation of SPAK and NCC was dose-dependent in

mpkDCT cells (Figure 2).

Next, to confirm that SPAK is upstream of NCC in the

phosphorylation cascade in this insulin-induced NCC phosphor-

ylation mechanism, a SPAK knockdown experiment in mpkDCT

cells was performed. As shown in Figure 3, insulin-induced NCC

phosphorylation was impaired in SPAK knockdown mpkDCT

cells, indicating that SPAK is upstream of this insulin-induced

NCC phosphorylation. In addition, WNK4 knockdown was

performed, to examine whether insulin-induced SPAK and

NCC phosphorylation is diminished in WNK4 knockdown

mpkDCT cells, since increased SPAK phosphorylation by insulin

occurred at its specific phosphorylation site by WNK kinases. As

expected, WNK4 knockdown in mpkDCT cells impaired the

response of insulin-induced phosphorylation of SPAK and NCC,

compared to negative control, clarifying that WNK4 is involved in

this insulin-induced phosphorylation of SPAK and NCC (Figure 4).

As shown in Figure 1, insulin increased phosphorylation of Akt

and SGK1 in mpkDCT cells, as well as SPAK and NCC. It is

well known that insulin-induced phosphorylation of Akt and

SGK1through phosphatidylinositol 3-kinase (PI3K) is required for

their activation [20]. Since Akt and SGK1 have been reported to

regulate sodium channel [8,21], we hypothesized that the insulin

effect on NCC phosphorylation could be through PI3K and Akt/

SGK1 as well. Therefore, to determine whether PI3K is involved

in this insulin-stimulated NCC phosphorylation, a PI3K in-

hibitor experiment was performed. Ly294002, a PI3K inhibitor,

suppressed insulin-stimulated phosphorylation of SPAK and NCC

(Figure 5).

These results indicate that insulin positively regulates phos-

phorylation of SPAK and NCC through PI3K in mpkDCT cell

and that WNK4 is involved in this insulin-induced phosphoryla-

tion of SPAK and NCC.

Insulin administration increased phosphorylation of
OSR1, SPAK and NCC in the mouse kidney

Next, mouse experiments were performed to investigate

whether the NCC phosphorylation by insulin observed in the

cultured cells was also functional in vivo. Insulin was intraperito-

neally injected into C57BL/6 mice (5 U/kg), and OSR1, SPAK

and NCC phosphorylation in the kidney was checked. As shown in

Figure 6, insulin increased phosphorylation of OSR1, SPAK and

NCC in the kidney, at 90 min after insulin injection. However,

since the effect of insulin on OSR1, SPAK and NCC

phosphorylation in the kidney from mice on a normal diet was

slight, though it was significant, the same experiment was

performed with mice on a high-salt diet. We expected that we

could see the effect of insulin more easily, because phosphorylation

of OSR1, SPAK and NCC is decreased in kidneys from mice on a

high-salt diet, due to lower plasma aldosterone levels [4]. As

expected, insulin more clearly increased phosphorylation of

OSR1, SPAK and NCC in kidneys from mice on a high-salt diet

(Figure 7). These results clearly showed that the insulin signal

phosphorylates OSR1, SPAK, and NCC in vivo in mouse kidney,

as well as in cultured cells.

To evaluate the effect of insulin on the phosphorylation of

OSR1, SPAK and NCC in the mouse kidney, a time-course

experiment was performed (Figure 8). Thirty minutes after

injection of insulin to mice, phosphorylation of OSR1 and SPAK

increased to the maximal degree, and declined thereafter. Similar

to the time-course of phosphorylation of OSR1 and SPAK,

phosphorylation of Akt and SGK1 also increased to the maximal

degree at 30 min after insulin injection.

The time-course of insulin-induced phosphorylation of NCC in

mouse kidney was slightly different from that of OSR1 and SPAK.

In mouse kidney, NCC phosphorylation increased to 2.6-fold at

30 min after insulin injection, and the level of NCC phosphor-

ylation was sustained for at least 90 min, when phosphorylation of

OSR1 and SPAK had already declined. Unlike SPAK and OSR1,

total NCC protein was also increased in insulin-injected mouse

kidney.

To explore the physiological significance of insulin-induced

NCC phosphorylation, NCC phosphorylation levels were com-

pared in mice on high- and low-salt diets with or without insulin

administration (Figure 9). Irrespective of salt intake, insulin-

injected mice showed significantly increased NCC phosphoryla-

tion compared to control mice in both high- and low-salt diet-fed

mice, suggesting that insulin action may be independent of

aldosterone.

SPAK is involved in the mechanism of NCC
phosphorylation by insulin in vivo

It is well known that SPAK is a major kinase to phosphorylate

NCC [17,18,22,23]. In fact, as shown in Figure 3, insulin-induced

NCC phosphorylation was impaired in SPAK knockdown

mpkDCT cells. Therefore, to determine whether SPAK was

involved in the mechanism of NCC phosphorylation by insulin in

vivo, the same acute insulin injection experiment was performed on

SPAK knockout mice [18]. Increased NCC phosphorylation by

insulin was not observed in SPAK knockout mice compared to

Insulin Regulates NCC Phosphorylation
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wild-type mice (Figure 10), indicating that SPAK is also involved

in the insulin-induced NCC phosphorylation.

WNK4 is involved in the mechanism of OSR1, SPAK and
NCC phosphorylation by insulin in vivo

WNK4 knockdown in mpkDCT cells impaired insulin-induced

phosphorylation of SPAK and NCC, as shown in Figure 4.

Therefore, to confirm that WNK4 is involved in the insulin-

induced phosphorylation of NCC in vivo, the insulin injection

experiment was performed in WNK4 hypomorphic mice [24]. In

WNK4 hypomorphic mice, increased OSR1, SPAK and NCC

phosphorylation in the kidney was not observed with insulin

stimulation (Figure 11), indicating that WNK4 is involved in the

mechanism of the insulin-induced OSR1, SPAK and NCC

phosphorylation in vivo.

Discussion

Insulin is well known to regulate renal sodium reabsorption. It

has been reported that insulin infusion increases sodium

reabsorption in the kidney [9,10,11,12]. However, a linkage

between insulin and NCC has not yet been reported, although the

effects of the renin-angiotensin-aldosterone system on NCC have

been well documented [1,4,5,6,8,25].

In this study, there was a linkage between insulin and NCC

phosphorylation. To our knowledge, this is the first demonstration

of insulin-induced NCC phosphorylation in a cultured cell line

and in vivo. As shown in Figures 1 and 2, insulin increased the

phosphorylation of SPAK and NCC in mpkDCT cells. OSR1,

SPAK and NCC phosphorylation was also clearly increased in

insulin-injected mouse kidney. In a time-course experiment,

OSR1, SPAK and NCC were phosphorylated by insulin, but

maximal NCC phosphorylation occurred later than maximal

OSR1 and SPAK phosphorylation in mouse kidney (Figure 8). A

similar phenomenon was also observed in the time-course

experiment with mpkDCT cells (Figure 1). As previously clarified

in SPAK kinase-dead knockin and knockout mice [17,18], SPAK

is upstream of NCC in the WNK-OSR1/SPAK-NCC phosphor-

ylation cascade. Therefore, the present results demonstrated that

SPAK phosphorylation occurs at first, and phosphorylated SPAK

mediates NCC phosphorylation later, indicating that SPAK is

upstream of NCC even in this insulin-stimulated NCC phosphor-

ylation mechanism.

These findings suggest the involvement of SPAK in the

mechanism of NCC phosphorylation by insulin. To confirm this,

the same insulin experiment was performed in the SPAK

knockdown cells and SPAK knockout mice (Figure 3 and 10). As

expected, insulin-induced NCC phosphorylation was impaired in

SPAK knockdown mpkDCT cells. Similarly, the increase in NCC

phosphorylation by insulin was completely abolished in the SPAK

knockout mice, supporting the essential role of SPAK in this

insulin-induced NCC phosphorylation in vitro and in vivo.

Involvement of WNK4 in insulin-induced NCC phosphorylation

was also confirmed in this study. The insulin effect on

phosphorylation of OSR1, SPAK and NCC was not observed in

WNK4 knockdown cells and WNK4 hypomorphic mice. Taken

Figure 1. Time-course of insulin-stimulated SPAK and NCC phosphorylation in mpkDCT cells. A. Representative blots of phosphorylation
of SPAK and NCC by 100 nM insulin in mpkDCT cells. Insulin increased phosphorylation of SPAK and NCC, as well as Akt and SGK1. B. Densitometry
analysis of phosphorylation of NCC by insulin in mpkDCT cells. Values (n = 4) are expressed as the ratio to the signals in insulin-free samples. The level
of SPAK phosphorylation increased to the maximal extent at 15 min and returned to the basal level after 300 min. On the other hand, the level of
NCC phosphorylation increased to the maximal extent at 60 min. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0024277.g001

Insulin Regulates NCC Phosphorylation
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together, these findings clearly show that WNK4 and SPAK are

involved in the insulin-stimulated NCC phosphorylation mecha-

nism in vitro and in vivo.

The detailed mechanism of WNK4 activation by insulin

remains to be determined. It is clear that PI3K is involved in the

insulin-induced NCC phosphorylation mechanism, as shown in

Figure 5. PI3K is a key component of the insulin-signaling

pathway. Insulin induces phosphorylation of Akt and SGK1

through PI3K, resulting in activation of Akt and SGK1 [20]. One

possible mechanism is that insulin activates Akt/SGK1 and

activated Akt/SGK1 modifies the function of WNK4, since

WNK4 has several Akt/SGK1 phosphorylation motifs, and

phosphorylation at one of these sites has been reported to alter

WNK4 kinase activity [25,26]. It is also possible that WNK1, as

well as WNK4, might be involved in the NCC phosphorylation

by insulin. WNK1 is reported as a substrate of Akt, a kinase

strongly regulated by insulin, and Thr-60 of WNK1 is

phosphorylated by insulin [27]. Activation of WNK1 could

probably result in OSR1, SPAK and NCC phosphorylation by

insulin as well.

Figure 2. Insulin phosphorylates NCC and SPAK in mpkDCT cells in a dose-dependent manner. A. Representative blot of
phosphorylation of SPAK by insulin in mpkDCT cells. mpkDCT cells were incubated with insulin for 60 min at 20 nM and 100 nM. Insulin significantly
increased phosphorylation of endogenous SPAK, compared to insulin-free control, in a dose-dependent manner. B. Densitometry analysis of
phosphorylation of SPAK by insulin in mpkDCT cells. Values (n = 4) are expressed as the ratio to the signals in insulin-free samples. *P,0.05. C.
Representative blot of phosphorylation of NCC by insulin in mpkDCT cells. Insulin significantly increased phosphorylation of endogenous NCC,
compared to insulin-free control, in a dose-dependent manner. D. Densitometry analysis of phosphorylation of NCC by insulin in mpkDCT cells.
Values (n = 4) are expressed as the ratio to the signals in insulin-free samples. *P,0.05.
doi:10.1371/journal.pone.0024277.g002

Figure 3. Insulin-induced phosphorylation of NCC was impaired in SPAK knockdown mpkDCT cells. A. Representative blot of
phosphorylation of NCC by insulin in SPAK knockdown mpkDCT cells. mpkDCT cells were incubated with insulin for 60 min at 100 nM. Insulin-
induced NCC phosphorylation was impaired in SPAK knockdown mpkDCT cells, although insulin increased phosphorylation of NCC in negative
control siRNA-transfected cells. B. Densitometry analysis of phosphorylation of NCC by insulin in negative control and SPAK knockdown mpkDCT
cells. Values (n = 4) are expressed as the ratio to the signals in insulin-free negative control siRNA-transfected cells.
doi:10.1371/journal.pone.0024277.g003

Insulin Regulates NCC Phosphorylation
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To date, various regulators of NCC phosphorylation have been

reported. Of these, there is no doubt that aldosterone is the major

player for NCC phosphorylation in vivo. This aldosterone-

dependent activation of NCC is physiologically important for

the regulation of sodium excretion by sodium intake [4]. We also

reported the angiotensinII effect on OSR1, SPAK and NCC

phosphorylation, as well as that of aldosterone [7]. Thus, the effect

of the renin-angiotensin-aldosterone system on NCC phosphory-

lation has been intensively investigated [1,4,5,6,8,25]. On the

other hand, the insulin effect on NCC has been poorly understood.

It has been reported that insulin infusion increases sodium

reabsorption by the kidney in both humans and animals

[9,10,11,12]. Although it has been reported that epithelial Na

channel (ENaC) is regulated by insulin in mouse and rat kidneys

[11,12], the linkage between the other sodium transporters and

insulin has not yet been investigated. Here, in this study, acute

insulin infusion clearly increased NCC phosphorylation. We have

reported that the WNK-OSR1/SPAK-NCC phosphorylation

cascade is an aldosterone-dependent system [4]. A high-salt diet

suppresses OSR1, SPAK and NCC phosphorylation due to lower

plasma aldosterone levels. Inversely, a low-salt diet increases

OSR1, SPAK and NCC phosphorylation. As shown in Figure 9,

the acute insulin effect on NCC phosphorylation in the high-salt

diet mouse kidney was equivalent to the low-salt diet effect on

NCC phosphorylation, indicating that insulin may block the

down-regulation of NCC phosphorylation by a high-salt diet. It is

well established that the metabolic syndrome causes hyperinsulin-

emia [28], as a result of insulin resistance, and hyperinsulinemia

causes an aberrant increase in sodium reabsorption by the kidney

[9,10,28]. Interestingly, it has been reported that the metabolic

syndrome enhances salt-sensitivity, which causes salt-sensitive

hypertension [29,30]. However, the mechanism responsible for

this greater salt-sensitivity in hyperinsulinemic patients is still

unknown. Our novel findings, that insulin diminished the down-

regulation of NCC phosphorylation by a high-salt diet in the

kidney, might be part of the explanation for increased salt-

sensitivity in these hyperinsulinemic patients.

As shown in Figures 7 and 8, total NCC was increased in

insulin-administered mice fed with a high-salt diet. Recently, we

reported that total NCC was increased in WNK4D561A/+ knock-in

mice, a mouse model of PHAII [3]. On the other hand, total NCC

was decreased in SPAK kinase-dead knock-in and knockout mice

[17,18]. Therefore, since we found that WNK4 and SPAK are

involved in the insulin-induced NCC phosphorylation mechanism,

increased total NCC in insulin-administered mice might be due to

the same mechanism as in WNK4 and SPAK knock-in and -out

mice. Unlike in mice fed with a high-salt diet, there was no

significant increase in total NCC by insulin administration in mice

fed with a normal diet (Figure 6). In the case of a normal diet, an

increase in total NCC could be masked, because the basal

expression level of total NCC is already increased due to lower

aldosterone levels, as we previously reported [4]. In a previous

study, chronic insulin-infused rats fed with a normal salt diet did

not show increased total NCC, as seen in the present experiment

involving mice fed with a normal diet, although thiazide sensitivity

was increased in these rats, indicating that NCC was functionally

activated [11,12]. Examination of NCC phosphorylation in these

rats may clarify the mechanism of increased thiazide sensitivity in

insulin-infused rats, although further investigation is needed.

In summary, it was found that insulin increased phosphorylation

of NCC in cultured cells and in mouse kidney in vivo. WNK4 and

SPAK are involved in this insulin-stimulated NCC phosphoryla-

Figure 4. Insulin-induced phosphorylation of NCC was impaired in WNK4 knockdown mpkDCT cells. A. Representative blot of
phosphorylation of NCC by insulin in WNK4 knockdown mpkDCT cells. mpkDCT cells were incubated with insulin for 60 min at 100 nM. Insulin
induced SPAK and NCC phosphorylation was impaired in WNK4 knockdown mpkDCT cells, although insulin increased phosphorylation of SPAK and
NCC in negative control siRNA-transfected cells. B. Densitometry analysis of phosphorylation of SPAK and NCC by insulin in negative control and
SPAK knockdown mpkDCT cells. Values (n = 4) are expressed as the ratio to the signals in insulin-free negative control siRNA-transfected cells.
doi:10.1371/journal.pone.0024277.g004
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Figure 5. Insulin phosphorylates SPAK and NCC through PI3K in mpkDCT cells. Ly294002, a PI3K inhibitor, suppressed the insulin effect on
SPAK (A, B) and NCC (C, D) phosphorylation in mpkDCT cells. Cells were incubated with insulin for 60 min and Ly294002 was added 30 min before
insulin incubation. (A) and (C) show representative blots of phosphorylation of SPAK and NCC, respectively. (B) and (D) are densitometry analyses of
phosphorylation of SPAK and NCC, respectively. The insulin effect on phosphorylation of SPAK and NCC was absent with Ly294002. Values (n = 4) are
expressed as the ratio to the signals in insulin-free samples without Ly294002. *P,0.05.
doi:10.1371/journal.pone.0024277.g005

Figure 6. Insulin stimulation increases phosphorylation of OSR1, SPAK and NCC in mouse kidney. A: Immunoblots of phosphorylation
of OSR1, SPAK and NCC in the kidney from insulin-stimulated mice on a normal diet. Phosphorylation of OSR1, SPAK and NCC was significantly
increased at 90 min after insulin administration, compared to signals in the vehicle group. B: Densitometry analysis of phosphorylation of OSR1, SPAK
and NCC in the kidney. In densitometry analysis, values (n = 4) are expressed as the ratio to the average of the signals in the vehicle group. *P,0.05.
doi:10.1371/journal.pone.0024277.g006

Insulin Regulates NCC Phosphorylation
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Figure 7. Increased phosphorylation of OSR1, SPAK and NCC in the kidney from mice on a high-salt diet. A: Immunoblots of
phosphorylation of OSR1, SPAK and NCC in the kidney from insulin-stimulated mice on a high-salt diet. Phosphorylation of OSR1, SPAK and NCC was
significantly increased at 90 min after insulin administration, compared to signals in the vehicle group. These differences between insulin-stimulated
and control mice were more abundant and significant, compared with the normal diet experiment. As well as the phosphorylation of NCC, total NCC
expression in the kidney was also increased in the insulin-stimulated group. B: Densitometry analyses of phosphorylation of OSR1, SPAK and NCC in
the kidney. For densitometry analysis, values (n = 4) are expressed as the ratio to the average of signals in the vehicle group. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0024277.g007

Figure 8. Time-course of insulin-stimulated OSR1, SPAK and NCC phosphorylation in insulin-stimulated mouse kidney. A.
Immunoblots of the time-course of OSR1, SPAK and NCC phosphorylation in the kidney from insulin-stimulated mice on a high-salt diet. Thirty
minutes after injection of insulin to mice, phosphorylation of OSR1 and SPAK increased to the maximal degree. NCC phosphorylation increased to 2.6-
fold (p,0.01) at 30 min after insulin injection, and it was sustained for at least 90 min. Increased total NCC protein was also sustained in insulin-
injected mouse kidney for least 180 min. Phosphorylation of Akt and SGK1 was also increased to the maximal degree at 30 min after insulin injection.
B. Densitometry analyses of phosphorylation of OSR1, SPAK, NCC and total NCC protein in the kidney. For densitometry analysis, values (n = 3) are
expressed as the ratio to the average of the signals in the vehicle group. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0024277.g008

Insulin Regulates NCC Phosphorylation
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tion in vivo. The present findings might explain increased salt-

sensitivity under hyperinsulinemic conditions.

Materials and Methods

Animal study
In acute insulin injection experiments, male mice were fed a

normal NaCl diet, a high-NaCl diet (4.0% NaCl (w/w)) or a low-

NaCl diet (0.01% NaCl (w/w)) for 7 days before insulin

administration. All foods were obtained from Oriental Yeast

Co., Ltd (Tokyo, Japan). Insulin was administered intraperitone-

ally at a dose of 5 U/kg, as previously reported [31]. Control mice

received vehicle instead. Mice were sacrificed 90 min after insulin

administration. In a time-course experiment, mice were fed a high-

NaCl diet for 7 days and sacrificed 0, 30, 90 and 180 min after

insulin injection. We used C57/BL6J mice for this acute insulin

injection experiment. WNK4 hypomorphic mice [24] and SPAK

knockout mice [18] were also used in this acute insulin injection

experiment. These WNK4 hypomorphic and SPAK knockout

mice were maintained on a C57/BL6J background. The protocols

for this study were approved by the Institutional Animal Care and

Use Committees of Tokyo Medical and Dental University (no. 10-

176 and no. 100011).

Immunoblotting
Semiquantitative immunoblotting was performed, as described

previously [3,32], to assess relative expression levels of proteins

using whole kidney homogenate without the nuclear fraction

(600 g) or the crude membrane fraction (17000 g). The intensity of

bands was analyzed using Image J (NIH, Bethesda, MD). Rabbit

anti-pNCC (Thr53) [4], rabbit anti-pNCC antibody (Thr58) [4],

rabbit anti-pNCC (Ser71) antibody [3], rabbit anti-pOSR1

antibody [24], rabbit p-SPAK antibody [18], rabbit anti-OSR1

antibody [24], anti-SPAK antibody (Cell Signaling, Beverly, MA),

anti-pAkt antibody (Cell Signaling), anti-pSGK1 antibody (Cell

Signaling), and anti-actin antibody (Cell Signaling) were used as

previously reported. In all the experiment except Figure 6, we used

rabbit anti-pNCC (Ser71) antibody for detection of NCC

phosphorylation. The specificity of total- and phospho-specific-

SPAK antibodies was confirmed using SPAK knockout mouse

(Figure S1). We also performed an absorption test of total- and

phospho-specific- NCC antibody (Figure S2 and Figure S3), whose

specificity was confirmed previously [3,4].

Cell culture
mpkDCT cells were cultured as previously reported [19]. Twenty-

four hours before the experiments, the medium was changed to

DMEM without FBS and insulin. mpkDCT cells were incubated with

insulin (Sigma Aldrich) at 100 nM and lysed 60 min after insulin

stimulation. In dose-dependent experiments, insulin was incubated at

20 nM and 100 nM. In a time-course experiment, cells were lysed 0, 5,

15, 60 and 300 min after insulin stimulation. Ly294002 (Sigma

Figure 9. Effect of insulin on NCC phosphorylation in mouse
kidney on high- and low-salt diets. A. Representative immunoblots
of phosphorylated NCC in mouse kidney at 90 min after insulin
administration to wild-type mice on high- and low-salt diets. B. In both
the high- and low-salt diet groups, insulin administration significantly
increased phosphorylated NCC. Moreover, acute insulin injection to the
high-salt diet group resulted in a comparable level of NCC phosphor-
ylation to the increased level of NCC phosphorylation in the kidney
from the low-salt diet group due to a higher aldosterone level. For
densitometry analysis, values (n = 4) are expressed as the ratio to the
average of the signals in the vehicle control with the high-salt diet
group. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0024277.g009

Figure 10. SPAK is involved in the mechanism of NCC
phosphorylation by insulin. A. Representative immunoblots of
phosphorylated NCC, at 90 min after insulin administration for to wild-
type and SPAK knockout mice. An insulin effect on phosphorylation of
NCC was not observed in SPAK knockout mouse kidney. B. Densitom-
etry analyses of phosphorylation of NCC in the kidney from wild-type
and SPAK knockout mice. For densitometry analysis, values (n = 4) are
expressed as the ratio to the average of the signals in the wild-type
vehicle group. **P,0.01. n.s. not significant.
doi:10.1371/journal.pone.0024277.g010
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Aldrich) was added at 50 mM 30 min before insulin incubation. After

incubation with reagent, the cells were lysed as previously reported

[33]. In SPAK and WNK4 knockdown experiments, cocktails of 3

duplexes of siRNA for mouse SPAK and mouse WNK4 were obtained

from the siTRIO library through COSMO BIO (Tokyo, Japan). The

oligonucleotide sequences of the siRNAs were as follows: mouse

WNK4 siTRIO SMF27A-2153-1 gca caa agc cca aca gcu uTT;

mouse WNK4 siTRIO SMF27A-2153-2 gga aga uga ugg aga gaa

gTT; mouse WNK4 siTRIO SMF27A-2153-3 cga cag agu ugu cga

gug uTT; mouse SPAK siTRIO SMF27A-2154-1 ggu cag auc cau

agggau uTT; mouse SPAK siTRIO SMF27A-2154-2 cgg aau aaa guc

aga aaa aTT; mouse SPAK siTRIO SMF27A-2154-3 uga cau acg auu

uga guu uTT. As a negative control, siTRIO negative control siRNA

(COSMO BIO), which consists of cocktail of 3 duplexes of negative

control sequence siRNA, was used. For knockdown, 50 nM of siRNA

cocktail were used, and transfections were carried out using

Lipofectamine RNAiMAX (Invitrogen). Experiments were performed

at forty-eight hours after siRNA transfection.

Statistical analysis
Statistical significance was evaluated using an unpaired t-test. P-

values,0.05 were considered significant. When more than three

groups were compared, one-way ANOVA was used, followed by

Fisher’s post hoc test.

Supporting Information

Figure S1 Conformation of total- and phospho-specific-
SPAK antibody in vivo. Immunoblot of kidney homogenate

from wild-type (left lane) and SPAK knockout mouse (right lane)

with our total SPAK and phospho-specific SPAK antibody. The

disappearance of bands in the sample from a SPAK knockout

mouse confirms the specificity of our antibody.

(TIF)

Figure S2 Absorption test of total- and phospho-specif-
ic- NCC antibody for mpkDCT cell. The specificity of these

antibodies was confirmed previously [3,4]. A. Confirmation of

specificity of anti-pNCC (Ser71) antibody in a sample from

mpkDCT cells. The signals detected by the antibody disappeared

when the antibody was pre-incubated with antigen phosphopep-

tide (right panels), but they did not disappear with the

corresponding non-phosphopeptide (middle panels). B. Confirma-

tion of specificity of anti-NCC antibody in a sample from

mpkDCT cells. The signals detected by the antibody disappeared

when the antibody was pre-incubated with antigen.

(TIF)

Figure S3 Absorption test of total- and phospho-specif-
ic- NCC antibody for mouse kidney. A. Confirmation of

specificity of anti-pNCC (Ser71) antibody in a sample from wild-

type, WNK4 hypomorphic and SPAK knockout mouse kidney.

The signals detected by the antibody disappeared when the

antibody was pre-incubated with antigen phosphopeptide (right

panels), but they did not disappear with the corresponding non-

phosphopeptide (middle panels). B. Confirmation of specificity of

anti-NCC antibody in a sample from wild-type, WNK4

hypomorphic and SPAK knockout mouse kidney. The signals

detected by the antibody disappeared when the antibody was pre-

incubated with antigen.

(TIF)

Figure 11. WNK4 is involved in the mechanism of NCC phosphorylation by insulin. A. Immunoblots of phosphorylated OSR1 and SPAK, at
90 min after insulin administration to wild-type and WNK4 hypomorphic mice. An insulin effect on phosphorylation of OSR1 was not observed in
WNK4 hypomorphic mouse kidney. On the other hand, phosphorylation of SPAK was decreased significantly after insulin stimulation in WNK4
hypomorphic mouse kidney. B. Densitometry analyses of phosphorylation of OSR1, SPAK and NCC in the kidney from wild-type and WNK4
hypomorphic mice. For densitometry analysis, values (n = 4) are expressed as the ratio to the average of the signals in the wild-type vehicle group.
*P,0.05, **P,0.01. n.s. not significant.
doi:10.1371/journal.pone.0024277.g011
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