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In brief

Drug repositioning is a useful way to
discover new drug candidates for curing
diseases. However, integrating multiple
networks and text mining information for
drug repositioning is still a major
challenge. We propose a drug
repositioning method based on
heterogeneous networks and text mining
(HeTDR), which can combine drug
features from multiple networks and
disease features from biomedical corpora
for drug repositioning. HeTDR obtains
high accuracy in predicting drug-disease
interactions and is capable of finding
novel indications of approved drugs.
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THE BIGGER PICTURE Traditional drug discovery and development are often time consuming and high
risk. Drug repositioning aims to expand existing indications or discover new targets by studying the
approved drug compounds, thereby reducing the time, costs, and risk of drug development. We propose
a novel method in drug repositioning based on heterogeneous networks and text mining (HeTDR), which
combines drugs features from multiple networks and diseases features from biomedical corpora to predict
the correlation scores between drugs and diseases. This prediction model has provided a potential solution
for multiple information fusion and to exhibit accurate performance leading to the discovery of new drugs
for indications. This algorithm could contribute a new idea to the acceleration and development of future
drug repositioning by using computational methods and provide computer-aided guidance for biologists
in clinical settings.
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Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Using existing knowledge to carry out drug-disease associations prediction is a vital method for drug repo-
sitioning. However, effectively fusing the biomedical text and biological network information is one of the
great challenges for most current drug repositioning methods. In this study, we propose a drug repositioning
method based on heterogeneous networks and text mining (HeTDR). This model can combine drug features
from multiple drug-related networks, disease features from biomedical corpora with the known drug-disease
associations network to predict the correlation scores between drug and disease. Experiments demonstrate
that HeTDR has excellent performance that is superior to that of state-of-the-art models. We present the top
10 novel HeTDR-predicted approved drugs for five diseases and prove our model is capable of discovering
potential candidate drugs for disease indications.

INTRODUCTION

The time for new drug development has been gradually
increasing, and the cost it takes to bring a new drug to market
is becoming more expensive up to 2.6 billion dollars.’? In
recent years, an increasing number of studies have shown
that some approved drugs can be used to treat new indica-
tions, this process is referred to as drug repositioning.® Drug re-
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positioning aims to expand the existing indications or discover
new targets by studying the approved drug compounds,
thereby reducing the time, costs, and risks in drug develop-
ment.” In the beginning, most of the repositioned drugs were
accidentally discovered in clinical settings. With the develop-
ment of high-throughput technology, the increase in large-scale
genomics and pharmacological and chemical datasets has
made it possible to predict the relationship between drug
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with disease by using systematic and reasonable calculation
methods.

Drug repositioning is a long-standing problem and many calcu-
lation methods have been proposed to predict drug-disease as-
sociations for drug repositioning. These studies could be roughly
classified into three groups: machine learning, network-based
methods, and literature mining. Most of the machine learning
methods formulated drug repositioning as a classification task,
and some machine learning classification algorithms are widely
used, such as support vector machines (SVMs),”” logistic regres-
sion,”*® and random forest,” to identify the potential indications for
approved drugs. However, those supervised classification
methods will randomly generate negative samples, which could
lead to biased decisions. The network-based methods are the
most widely used methods for drug repositioning. Its mainstream
algorithms include: network inference,”'? random walk,"®'* and
matrix factorization.'®'® These methods usually rely heavily on
the richness of interaction network data. In addition, many studies
that used such methods proposed the need to construct more
complete and large-scale data information to improve prediction
performance. The performance of literature mining-based
methods relies on biomedical entities’ co-occurrence and seman-
tic inference of some keywords of interest. These methods will be
limited by the ambiguity of natural language and the limitations of
text-mining technology.’”?° Recently, deep learning has
achieved tremendous development, and the models of network
representation”’*? and text mining®® have been continuously
improved. However, comprehensively considering topological
properties and statistical correlation to discover potential drug-
disease relationships remains a challenge.

In this study, we develop a novel method, called HeTDR, that al-
lows the incorporation of topological structure information from the
heterogeneous networks and the features information from
biomedical text mining. In our model, the drug features extraction
module is based on similarity network fusion (SNF)>* and sparse
autoencode (SAE),”>?° and the disease features extraction mod-
ule is based on Bidirectional Encoder Representations from Trans-
formers for Biomedical Text Mining (BioBERT).?” Some previous
studies proved that combining the drug-disease associations
network with feature information could make the prediction model
obtain more robust results than using the feature information
alone.'%?® Accordingly, we adopt a model that can combine the
attribute information with the topological structure information
for final prediction. The contributions of HeTDR can be enumer-
ated as follows: (1) HeTDR integrates nine drug-related networks
into a low-dimensional and compact feature representation com-
mon to all networks, which can better capture the overall informa-
tion of the drug. (2) HeTDR obtains the information of disease from
biomedical corpora, thereby improving the accuracy of drug-dis-
ease associations prediction. (3) HeTDR makes full use of both to-
pology and attribute information to overcome the influence of
network data often being partially observed. (4) HeTDR combines
a network-based method and a text mining-based method to pro-
vide a new solution for drug repositioning. In the computational
experiments, HeTDR obtains high accuracy in predicting drug-dis-
ease interactions, and significantly outperforms existing state-of-
the-art methods. Moreover, case studies show that HeTDR can
help discover novel associations not included in known drug-dis-
ease pairs and find novel indications of approved drugs.
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RESULTS

The HeTDR pipeline

The workflow of HeTDR is shown in Figure 1, and consists of
three parts: (1) HeTDR uses SNF to integrate nine drug-related
networks into one network with global information and then uti-
lizes the SAE to obtain high-quality features representation of
the drug. (2) HeTDR uses the BioBERT model to obtain disease
features information from biomedical corpora. Specifically, we
use the pre-trained parameters of the BioBERT, and select the
relation extraction task for fine-tuning training. After the fine-tun-
ing process, we extract the representation of sub-words and
obtain the representations of all diseases by frequent sub-
words. (3) HeTDR combines the drug-disease associations
network with the features information of the drug and disease
to infer the potential associations between drug and disease.

Evaluation of prediction performance by ablation
analysis
We partition 6,677 reported drug-disease pairs into three sub-
sets, 80% of the known drug-disease pairs for training, 10%
for validation, and 10% for testing. For the validation set and
test set, we randomly generate negative samples with a 1:1 ratio
matched with the positive samples. To evaluate the performance
of HeTDR, we use the following performance metrics: area under
the receiver operating characteristic curve (AUROC), the area
under the precision-recall curve (AUPR), and F1-measure (F1).
HeTDR showed a high performance (AUROC = 0.959, AUPR =
0.955, and F1 =0.901) (Figure 2). We conduct ablation studies on
HeTDR to explore the effect of drug features and disease fea-
tures. We run experiments with the same data splits, model pa-
rameters, and evaluation protocol to keep the comparison as fair
as possible. The result is presented in Figure 2. We implement
three simplified variants of HeTDR.

(1) HeTDR_Di: by removing the drug features.
(2) HeTDR_Dr: by removing the disease features.
(3) HeTDR_SNF: by removing the SAE.

Minimal difference is found in the results obtained by using
drug features (AUROC = 0.916, AUPR = 0.915, and F1 = 0.830)
or disease features (AUROC = 0.921, AUPR = 0.919, and F1 =
0.838) alone, but combining these features information on dis-
ease and drug has the highest accuracy of drug-disease associ-
ations prediction (AUROC = 0.959, AUPR = 0.955, and F1 =
0.901). The result of using SAE when obtaining drug features is
better than the output when SNF is used to obtain the drug
features (AUROC = 0.934, AUPR = 0.928, and F1 = 0.862), which
illustrates the importance of filtering information when fusing
multiple types of networks data. HeTDR makes full use of multi-
ple drug-related information and disease-related information,
which accounts for its superior performance over other methods.

Evaluation of prediction performance on cross-
validation

To evaluate HeTDR more comprehensively, we conduct 5-fold
cross-validation and compare HeTDR with classic methods. We
compare our results with seven methods: SVM,*° Katz,*°
MBIRW,'* DTINet,®" DRRS,** DeepDR,'® and HNet-DNN.'?
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Figure 1. Flowchart of HeTDR

The model consists of three parts: (A) HeTDR integrates nine drug-related networks to obtain global information of drugs. In the heterogeneous interaction
networks, we first use the Jaccard similarity coefficient to calculate the similarity network. Then, we fuse these drug-related networks into one network by SNF
and apply SAE to obtain low-dimensional features of the drugs. (B) HeTDR obtains vector representation of the disease features by text mining biomedical
corpora. In the pre-training stage, we directly use the model parameters pre-trained by BioBERT. Then, we select the relation extraction task for fine-tuning
training. After the fine-tuning process has taken place, we extract the representations of sub-words and use the representations of these sub-words to obtain the
representations of all diseases. (C) HeTDR predicts potential drug-disease associations by an embedding learning method, which can capture both the drug-
disease associations network topological structural proximity and node attributes proximity.

SVM is the traditional machine learning algorithm; Katz is the path-
based classic algorithm calculating similarities between nodes in
a network for associations prediction; MBiRW utilizes some
comprehensive similarity measures and the BiRandom Walk
(BiRW) algorithm for drug repositioning; DTINet is a matrix factor-

ization-based model and it can integrate diverse information from
heterogeneous networks; DRRS is a computational drug reposi-
tioning method using low-rank matrix appropriation and random-
ized algorithm; DeepDR is a network-based deep learning method
to infer potential novel drug-disease associations; HNet-DNN
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Figure 2. Performance of HeTDR comparing the different features
(A) ROC curves of prediction results by using different features.

(B) PR curves of prediction results by using different attributes.

(C) F1 scores of prediction results by using different features.

uses the deep neural network (DNN) to predict new drug-disease
interactions. We use AUROC and AUPR to evaluate the perfor-
mance of these methods. In particular, each method is configured
toits default setting or best parameter values reported in its paper.
In the 5-fold cross-validation results, HeTDR obtains high perfor-
mance (AUROC = 0.979 and AUPR = 0.976), outperforming other
state-of-the-art methods: SVM (AUROC = 0.602 and AUPR =
0.580), Katz (AUROC = 0.701 and AUPR = 0.722), MBiRW
(AUROC = 0.812 and AUPR = 0.810), DTINet (AUROC = 0.870
and AUPR = 0.884), DRRS (AUROC = 0.912 and AUPR =
0.877), DeepDR (AUROC = 0.915 and AUPR = 0.927), and
HNet-DNN (AUROC = 0.951 and AUPR = 0.908) (Figure 3).

HeTDR identifies novel drug-disease associations

We save the results of HeTDR predictions of drug-disease associ-
ations in “Evaluate prediction performance by ablation analysis.”
We delete 6,677 known drug-disease associations used in the
prediction model, and select the novel top 150 pairs with highest
similarity drug-disease pairs predicted by HeTDR, and visualize
the interactions network (Figure 4). Among the list of top 150 pre-
dictions, HeTDR can capture the experimental or clinical reported
drug-disease associations. For example, novel predictions show

that DB08827 (lomitapide) and DB05528 (mipomersen) can act
on C0342882 (familial hypercholesterolemia-heterozygous). The
novel prediction was confirmed by previous studies. Lomitapide
is an inhibitor of a microsomal triglyceride transfer protein that
lowers hepatic low-density lipoprotein cholesterol production, as
new therapeutic modalities treating homozygous familial hyper-
cholesterolemia.**** Mipomersen decreases the levels of apolipo-
protein B, low-density lipoprotein non-high-density lipoprotein
cholesterol, and total cholesterol, which are used in patients with
homozygous familial hypercholesterolemia as an adjunct to diet
and other lipid-lowering medications.>**° For C0026705 (muco-
polysaccharidosis ll), the significant association with DBO0090
(laronidase) is successfully identified by HeTDR.

To interpret the results of the HeTDR model, we analyze the
novel associations predicted in the example. We use the features
learned by the HeTDR model to calculate the drug-drug and
disease-disease similarity relationships in the association pre-
diction module at the model. We select the top 20 diseases pre-
dicted to be most related to C0342882 and C0026705 (see Table
S1), and use known drug-disease associations to find approved
drugs that can be used to treat these diseases (Figure 5). In the
model, C0342881 (familial hypercholesterolemia-homozygous)

Ao B Figure 3. HeTDR outperforms other state-of-
’ . ——— the-art methods for drug-disease associa-
S tions prediction
0.8 0.8 \N (A) ROC curves of prediction results obtained by
% \E\ applying HeTDR and five previously reported
%0 6 0l6 \ methods in 5-fold cross-validation.
2 é ’ (B) PR curves of prediction results obtained by
3 @ ] h -
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——HeTDR_5= 0.979 ——HeTDR_5= 0.976
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Figure 4. Network visualization of the drug-disease associations predicted by HeTDR

In this network, the predicted novel top 150 drug-disease pairs network is visualized. The label of the node represents the ID of the drugs (Drugbank_ID) or
diseases (UMLS_ID). The node size denotes the degree. The weight of edges (drug-disease pairs) denotes the predicted score by HeTDR. The novel top 150 pairs
of the highest similarity drug-disease associations can be found in Table S1. This image was generated by Gephi (https://gephi.org).

is most related to C0342882, and DB05528 and DB08827 are
drugs that have been approved to act on C0342881. The disease
most related to C0026705 captured by our model is C0023786
(mucopolysaccharidosis 1), and DB00090 is an approved drug
that can be used to treat C0023786. Accordingly, DB00090
has a high potential to cure C0026705. These results demon-
strate that our model can make full use of features information
to capture approximate relationships of drug-drug and dis-
ease-disease, and reveal potential drug-disease associations
based on these approximate relationships and the known asso-
ciations. The novel top 150 pairs of the highest similarity drug-
disease associations can be found in Table S2.

Case studies

To further demonstrate the ability of HeTDR for discovering novel
drug-disease associations, we choose five diseases for case
studies, namely, Alzheimer’s disease, obesity, asthma, epilepsy,
and Parkinson’s disease. Similarly, we delete known drug-dis-
ease associations used in the prediction model, and select the
top 10 drugs according to the predicted highest association
scores, which are considered drug candidates for the disease,
as shown in Table 1. To provide a more reliable reference for
follow-up researchers, we also provide the associated prediction
scores for the top 20 drugs of all diseases, and the number of
side effects associated with these drugs (see Table S3). All the
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side effects and the drug-side effect interactions can be found in
the data and code availability.

We first use the Comparative Toxicogenomics Database
(CTD) (http://ctdbase.org/) and the DrugBank database
(https://go.drugbank.com) to validate the top 10 drugs predicted
by HeTDR. The CTD (http://ctdbase.org/) is a publicly available
database resource providing manually curated key information
about the chemical-disease, chemical-gene, and gene-disease
interactions from the literature. The DrugBank database is
comprehensive molecular information that integrates bioinfor-
matics and chemoinformatics resources and provides detailed
drugs data, drugs target information, drugs mechanism, and
drugs-related clinical trials information. In addition, we verify
whether novel associations that could not be identified in CTD
and DrugBank can be supported by previously published studies
(Table 1). The results demonstrate that the HeTDR is an effective
method to find the potential drug-disease associations and can
help develop candidate drugs for the disease.

Then, we compute the associated prediction scores by
HeTDR_Di and HeTDR_Dr, and screen out the top 20 predicted
drugs that may act on the five diseases. Through analysis, it is
found that some of the potential drugs with higher rankings pre-
dicted by HeTDR, such as zileuton and metixene, are also
captured in the top 20 drugs predicted by HeTDR_Di and
HeTDR_Dr. Some drugs, such as Prednisone for the treatment
of Alzheimer’s disease, can only be found in the top 20 results
of HeTDR_Dr, and corticotropin also used for the treatment of
Alzheimer’s disease, can only be found in the results of
HeTDR_Di. This also shows that HeTDR combined with
network-based and text-based information has complementary
effects, and can better reveal potential novel associations.

DISCUSSION

In this article, a novel HeTDR model for drug repositioning was built
with both network topology attributes and text mining information.
HeTDR first fused diverse information from a multitude of different
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reported drug-disease pairs with disease
and drug features representations to predict
potential drug-disease associations. HeTDR
performed better than existing drug reposi-
tioning methods because we fused diverse information from a
multitude of different drug-related network types and integrated dis-
ease-related information from biomedical text mining. The analysis
and verification also showed that combining the information from
the text and the network can make better predictions compared
with only using the data from a single source. In addition, HeTDR
could preserve the known drug-disease associations network’s to-
pological structure and node attribute proximity to predict novel
drug-disease associations. Experiments have shown that the
HeTDR model achieved state-of-the-art performance in drug-dis-
ease associations prediction. Case studies of five diseases further
proved the effectiveness of our model in finding novel drug-disease
associations, as validated by database records or literature.

We acknowledge that HeTDR still has some room for improve-
ment. First, we directly used BioBERT’s pre-training parameters,
which may have certain limitations, and we expect to obtain
more effective disease features information from medical re-
cords to further improve the predictive ability of our model in
the future. Second, our model obtains features through different
modules, and developing an end-to-end model that uses down-
stream tasks to obtain better features for associations prediction
is possible. Despite the shortcomings, we tried to avoid the
impact of these problems by verifying the effectiveness of
each module in obtaining features. The constructed HeTDR
model is still the most powerful model that integrates multiple
types of information.

In summary, our model could be used as an effective method
to predict drug-disease associations, develop a new idea for
drug repositioning calculation, and provide computer-aided
guidance for biologists in clinical trials.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Xiangrong Liu (xrliu@xmu.edu.cn).
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Table 1. The top 10 related candidate drugs for Alzheimer’s disease, obesity, asthma, epilepsy, and Parkinson’s disease

Disease name Rank Drug name Description Rank Drug name Description
Alzheimer’s disease 1 corticotropin CTD_I 6 ergoloid 9640
2 natalizumab N/A 7 fludrocortisone CTD_I
3 dexamethasone CTD_I 8 prednisone CTD_I
4 teriflunomide N/A 9 budesonide CTD_I
5 canakinumab RS 10 dalfampridine CTD_I
Obesity 1 lisdexamfetamine CTD_I 6 nicotine CTD_M
2 methylphenidate CTD_I 7 guanfacine CTD_I
3 dextroamphetamine CTD_I 8 naloxegol N/A
4 atomoxetine 46-51 9 methylnaltrexone 52.53
5 dexmethylphenidate N/A 10 disulfiram CTD_I
Asthma 1 zileuton CTD_T 6 ipratropium bromide CTD_T
2 salbutamol CTD_T 7 arformoterol CTD_T
3 montelukast CTD_T 8 fluticasone propionate CTD_T
4 formoterol CTD_T 9 dexpanthenol CTD_I
5) salmeterol CTD_T 10 ephedrine CTD_T
Epilepsy 1 lorazepam DrugBank_T 6 oxcarbazepine CTD_T
2 clonazepam CTD_T 7 levetiracetam CTD_T
3 ethosuximide CTD_T 8 tiagabine CTD_I
4 stiripentol DrugBank_T 9 nitrazepam CTD_T
5 topiramate CTD_T 10 ethotoin 54,55
Parkinson’s disease 1 pergolide CTD_T 6 octreotide CTD_I
2 metixene DrugBank_T 7 cabergoline CTD_T
3 orphenadrine CTD_T 8 gabapentin CTD_T
4 rivastigmine CTD_T 9 lanreotide o6
5 gabapentin enacarbil RES 10 pegvisomant N/A

CTD_|, inferred; CTD_M, curated (marker/mechanism); CTD_T, curated (therapeutic); DrugBank_T, therapeutic; N/A, could not be confirmed.

Materials availability

There are no physical materials associated with this study.

Data and code availability

The code and data are available at https://github.com/stjin-XMU/HeTDR,
https://doi.org/10.5281/zenodo.4915882.

Data and preparation

We use the drug-related networks constructed by previous research,'® to
obtain the drug features and predict the drug-disease associations. Specif-

Table 2. Materials of networks

Node

types NumbersEdge types Numbers/Types
Drugs 1,519  drug-drug 290,836
Proteins 1,025  drug-protein 6,744

Side 12,904 drug-side effect 382,041
effects

Diseases 1,229 drug-disease
drug-drug

similarities

6,677

chemical similarities,
therapeutic similarities, drugs’
target sequence similarities,
gene ontology (GO) biological
process, GO cellular
component, and GO molecular
function

ically, we use the drug-drug associations network, drug-protein associations
network, drug-side effect associations network, and six drug similarity net-
works obtained from different omics data to obtain drug features. The known
drug-disease interactions are used for the final association prediction. The
type of all drug similarity networks and the numbers of all drugs, proteins,
side effects, diseases, and associations are listed in Table 2. Specific con-
struction details can be found in the supplemental experimental procedures.
For the embedding features of disease obtained through text mining, we
directly use the pre-trained parameters of the BioBERT model.?’ The text
corpora used in the training process of the model includes: (1) English Wikipe-
dia, (2) BooksCorpus, (3) PubMed Abstracts, and (4) PMC Full-text articles.

Methods

Obtain drug features based on a heterogeneous network

To better utilize nine multiple drug-related associations networks to capture
the features information of the drug, we first obtain the positive pointwise
mutual information (PPMI) matrix of the drugs in each association network.
Then, we use the SNF to fuse these PPMI matrices obtained from multiple net-
works. Finally, we use SAE to obtain a high-quality representation of the drug
features (Figure 1A).

We randomly sort the vertices in a given drug-related associations network. As
to the ith vertex, assume that there is a transition matrix T that obtains the tran-
sition probabilities between vertices. p, is denoted as a row of vectors, and the
j-th entry represents the probability of reaching the jth vertex after transferring r
steps. The py is the initial one-hot vector with the ith vertex value is 1, and all
other values are 0. We can learn the probability of transitions between vertices
iteratively. In each iteration process, the random surfing process will continue
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with probability of «, and thereisa 1 — « probability to return to the original vertex
and restart this process. The recurrence relation could be described as follows:

pr=op, 4T + (1—a)po. (Equation 1)

By performing the above process on each node, a probabilistic co-occur-
rence (PCO) matrix can be obtained. After yielding the PCO matrix, we calcu-
late a shifted PPMI matrix.>® The PPMI matrix-specific calculation method is as
follows:

. No N ;7
P(j) % 3555 P(.j) 0>‘ (Equation 2)

P
PPMI = max | log — —,
( SPL) % 35 PALJ)

where P represents the original PCO matrix, and Ny and N represent the serial
numbers of rows and columns, respectively. The process occurs as a pre-pro-
cessing and the random surfing-based representation is mitigating the sparsity
of some individual network types.

For the PPMI matrix obtained by each network, a computational method is
needed to better integrate these matrix data to establish a comprehensive
view of a given drug. We denote the correlation score between drug i and
drugj in the PPMI matrix as M(i,j) and use the SNF** to obtain a comprehen-
sive biological view of a given drug. For the fused matrix from multiple of
matrices, a full and sparse kernel is defined on the vertex set V. The following
formula is used to normalize the full kernel:

D) i
2 M(i.j)
E(i,j) = k#i

1o
/=

(Equation 3)

The K nearest neighbors is utilized to measure local affinity in a given
network, as follows:

M(i,j) . N;

ZM(i,k)” c

S(i,j)={ iem , (Equation 4)

0, otherwise

where N; is denoted as a set of i’s neighbors, including i in network. Where the
F contains the complete information about the similarity of each drug to all
other drugs, and S only encodes the similarity to the k most similar drugs for
each drug. In the SNF process, F is always used as the initial state and S is
used as the kernel matrix.

The F and S of each PPMI matrix are obtained by the above two formulas.
Let us first take the fusion of the previous two PPMI matrices as a case, we
get the status F1 and F, from two PPMI matrices by Equation 3, and obtain
the kernel matrices Sy and S, by Equation 4. When t = 0, we denote the initial
two status matrices F{=%=F; and F5=° = F». Iteratively updating the similarity
matrix corresponding to each network data by using the following formulas is a
key step of SNF:

Ftl =8y x FY x (Sh), (Equation 5)

Fir1 =8, x F x (Sp)T. (Equation 6)

After t iterations, F§” is the status matrix of F, Fé” is the similarity matrix of
F»>. The status matrices are updated in this procedure with generating two par-
allel interchanging diffusion processes each time. After t steps, the two
matrices fused into a matrix Fy is computed as follows:

_Fi+F}

F
! 2

(Equation 7)

As shown in the framework Figure 1A, we sequentially merge our multiple
PPMI matrices pairwise. Based on message passing theory, a non-linear
method is used in the process of network fusion to iteratively update each
network to make it more similar to other networks in each iteration. Through
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several iterations, SNF converges multiple networks into a single network.
This method of merging multiple network data can reduce the noise of the
network and preserve the strongly associated edges in the network.

After fusing multiple drug-related networks, we use the SAE*® method to
obtain high-quality and low-dimensional drug features. The encoder function
from the input layer to the hidden layer of the SAE is:

H= ‘7<Wencodexi + Bencode)» (Equation 8)

The decoder function from the hidden layer to the output layer is:

Y = ”(WdecodeH + Bdecode)«, (Equation 9)
where o(x) =1/(1 +e*) is the activation function, W is the connection param-
eter, and B is the bias vector. The sparse penalty is added to the target function
of the autoencoder to capture the effective features of the drug. The activation
of the jth hidden unit is denoted as h;(x), we use the following formula to get the
average activation amount of the jth hidden unit:

1
= Zh,-(X,). (Equation 10)
i=1

The loss function of SAE with sparse penalty is as follow:

Na
Loparse (W, B) =L(W,B) +7 Y KL(pl[7J): (Equation 11)

t=1

KL(pll7}) = plog £ + (1 — p)log——L., (Equation 12)
Py 1—"y

where L(W,B) is the loss function of the neural network, v is the hyperpara-
meter to control the weight of sparsity in loss function, N, is the number of hid-
den layer units and p is a very small value closed to 0 as a sparsity parameter.
The KL(p||py) is called KL-divergence, which possesses the property that
KL(p|[py)=0 if p; = p. Otherwise, it increases monotonically as p; diverges
from p, which acts as the sparsity constraint. We adopt the gradient descent
algorithm to minimize the Lsparse (W, B) to optimize the parameters W and B.

Obtaining disease features based on text mining

For the disease features acquisition module, we considered, at the early stage
of model design, that drugs that could act on a certain disease and may have
an effect on related or similar diseases. Therefore, when we obtain disease
features, we hope to capture their possible associations through text mining.
The proposed BERT model®® has enabled a qualitative leap for the text mining
algorithm and brought a milestone change in the natural language-processing
field, which uses transformer as the main framework and is pre-trained on
BooksCorpus and English Wikipedia. However, the word distribution between
general corpus and biomedical corpus is different, which is why the pure BERT
model cannot achieve good results in biomedical text mining tasks.

In our work, to obtain effective disease features representation through text
mining, we used the BioBERT model,”” which is a biomedical domain-based
pre-trained language-representation model. For tokenization, the BioBERT uti-
lizes the WordPiece tokenization.®' With word tokenization, any disease name
words can be represented by frequently occurring sub-words. Given the limita-
tion of training costs, we directly use the pre-trained parameters of the BioBERT
model and select the relation extraction task in the three representative biomed-
ical text mining tasks for fine-tuning training. The BioBERT used the original
BERT sentence classifier. In the fine-tuning process, diseases and genes are
anonymized target entities in the datasets to prevent the supervised information
used in the fine-tuning process from overlapping with drug-disease relations in
the test set and to avoid the possibility that the test data may be contaminated
by the text corpora. For the fine-tuning, we select a batch size of 32 and a
learning rate of 2e — 5. After the fine-tuning process done, we extract the repre-
sentations of sub-words and use the representations of these sub-words to
obtain the representations of all diseases (Figure 1B). After obtaining the dis-
eases features, we verified their effectiveness of the diseases features. More
details for evaluating the effectiveness of diseases features are available in the
supplemental experimental procedures.
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Drug-disease associations prediction

The features obtained from the first two steps can be used as the attribute in-
formation of drugs and diseases. In the process of embedding learning, we
need to preserve node attribute proximity and the drug-disease associations
network topological structure. We refer to the GATNE-I model®® to predict
the drug-disease interactions Figure 1C. We divide the overall embedding of
a given node v; into three parts: node attributes embedding, neighborhood ag-
gregation embedding, and base embedding.

To better integrate the attribute information of heterogeneous network no-
des, the drug and disease features obtained in the above two steps are defined
as the attribute X; of nodes. We define the base embedding b;(X;), which is a
parameterized function of v;’s attribute X;, b; is a transformation function and
t=0(i) is node v;’s corresponding node type. For neighborhood aggregation
embedding, the kth level embedding nfe R®, (1 <k<K) of node v; is aggre-
gated from neighbor’s embedding, and s is the dimension of neighborhood ag-
gregation embedding. We compute the neighborhood aggregation embed-
ding by the mean aggregator function®® as:

n = U(Wk) . MEAN({n,“"”, vy e N})) (Equation 13)

where ¢ is an activation function, W(k) is the weight matrices to propagate in-
formation between different layers, and N are the neighbors of node v;. The
initial neighborhood aggregation embeddings n,.(o) is also a parameterized
function of v;’s attribute X;as n,@ = g¢+(X;). The subscript t is v;’s corresponding
node type and g; is a transformation function.

Finally, the overall embedding of node v;’s function is as follows:

Vi = b(X;) + aM"n;R; + BDI X, (Equation 14)

R; =softmax(w’” tanh(Wn,))T, (Equation 15)
where « is a hyperparameter, Me RS*9 is a trainable transformation matrix, d is
the dimension of overall embedding, w is trainable parameter with size d,, W is
trainable parameter with size d, X s, 8 is a coefficient, the symbol T represents
the transposition of the matrix or the vector, and Dy is a feature transformation
matrix on v;’s corresponding node type t.

Next, optimize the model. Because the drug-disease associations network
is a heterogeneous network, to ensure the semantic relationship between
different types of nodes can be correctly merged into the skip-gram model,
meta-path-based random walks are used to obtain node sequence and
skip-gram are performed over the node sequence to learn embeddings.®
Specifically, for a given network G=(V,E,T) and a meta-path scheme
L: Vi—>Vy--V-- >V, the flow of the walker is conditioned on the pre-
defined mate-path £ and the transition probability at step t is define as follows:

1
_ WV)EE, vieV,
V] (eE et
P(vilv;, £)= o (Vi v)eE, y&Vis (Equation 16)
0 (vi,vj) €E

where v;e V;. Supposing the random walk with length / follows a path P=
(v1,v2,--+,v) such that (v;_1,vs)eE(t = 2,3,-]), v¢’s context is denoted as
C = {v|vkeP, |k — t| <c,t #k}, where w is the radius of the window size.

Therefore, given a node v; with its context C of a path, we aim to minimize the
following negative log likelihood:

—logP, ({v;|vjeC}|v) :Z*/OQPc(VAVf), (Equation 17)
vjeC

where ¢ denotes all the parameters, and use the heterogeneous softmax func-
tion normalized with respect to the node type of node v;, the probability of v;
given v; is defined as:

exp(cl-v;
P, (V/\Vi) = ( . ) (Equation 18)

N D kev, EXP(CE +vi)’
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where vje V4, ¢k is the context embedding of node vk and v; is the overall
embedding of node v;.

Finally, heterogeneous negative sampling is used to approximate the objec-
tive function 7IogP€(v,|v,v) for each node pair (v;,v;) as:

L
H= — Ioga(cf . v,-) = > Eyrw) logo(—cf + )], (Equation 19)
I1=1

where o is the sigmoid function, L is the number of negative samples corre-
sponding to a positive training sample, and v, is randomly drawn from a noise
distribution P;(v) defined on node v;’s corresponding node set V;.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100307.
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