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In brief

Drug repositioning is a useful way to

discover new drug candidates for curing

diseases. However, integrating multiple

networks and text mining information for

drug repositioning is still a major

challenge. We propose a drug

repositioning method based on

heterogeneous networks and text mining

(HeTDR), which can combine drug

features from multiple networks and

disease features frombiomedical corpora

for drug repositioning. HeTDR obtains

high accuracy in predicting drug-disease

interactions and is capable of finding

novel indications of approved drugs.
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THE BIGGER PICTURE Traditional drug discovery and development are often time consuming and high
risk. Drug repositioning aims to expand existing indications or discover new targets by studying the
approved drug compounds, thereby reducing the time, costs, and risk of drug development. We propose
a novel method in drug repositioning based on heterogeneous networks and text mining (HeTDR), which
combines drugs features frommultiple networks and diseases features from biomedical corpora to predict
the correlation scores between drugs and diseases. This predictionmodel has provided a potential solution
for multiple information fusion and to exhibit accurate performance leading to the discovery of new drugs
for indications. This algorithm could contribute a new idea to the acceleration and development of future
drug repositioning by using computational methods and provide computer-aided guidance for biologists
in clinical settings.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Using existing knowledge to carry out drug-disease associations prediction is a vital method for drug repo-
sitioning. However, effectively fusing the biomedical text and biological network information is one of the
great challenges for most current drug repositioning methods. In this study, we propose a drug repositioning
method based on heterogeneous networks and text mining (HeTDR). This model can combine drug features
frommultiple drug-related networks, disease features from biomedical corpora with the known drug-disease
associations network to predict the correlation scores between drug and disease. Experiments demonstrate
that HeTDR has excellent performance that is superior to that of state-of-the-art models. We present the top
10 novel HeTDR-predicted approved drugs for five diseases and prove our model is capable of discovering
potential candidate drugs for disease indications.
INTRODUCTION

The time for new drug development has been gradually

increasing, and the cost it takes to bring a new drug to market

is becoming more expensive up to 2.6 billion dollars.1,2 In

recent years, an increasing number of studies have shown

that some approved drugs can be used to treat new indica-

tions, this process is referred to as drug repositioning.3 Drug re-
This is an open access article under the CC BY-N
positioning aims to expand the existing indications or discover

new targets by studying the approved drug compounds,

thereby reducing the time, costs, and risks in drug develop-

ment.4 In the beginning, most of the repositioned drugs were

accidentally discovered in clinical settings. With the develop-

ment of high-throughput technology, the increase in large-scale

genomics and pharmacological and chemical datasets has

made it possible to predict the relationship between drug
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with disease by using systematic and reasonable calculation

methods.

Drug repositioning is a long-standing problem and many calcu-

lation methods have been proposed to predict drug-disease as-

sociations for drug repositioning. These studies could be roughly

classified into three groups: machine learning, network-based

methods, and literature mining. Most of the machine learning

methods formulated drug repositioning as a classification task,

and some machine learning classification algorithms are widely

used, such as support vectormachines (SVMs),5–7 logistic regres-

sion,7,8 and random forest,7 to identify the potential indications for

approved drugs. However, those supervised classification

methods will randomly generate negative samples, which could

lead to biased decisions. The network-based methods are the

most widely used methods for drug repositioning. Its mainstream

algorithms include: network inference,9–12 random walk,13,14 and

matrix factorization.15,16 These methods usually rely heavily on

the richness of interaction network data. In addition, many studies

that used such methods proposed the need to construct more

complete and large-scale data information to improve prediction

performance. The performance of literature mining-based

methods relies on biomedical entities’ co-occurrence and seman-

tic inference of some keywords of interest. These methods will be

limited by the ambiguity of natural language and the limitations of

text-mining technology.17–20 Recently, deep learning has

achieved tremendous development, and the models of network

representation21,22 and text mining23 have been continuously

improved. However, comprehensively considering topological

properties and statistical correlation to discover potential drug-

disease relationships remains a challenge.

In this study,wedevelop a novelmethod, calledHeTDR, that al-

lows the incorporationof topological structure information fromthe

heterogeneous networks and the features information from

biomedical text mining. In our model, the drug features extraction

module is based on similarity network fusion (SNF)24 and sparse

autoencode (SAE),25,26 and the disease features extraction mod-

ule is basedonBidirectional EncoderRepresentations fromTrans-

formers for Biomedical Text Mining (BioBERT).27 Some previous

studies proved that combining the drug-disease associations

network with feature information couldmake the predictionmodel

obtain more robust results than using the feature information

alone.10,28 Accordingly, we adopt a model that can combine the

attribute information with the topological structure information

for final prediction. The contributions of HeTDR can be enumer-

ated as follows: (1) HeTDR integrates nine drug-related networks

into a low-dimensional and compact feature representation com-

mon to all networks, which can better capture the overall informa-

tion of the drug. (2) HeTDR obtains the information of disease from

biomedical corpora, thereby improving the accuracy of drug-dis-

ease associations prediction. (3) HeTDRmakes full use of both to-

pology and attribute information to overcome the influence of

network data often being partially observed. (4) HeTDR combines

a network-basedmethod and a textmining-basedmethod to pro-

vide a new solution for drug repositioning. In the computational

experiments,HeTDRobtains highaccuracy inpredictingdrug-dis-

ease interactions, and significantly outperforms existing state-of-

the-art methods. Moreover, case studies show that HeTDR can

help discover novel associations not included in known drug-dis-

ease pairs and find novel indications of approved drugs.
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RESULTS

The HeTDR pipeline
The workflow of HeTDR is shown in Figure 1, and consists of

three parts: (1) HeTDR uses SNF to integrate nine drug-related

networks into one network with global information and then uti-

lizes the SAE to obtain high-quality features representation of

the drug. (2) HeTDR uses the BioBERT model to obtain disease

features information from biomedical corpora. Specifically, we

use the pre-trained parameters of the BioBERT, and select the

relation extraction task for fine-tuning training. After the fine-tun-

ing process, we extract the representation of sub-words and

obtain the representations of all diseases by frequent sub-

words. (3) HeTDR combines the drug-disease associations

network with the features information of the drug and disease

to infer the potential associations between drug and disease.
Evaluation of prediction performance by ablation
analysis
We partition 6,677 reported drug-disease pairs into three sub-

sets, 80% of the known drug-disease pairs for training, 10%

for validation, and 10% for testing. For the validation set and

test set, we randomly generate negative samples with a 1:1 ratio

matchedwith the positive samples. To evaluate the performance

of HeTDR, we use the following performancemetrics: area under

the receiver operating characteristic curve (AUROC), the area

under the precision-recall curve (AUPR), and F1-measure (F1).

HeTDR showed a high performance (AUROC = 0.959, AUPR =

0.955, and F1 = 0.901) (Figure 2). We conduct ablation studies on

HeTDR to explore the effect of drug features and disease fea-

tures. We run experiments with the same data splits, model pa-

rameters, and evaluation protocol to keep the comparison as fair

as possible. The result is presented in Figure 2. We implement

three simplified variants of HeTDR.

(1) HeTDR_Di: by removing the drug features.

(2) HeTDR_Dr: by removing the disease features.

(3) HeTDR_SNF: by removing the SAE.

Minimal difference is found in the results obtained by using

drug features (AUROC = 0.916, AUPR = 0.915, and F1 = 0.830)

or disease features (AUROC = 0.921, AUPR = 0.919, and F1 =

0.838) alone, but combining these features information on dis-

ease and drug has the highest accuracy of drug-disease associ-

ations prediction (AUROC = 0.959, AUPR = 0.955, and F1 =

0.901). The result of using SAE when obtaining drug features is

better than the output when SNF is used to obtain the drug

features (AUROC = 0.934, AUPR = 0.928, and F1 = 0.862), which

illustrates the importance of filtering information when fusing

multiple types of networks data. HeTDR makes full use of multi-

ple drug-related information and disease-related information,

which accounts for its superior performance over othermethods.
Evaluation of prediction performance on cross-
validation
To evaluate HeTDR more comprehensively, we conduct 5-fold

cross-validation and compare HeTDR with classic methods. We

compare our results with seven methods: SVM,29 Katz,30

MBiRW,14 DTINet,31 DRRS,32 DeepDR,10 and HNet-DNN.12



Figure 1. Flowchart of HeTDR

The model consists of three parts: (A) HeTDR integrates nine drug-related networks to obtain global information of drugs. In the heterogeneous interaction

networks, we first use the Jaccard similarity coefficient to calculate the similarity network. Then, we fuse these drug-related networks into one network by SNF

and apply SAE to obtain low-dimensional features of the drugs. (B) HeTDR obtains vector representation of the disease features by text mining biomedical

corpora. In the pre-training stage, we directly use the model parameters pre-trained by BioBERT. Then, we select the relation extraction task for fine-tuning

training. After the fine-tuning process has taken place, we extract the representations of sub-words and use the representations of these sub-words to obtain the

representations of all diseases. (C) HeTDR predicts potential drug-disease associations by an embedding learning method, which can capture both the drug-

disease associations network topological structural proximity and node attributes proximity.
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SVM is the traditionalmachine learning algorithm;Katz is the path-

based classic algorithm calculating similarities between nodes in

a network for associations prediction; MBiRW utilizes some

comprehensive similarity measures and the BiRandom Walk

(BiRW) algorithm for drug repositioning; DTINet is a matrix factor-
ization-based model and it can integrate diverse information from

heterogeneous networks; DRRS is a computational drug reposi-

tioning method using low-rank matrix appropriation and random-

ized algorithm;DeepDR is a network-baseddeep learningmethod

to infer potential novel drug-disease associations; HNet-DNN
Patterns 2, 100307, August 13, 2021 3



Figure 2. Performance of HeTDR comparing the different features

(A) ROC curves of prediction results by using different features.

(B) PR curves of prediction results by using different attributes.

(C) F1 scores of prediction results by using different features.
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uses the deep neural network (DNN) to predict new drug-disease

interactions. We use AUROC and AUPR to evaluate the perfor-

mance of thesemethods. In particular, eachmethod is configured

to its default setting or best parameter values reported in its paper.

In the 5-fold cross-validation results, HeTDR obtains high perfor-

mance (AUROC = 0.979 and AUPR = 0.976), outperforming other

state-of-the-art methods: SVM (AUROC = 0.602 and AUPR =

0.580), Katz (AUROC = 0.701 and AUPR = 0.722), MBiRW

(AUROC = 0.812 and AUPR = 0.810), DTINet (AUROC = 0.870

and AUPR = 0.884), DRRS (AUROC = 0.912 and AUPR =

0.877), DeepDR (AUROC = 0.915 and AUPR = 0.927), and

HNet-DNN (AUROC = 0.951 and AUPR = 0.908) (Figure 3).

HeTDR identifies novel drug-disease associations
We save the results of HeTDR predictions of drug-disease associ-

ations in ‘‘Evaluate prediction performance by ablation analysis.’’

We delete 6,677 known drug-disease associations used in the

prediction model, and select the novel top 150 pairs with highest

similarity drug-disease pairs predicted by HeTDR, and visualize

the interactions network (Figure 4). Among the list of top 150 pre-

dictions, HeTDR can capture the experimental or clinical reported

drug-disease associations. For example, novel predictions show
4 Patterns 2, 100307, August 13, 2021
that DB08827 (lomitapide) and DB05528 (mipomersen) can act

on C0342882 (familial hypercholesterolemia-heterozygous). The

novel prediction was confirmed by previous studies. Lomitapide

is an inhibitor of a microsomal triglyceride transfer protein that

lowers hepatic low-density lipoprotein cholesterol production, as

new therapeutic modalities treating homozygous familial hyper-

cholesterolemia.33,34Mipomersendecreases the levelsofapolipo-

protein B, low-density lipoprotein non-high-density lipoprotein

cholesterol, and total cholesterol, which are used in patients with

homozygous familial hypercholesterolemia as an adjunct to diet

and other lipid-lowering medications.34,35 For C0026705 (muco-

polysaccharidosis II), the significant association with DB00090

(laronidase) is successfully identified by HeTDR.

To interpret the results of the HeTDR model, we analyze the

novel associations predicted in the example.We use the features

learned by the HeTDR model to calculate the drug-drug and

disease-disease similarity relationships in the association pre-

diction module at the model. We select the top 20 diseases pre-

dicted to bemost related to C0342882 and C0026705 (see Table

S1), and use known drug-disease associations to find approved

drugs that can be used to treat these diseases (Figure 5). In the

model, C0342881 (familial hypercholesterolemia-homozygous)
Figure 3. HeTDR outperforms other state-of-
the-art methods for drug-disease associa-

tions prediction

(A) ROC curves of prediction results obtained by

applying HeTDR and five previously reported

methods in 5-fold cross-validation.

(B) PR curves of prediction results obtained by

HeTDR and five previously reported methods in 5-

fold cross-validation.



Figure 4. Network visualization of the drug-disease associations predicted by HeTDR

In this network, the predicted novel top 150 drug-disease pairs network is visualized. The label of the node represents the ID of the drugs (Drugbank_ID) or

diseases (UMLS_ID). The node size denotes the degree. Theweight of edges (drug-disease pairs) denotes the predicted score by HeTDR. The novel top 150 pairs

of the highest similarity drug-disease associations can be found in Table S1. This image was generated by Gephi (https://gephi.org).
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is most related to C0342882, and DB05528 and DB08827 are

drugs that have been approved to act on C0342881. The disease

most related to C0026705 captured by our model is C0023786

(mucopolysaccharidosis I), and DB00090 is an approved drug

that can be used to treat C0023786. Accordingly, DB00090

has a high potential to cure C0026705. These results demon-

strate that our model can make full use of features information

to capture approximate relationships of drug-drug and dis-

ease-disease, and reveal potential drug-disease associations

based on these approximate relationships and the known asso-

ciations. The novel top 150 pairs of the highest similarity drug-

disease associations can be found in Table S2.
Case studies
To further demonstrate the ability of HeTDR for discovering novel

drug-disease associations, we choose five diseases for case

studies, namely, Alzheimer’s disease, obesity, asthma, epilepsy,

and Parkinson’s disease. Similarly, we delete known drug-dis-

ease associations used in the prediction model, and select the

top 10 drugs according to the predicted highest association

scores, which are considered drug candidates for the disease,

as shown in Table 1. To provide a more reliable reference for

follow-up researchers, we also provide the associated prediction

scores for the top 20 drugs of all diseases, and the number of

side effects associated with these drugs (see Table S3). All the
Patterns 2, 100307, August 13, 2021 5
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Figure 5. The interpretability of HeTDR Iden-

tifies novel associations

(A) The upper nodes are the top 20 most relevant

diseases of C0342882.

(B) The upper nodes are the top 20 most relevant

diseases of C0026705. The edges are the known

drug-disease associations, and the heavier color of

the edge represents edge linking disease rank

higher in the top 20. This image was generated by

Gephi (https://gephi.org).
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side effects and the drug-side effect interactions can be found in

the data and code availability.

We first use the Comparative Toxicogenomics Database

(CTD) (http://ctdbase.org/) and the DrugBank database

(https://go.drugbank.com) to validate the top 10 drugs predicted

by HeTDR. The CTD (http://ctdbase.org/) is a publicly available

database resource providing manually curated key information

about the chemical-disease, chemical-gene, and gene-disease

interactions from the literature. The DrugBank database is

comprehensive molecular information that integrates bioinfor-

matics and chemoinformatics resources and provides detailed

drugs data, drugs target information, drugs mechanism, and

drugs-related clinical trials information. In addition, we verify

whether novel associations that could not be identified in CTD

and DrugBank can be supported by previously published studies

(Table 1). The results demonstrate that the HeTDR is an effective

method to find the potential drug-disease associations and can

help develop candidate drugs for the disease.

Then, we compute the associated prediction scores by

HeTDR_Di and HeTDR_Dr, and screen out the top 20 predicted

drugs that may act on the five diseases. Through analysis, it is

found that some of the potential drugs with higher rankings pre-

dicted by HeTDR, such as zileuton and metixene, are also

captured in the top 20 drugs predicted by HeTDR_Di and

HeTDR_Dr. Some drugs, such as Prednisone for the treatment

of Alzheimer’s disease, can only be found in the top 20 results

of HeTDR_Dr, and corticotropin also used for the treatment of

Alzheimer’s disease, can only be found in the results of

HeTDR_Di. This also shows that HeTDR combined with

network-based and text-based information has complementary

effects, and can better reveal potential novel associations.

DISCUSSION

In this article, a novel HeTDRmodel for drug repositioning was built

with both network topology attributes and text mining information.

HeTDR first fused diverse information from a multitude of different
6 Patterns 2, 100307, August 13, 2021
drug-related networks by using SNF and ob-

tained low-dimensional and compact drug

features representation by using SAE. Then,

HeTDR used the BioBERT to obtain disease

features representation from biomedical

corpora. Finally, HeTDR combined clinically

reported drug-disease pairs with disease

and drug features representations to predict

potential drug-disease associations. HeTDR

performed better than existing drug reposi-
tioning methods because we fused diverse information from a

multitudeofdifferentdrug-relatednetwork typesand integrateddis-

ease-related information from biomedical text mining. The analysis

and verification also showed that combining the information from

the text and the network can make better predictions compared

with only using the data from a single source. In addition, HeTDR

could preserve the known drug-disease associations network’s to-

pological structure and node attribute proximity to predict novel

drug-disease associations. Experiments have shown that the

HeTDR model achieved state-of-the-art performance in drug-dis-

ease associations prediction. Case studies of five diseases further

proved the effectiveness of ourmodel in finding novel drug-disease

associations, as validated by database records or literature.

We acknowledge that HeTDR still has some room for improve-

ment. First, we directly used BioBERT’s pre-training parameters,

which may have certain limitations, and we expect to obtain

more effective disease features information from medical re-

cords to further improve the predictive ability of our model in

the future. Second, our model obtains features through different

modules, and developing an end-to-end model that uses down-

stream tasks to obtain better features for associations prediction

is possible. Despite the shortcomings, we tried to avoid the

impact of these problems by verifying the effectiveness of

each module in obtaining features. The constructed HeTDR

model is still the most powerful model that integrates multiple

types of information.

In summary, our model could be used as an effective method

to predict drug-disease associations, develop a new idea for

drug repositioning calculation, and provide computer-aided

guidance for biologists in clinical trials.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Xiangrong Liu (xrliu@xmu.edu.cn).

http://ctdbase.org/
https://go.drugbank.com
http://ctdbase.org/
https://gephi.org
mailto:xrliu@xmu.edu.cn


Table 1. The top 10 related candidate drugs for Alzheimer’s disease, obesity, asthma, epilepsy, and Parkinson’s disease

Disease name Rank Drug name Description Rank Drug name Description

Alzheimer’s disease 1 corticotropin CTD_I 6 ergoloid 36–40

2 natalizumab N/A 7 fludrocortisone CTD_I

3 dexamethasone CTD_I 8 prednisone CTD_I

4 teriflunomide N/A 9 budesonide CTD_I

5 canakinumab 41–45 10 dalfampridine CTD_I

Obesity 1 lisdexamfetamine CTD_I 6 nicotine CTD_M

2 methylphenidate CTD_I 7 guanfacine CTD_I

3 dextroamphetamine CTD_I 8 naloxegol N/A

4 atomoxetine 46–51 9 methylnaltrexone 52,53

5 dexmethylphenidate N/A 10 disulfiram CTD_I

Asthma 1 zileuton CTD_T 6 ipratropium bromide CTD_T

2 salbutamol CTD_T 7 arformoterol CTD_T

3 montelukast CTD_T 8 fluticasone propionate CTD_T

4 formoterol CTD_T 9 dexpanthenol CTD_I

5 salmeterol CTD_T 10 ephedrine CTD_T

Epilepsy 1 lorazepam DrugBank_T 6 oxcarbazepine CTD_T

2 clonazepam CTD_T 7 levetiracetam CTD_T

3 ethosuximide CTD_T 8 tiagabine CTD_I

4 stiripentol DrugBank_T 9 nitrazepam CTD_T

5 topiramate CTD_T 10 ethotoin 54,55

Parkinson’s disease 1 pergolide CTD_T 6 octreotide CTD_I

2 metixene DrugBank_T 7 cabergoline CTD_T

3 orphenadrine CTD_T 8 gabapentin CTD_T

4 rivastigmine CTD_T 9 lanreotide 56

5 gabapentin enacarbil 57,58 10 pegvisomant N/A

CTD_I, inferred; CTD_M, curated (marker/mechanism); CTD_T, curated (therapeutic); DrugBank_T, therapeutic; N/A, could not be confirmed.
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Materials availability

There are no physical materials associated with this study.

Data and code availability

The code and data are available at https://github.com/stjin-XMU/HeTDR,

https://doi.org/10.5281/zenodo.4915882.

Data and preparation

We use the drug-related networks constructed by previous research,10 to

obtain the drug features and predict the drug-disease associations. Specif-
Table 2. Materials of networks

Node

types NumbersEdge types Numbers/Types

Drugs 1,519 drug-drug 290,836

Proteins 1,025 drug-protein 6,744

Side

effects

12,904 drug-side effect 382,041

Diseases 1,229 drug-disease 6,677

drug-drug

similarities

chemical similarities,

therapeutic similarities, drugs’

target sequence similarities,

gene ontology (GO) biological

process, GO cellular

component, and GO molecular

function
ically, we use the drug-drug associations network, drug-protein associations

network, drug-side effect associations network, and six drug similarity net-

works obtained from different omics data to obtain drug features. The known

drug-disease interactions are used for the final association prediction. The

type of all drug similarity networks and the numbers of all drugs, proteins,

side effects, diseases, and associations are listed in Table 2. Specific con-

struction details can be found in the supplemental experimental procedures.

For the embedding features of disease obtained through text mining, we

directly use the pre-trained parameters of the BioBERT model.27 The text

corpora used in the training process of the model includes: (1) English Wikipe-

dia, (2) BooksCorpus, (3) PubMed Abstracts, and (4) PMC Full-text articles.
Methods

Obtain drug features based on a heterogeneous network

To better utilize nine multiple drug-related associations networks to capture

the features information of the drug, we first obtain the positive pointwise

mutual information (PPMI) matrix of the drugs in each association network.

Then, we use the SNF to fuse these PPMI matrices obtained frommultiple net-

works. Finally, we use SAE to obtain a high-quality representation of the drug

features (Figure 1A).

We randomly sort the vertices in a given drug-relatedassociations network. As

to the ith vertex, assume that there is a transition matrix T that obtains the tran-

sition probabilities between vertices. pr is denoted as a row of vectors, and the

j-th entry represents the probability of reaching the jth vertex after transferring r

steps. The p0 is the initial one-hot vector with the ith vertex value is 1, and all

other values are 0. We can learn the probability of transitions between vertices

iteratively. In each iteration process, the random surfing process will continue
Patterns 2, 100307, August 13, 2021 7
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withprobability ofa, and there is a 1� a probability to return to the original vertex

and restart this process. The recurrence relation could be described as follows:

pr = apr�1T + ð1�aÞp0: (Equation 1)

By performing the above process on each node, a probabilistic co-occur-

rence (PCO) matrix can be obtained. After yielding the PCO matrix, we calcu-

late a shifted PPMImatrix.59 The PPMImatrix-specific calculationmethod is as

follows:

PPMI = max

 
log

Pði; jÞ3PNd

i

PNP

j Pði; jÞPNd

i Pði; jÞ3PNP

j Pði; jÞ; 0
!
; (Equation 2)

where P represents the original PCOmatrix, andNd andNP represent the serial

numbers of rows and columns, respectively. The process occurs as a pre-pro-

cessing and the random surfing-based representation ismitigating the sparsity

of some individual network types.

For the PPMI matrix obtained by each network, a computational method is

needed to better integrate these matrix data to establish a comprehensive

view of a given drug. We denote the correlation score between drug i and

drug j in the PPMI matrix as Mði; jÞ and use the SNF24 to obtain a comprehen-

sive biological view of a given drug. For the fused matrix from multiple of

matrices, a full and sparse kernel is defined on the vertex set V. The following

formula is used to normalize the full kernel:

Fði; jÞ=

8>>>><>>>>:

Mði; jÞ
2
X
ksi

Mði; jÞ; jsi

1

2
; j = i

: (Equation 3)

The K nearest neighbors is utilized to measure local affinity in a given

network, as follows:

Sði; jÞ=

8>><>>:
Mði; jÞX

k˛Ni

Mði; kÞ; j˛Ni

0;otherwise

; (Equation 4)

where Ni is denoted as a set of i’s neighbors, including i in network. Where the

F contains the complete information about the similarity of each drug to all

other drugs, and S only encodes the similarity to the k most similar drugs for

each drug. In the SNF process, F is always used as the initial state and S is

used as the kernel matrix.

The F and S of each PPMI matrix are obtained by the above two formulas.

Let us first take the fusion of the previous two PPMI matrices as a case, we

get the status F1 and F2 from two PPMI matrices by Equation 3, and obtain

the kernel matrices S1 and S2 by Equation 4. When t = 0, we denote the initial

two status matrices Ft = 0
1 =F1 and Ft = 0

2 = F2. Iteratively updating the similarity

matrix corresponding to each network data by using the following formulas is a

key step of SNF:

Ft + 1
1 = S1 3 Ft

2 3 ðS1ÞT ; (Equation 5)

Ft + 1
2 = S2 3 Ft

1 3 ðS2ÞT : (Equation 6)

After t iterations, Ft +1
1 is the statusmatrix of F1, F

t +1
2 is the similarity matrix of

F2. The status matrices are updated in this procedure with generating two par-

allel interchanging diffusion processes each time. After t steps, the two

matrices fused into a matrix Ff is computed as follows:

Ff =
Ft
1 +Ft

2

2
: (Equation 7)

As shown in the framework Figure 1A, we sequentially merge our multiple

PPMI matrices pairwise. Based on message passing theory, a non-linear

method is used in the process of network fusion to iteratively update each

network to make it more similar to other networks in each iteration. Through
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several iterations, SNF converges multiple networks into a single network.

This method of merging multiple network data can reduce the noise of the

network and preserve the strongly associated edges in the network.

After fusing multiple drug-related networks, we use the SAE26 method to

obtain high-quality and low-dimensional drug features. The encoder function

from the input layer to the hidden layer of the SAE is:

H = sðWencodeXi + BencodeÞ: (Equation 8)

The decoder function from the hidden layer to the output layer is:

Y = sðWdecodeH + BdecodeÞ; (Equation 9)

where sðxÞ= 1=ð1 + e�xÞ is the activation function,W is the connection param-

eter, andB is the bias vector. The sparse penalty is added to the target function

of the autoencoder to capture the effective features of the drug. The activation

of the jth hidden unit is denoted as hjðxÞ, we use the following formula to get the

average activation amount of the jth hidden unit:

crJ = 1

m

Xm
i =1

hjðXiÞ: (Equation 10)

The loss function of SAE with sparse penalty is as follow:

LsparseðW;BÞ= LðW;BÞ+g
XN2

t = 1

KLðrjjcrJ Þ; (Equation 11)

KLðrjjcrJ Þ = r log
rcrJ + ð1� rÞlog 1� r

1�crJ ; (Equation 12)

where LðW;BÞ is the loss function of the neural network, g is the hyperpara-

meter to control the weight of sparsity in loss function, N2 is the number of hid-

den layer units and r is a very small value closed to 0 as a sparsity parameter.

The KLðrjjcrJ Þ is called KL-divergence, which possesses the property that

KLðrjjcrJ Þ= 0 if crJ = r. Otherwise, it increases monotonically as crJ diverges

from r, which acts as the sparsity constraint. We adopt the gradient descent

algorithm to minimize the LsparseðW;BÞ to optimize the parameters W and B.
Obtaining disease features based on text mining

For the disease features acquisition module, we considered, at the early stage

of model design, that drugs that could act on a certain disease and may have

an effect on related or similar diseases. Therefore, when we obtain disease

features, we hope to capture their possible associations through text mining.

The proposed BERT model60 has enabled a qualitative leap for the text mining

algorithm and brought a milestone change in the natural language-processing

field, which uses transformer as the main framework and is pre-trained on

BooksCorpus and English Wikipedia. However, the word distribution between

general corpus and biomedical corpus is different, which is why the pure BERT

model cannot achieve good results in biomedical text mining tasks.

In our work, to obtain effective disease features representation through text

mining, we used the BioBERT model,27 which is a biomedical domain-based

pre-trained language-representation model. For tokenization, the BioBERT uti-

lizes the WordPiece tokenization.61 With word tokenization, any disease name

words can be represented by frequently occurring sub-words. Given the limita-

tion of training costs, we directly use the pre-trained parameters of the BioBERT

model and select the relation extraction task in the three representative biomed-

ical text mining tasks for fine-tuning training. The BioBERT used the original

BERT sentence classifier. In the fine-tuning process, diseases and genes are

anonymized target entities in the datasets to prevent the supervised information

used in the fine-tuning process from overlapping with drug-disease relations in

the test set and to avoid the possibility that the test data may be contaminated

by the text corpora. For the fine-tuning, we select a batch size of 32 and a

learning rate of 2e� 5. After the fine-tuning process done, we extract the repre-

sentations of sub-words and use the representations of these sub-words to

obtain the representations of all diseases (Figure 1B). After obtaining the dis-

eases features, we verified their effectiveness of the diseases features. More

details for evaluating the effectiveness of diseases features are available in the

supplemental experimental procedures.
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The features obtained from the first two steps can be used as the attribute in-

formation of drugs and diseases. In the process of embedding learning, we

need to preserve node attribute proximity and the drug-disease associations

network topological structure. We refer to the GATNE-I model62 to predict

the drug-disease interactions Figure 1C. We divide the overall embedding of

a given node vi into three parts: node attributes embedding, neighborhood ag-

gregation embedding, and base embedding.

To better integrate the attribute information of heterogeneous network no-

des, the drug and disease features obtained in the above two steps are defined

as the attribute Xi of nodes. We define the base embedding btðXiÞ, which is a

parameterized function of vi’s attribute Xi, bt is a transformation function and

t =BðiÞ is node vi ’s corresponding node type. For neighborhood aggregation

embedding, the kth level embedding nki ˛R
s, (1%k%K) of node vi is aggre-

gated from neighbor’s embedding, and s is the dimension of neighborhood ag-

gregation embedding. We compute the neighborhood aggregation embed-

ding by the mean aggregator function63 as:

n
ðkÞ
i = s

�cW ðkÞ
,MEAN

�n
n
ðk�1Þ
j ;cvj ˛N i

o��
; (Equation 13)

where s is an activation function, cW ðkÞ
is the weight matrices to propagate in-

formation between different layers, and N i are the neighbors of node vi. The

initial neighborhood aggregation embeddings n
ð0Þ
i is also a parameterized

function of vi’s attribute Xias n
ð0Þ
i = gtðXiÞ. The subscript t is vi’s corresponding

node type and gt is a transformation function.

Finally, the overall embedding of node vi ’s function is as follows:

vi = btðXiÞ + aMTniRi + bDT
t Xi ; (Equation 14)

Ri = softmax
�
wT tanhðWniÞ

�T
; (Equation 15)

where a is a hyperparameter,M˛Rs3d is a trainable transformation matrix, d is

the dimension of overall embedding,w is trainable parameter with size da,W is

trainable parameter with size da 3 s, b is a coefficient, the symbol T represents

the transposition of the matrix or the vector, and Dt is a feature transformation

matrix on vi’s corresponding node type t.

Next, optimize the model. Because the drug-disease associations network

is a heterogeneous network, to ensure the semantic relationship between

different types of nodes can be correctly merged into the skip-gram model,

meta-path-based random walks are used to obtain node sequence and

skip-gram are performed over the node sequence to learn embeddings.64

Specifically, for a given network G= ðV ;E;TÞ and a meta-path scheme

L : V1/V2/Vt//Vl, the flow of the walker is conditioned on the pre-

definedmate-pathL and the transition probability at step t is define as follows:

Pðvi
��vj ; LÞ=

8>>>>>><>>>>>>:

1

jN iXVt + 1j ðvi ; vjÞ˛E; vj˛Vt +1

0 ðvi ; vjÞ˛E; vj;Vt + 1

0 ðvi ; vjÞ;E

; (Equation 16)

where vi˛Vt . Supposing the random walk with length l follows a path P=

ðv1; v2;/; vlÞ such that ðvt�1; vtÞ˛Eðt = 2; 3;/l), vt’s context is denoted as

C = fvk jvk ˛P; jk � tj%c; tskg, where w is the radius of the window size.

Therefore, given a node vi with its context C of a path, we aim tominimize the

following negative log likelihood:

�logP
ε
ð�vj��vjεC���viÞ=X

vj˛C

�logP
ε
ðvj
��viÞ ; (Equation 17)

where ε denotes all the parameters, and use the heterogeneous softmax func-

tion normalized with respect to the node type of node vj, the probability of vj
given vi is defined as:

Pεðvj
��viÞ = exp

�
cT
j ,vi

�
P

k˛Vt
expðcT

k ,viÞ
; (Equation 18)
where vj˛Vt , ck is the context embedding of node vk and vi is the overall

embedding of node vi.

Finally, heterogeneous negative sampling is used to approximate the objec-

tive function �logPεðvj
��viÞ for each node pair ðvi ; vjÞ as:

H = � logs
�
cT
j , vi

�
�
XL
l =1

Evk�Pt ðvÞ
	
logs

��cT
k , vi

�

; (Equation 19)

where s is the sigmoid function, L is the number of negative samples corre-

sponding to a positive training sample, and vk is randomly drawn from a noise

distribution PtðvÞ defined on node vj ’s corresponding node set Vt.
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