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To develop and validate a radiomics signature for the prediction of gastric cancer (GC) survival and chemother-
apeutic benefits. In this multicenter retrospective analysis, we analyzed the radiomics features of portal venous-
phase computed tomography in 1591 consecutive patients. A radiomics signature was generated by using the
Lasso-Cox regression model in 228 patients and validated in internal and external validation cohorts. Radiomics
nomograms integrating the radiomics signature were constructed, demonstrating the incremental value of the
radiomics signature to the traditional staging system for individualized survival estimation. The performance
of the nomogramswas assessedwith respect to calibration, discrimination, and clinical usefulness. The radiomics
signature consisted of 19 selected features and was significantly associated with DFS (disease-free survival) and
OS (overall survival). Multivariate analysis demonstrated that the radiomics signaturewas an independent prog-
nostic factor. Incorporating the radiomics signature into the radiomics-based nomograms resulted in better per-
formance for the estimation of DFS and OS than the clinicopathological nomograms and TNM staging system,
with improved accuracy of the classification of survival outcomes. Further analysis showed that stage II and III
patients with higher radiomics scores exhibited a favorable response to chemotherapy. In conclusion, the
newly developed radiomics signature is a powerful predictor of DFS and OS, and it may predict which patients
with stage II and III GC benefit from chemotherapy.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gastric cancer (GC) is the fifth most common humanmalignant dis-
ease and the third leading cause of cancer-related death worldwide.
[44] Staging according to the TNM (tumor, node, and metastasis) sys-
tem and histological subtype has been themost commonly used bench-
mark for the prognostic definition and establishment of treatment
strategy inGC. According to the newUSNational Comprehensive Cancer
Network guidelines, patients with advanced GC are recommended to
receive chemotherapy.([5]; Group et al., [15]; [36]) However, large var-
iations in clinical outcomes have been shown in patients with the same
stage and similar treatment regimens. [5,22,36,41] These findings sug-
gest that the present GC staging system provides inadequate prognostic
information and does not reflect the biological heterogeneity of GC.
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

We systematically searched PubMed, without date restriction or
limitation to English language publications, for research articles
with the following terms: “(prognosis OR survival) AND (predictor
OR predictive) AND (signature OR model) AND (chemotherapy
benefits OR chemotherapeutic benefits) AND (radiomics OR tex-
ture feature) AND (gastric cancer OR GC OR stomach cancer OR
gastric adenocarcinoma)”. This search did not identify any previ-
ous radiomics signatures that predicted prognosis and/or chemo-
therapeutic benefits in gastric cancer. The current staging
system is not adequate for to define prognosis and can't predict
whether the gastric cancer patients are likely to benefit from che-
motherapy. By extracting high throughput of quantitative descrip-
tors from routinely acquired computed tomography (CT) studies,
radiomics enables the noninvasive profiling of tumor heterogene-
ity. Recent advances in radiomics have provided insights in per-
sonalized medicine in oncologic practice associated with tumor
detection, prognosis, subtype classification, lymph nodemetasta-
sis, distant metastasis, and therapeutic response evaluation. Al-
though prognostic signatures have become widely established in
cancer research, the development of signatures that can predict
response to individual therapies has been a difficult proposition.

Added value of this study

We report, to our knowledge, the first radiomics signature devel-
oped in gastric cancer to predict prognosis and benefit from che-
motherapy. The results revealed that a 19 feature-based
radiomics signature can accurately predict disease-free survival
and overall survival after surgery and added incremental value to
the TNM staging system and clinical-pathologic risk factors for in-
dividual survival estimation. Furthermore, the radiomics signature
was able to identifywhich patientswith stage II and III gastric can-
cer benefit from chemotherapy. Besides, the radiomics nomogram
incorporating the radiomics signature and five clinical-pathologic
risk factors might facilitate patient counselling and individualise
management of patients with gastric cancer.

Implications of all the available evidence

Our findings, together with existing evidence, highlight the poten-
tial of radiomics signature in predicting prognosis and survival ben-
efit of chemotherapy, which might facilitate patient counselling
and guide individual cure of patients with gastric cancer. Future
work should focus on independent validation in additional cohorts,
ideally in randomized controlled trials.
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[33,36,48] With the rapid development in understanding themolecular
biology of GC, various biologic or genetic biomarkers that are related to
prognosis or efficacy of chemotherapy have been investigated,
[23–25,33,41] but the inability to obtain comprehensive information
about heterogeneous tumors remains a limitation of these invasive
methods. [33,41] Hence,more studies are needed to confirm the clinical
roles of thesemethods, and new prognostic biomarkers are required for
personalized medicine.

Radiomics is an emerging field that converts imaging data into a
high-dimensional mineable feature space using a large number of auto-
matically applied data-characterization algorithms. [1,13] By extracting
large data sets of quantitative descriptors from routinely acquired com-
puted tomography (CT) studies in a high-throughput manner,
radiomics enables the noninvasive profiling of tumor heterogeneity.
[1,4,8,13,37] Recent advances in radiomics have provided insights for
personalized medicine in oncological practice associated with tumor
detection, prognosis, subtype classification, lymph nodemetastasis, dis-
tant metastasis, and therapeutic response evaluation. [1–3,8,13,19,20]
However, research of radiomics with respect to GC survival and chemo-
therapeutic benefits is still lacking.

The combined analysis of a panel of biomarkers as a signature, rather
than individual analyses, is the approach that shows the most promise
to change clinical management. [19,20,50,52] The least absolute shrink-
age and selection operator (LASSO) method is a popular method for
regression of high-dimensional predictors. [42,43,52] Using the LASSO
Cox regression model, we previously constructed an immune signature
that could effectively predict recurrence, disease-free survival (DFS) and
overall survival (OS) in GC. [25,49] Although CT texture assessments
have been reported to be associated with prognosis in patients with
GC, [12,51] to the best of our knowledge, an optimal approach that com-
binesmultiple imaging biomarkers as a predictive signature for survival
and chemotherapeutic benefits has not yet been developed.

In this study, we developed and validated a multiple-feature-based
radiomics signature to predict DFS and OS and assessed its incremental
value to the traditional staging system and clinicopathological risk fac-
tors for individual DFS and OS estimation. Furthermore, the radiomics
signature might be able to predict which patients with stage II and III
GC benefit from adjuvant chemotherapy.
2. Materials and methods

2.1. Study population

The study enrolled 3 independent cohorts of 1591 patients with gas-
tric adenocarcinoma. The training cohort and internal validation cohort
that comprised 228 consecutive patients and 186 consecutive patients
with total or partial radical gastrectomy were obtained from Nanfang
Hospital of Southern Medical University (Guangzhou, China) from Jan-
uary 2007 to April 2011 and fromMay 2011 to May 2013, respectively.
The external validation cohort that comprised 1177 consecutive
patients was obtained from Sun Yat-sen University Cancer Center be-
tween January 2008 and December 2012 with the same enrollment
criteria. Clinicopathological data were retrospectively collected for
each patient. The clinical sources of the 1591 patients with GC are listed
in Table 1. All these patients satisfied the following inclusion criteria:
histologically confirmed gastric adenocarcinoma; standard unenhanced
and contrast-enhanced abdominal CT performed b30 days before surgi-
cal resection; lymphadenectomy performed and N15 lymph nodes har-
vested; complete clinicopathological characteristics and follow-updata;
no combined malignant neoplasm; and no preoperative chemotherapy.
We excluded patients if the tumor lesions could not be identified by CT
or if patients received previous treatment with any anticancer therapy.
Ethical approval was obtained for this retrospective analysis at every
participating center, and the informed consent requirementwaswaved.

Baseline information for each patient with GC, including age,
gender, tumor location, tumor size, differentiation, Lauren type,
carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), TNM
stage, postsurgical chemotherapy and follow-up data (follow-up dura-
tion and survival), was documented. The TNM staging was reclassified
according to the seventh edition of the AJCC Cancer Staging Manual of
the American Joint Committee on Cancer (AJCC)/International Union
Against Cancer. Patients were postoperatively followed up with abdo-
men CTs every 6–12 months for the first 2 years and then annually,
according to the follow-up protocol of our institution. Follow-up data
were collected from hospital records for patients who were lost during
follow-up. The follow-up duration was measured from the time of sur-
gery to the last follow-up date, and information regarding the survival
status at the last follow-up was collected. The DFS was defined as the
time to recurrence at any site, or all-cause death, whichever came



Table 1
Clinical characteristics of patients according to the radiomics score in the training and validation cohorts.

Variables Training cohort (n = 228) Internal validation cohort (n = 186) External validation cohort (n = 1177)

low-RS (%) medium-RS (%) high-RS(%) p-value low-RS(%) medium-RS(%) high-RS(%) p-value low-RS(%) medium-RS(%) high-RS(%) p-value

Gender 0.817 0.561 0.001
Male 77(40.0%) 30(34.4%) 34(60.0%) 74(58.3%) 24(18.9%) 29(22.8%) 152(41.8%) 134(36.8%) 78(21.4%)
Female 51(34.4%) 16(34.4%) 20(65.6%) 39(66.1%) 10(16.9%) 10(16.9%) 275(33.8%) 282(34.7%) 256(31.5%)
Age(years) 0.210 0.019 0.001
b60 88(60.3%) 28(19.2%) 30(20.5%) 63(55.3%) 28(24.6%) 23(20.2%) 269(40.1%) 234(34.9%) 167(24.9%)
≧60 40(48.8%) 18(22%) 24(29.3%) 50(69.4%) 6(8.3%) 16(22.2%) 158(31.2%) 182(35.9%) 167(32.9%)
Charlson comorbidity index 0.333 0.968 0.129
0 86(56.6%) 28(18.4%) 38(25.0%) 77(60.2%) 24(18.8%) 27(21.1%) 304(38.5%) 265(33.5%) 221(28.0%)
1 34(55.7%) 15(24.6%) 12(19.7%) 29(63.0%) 8(17.4%) 9(19.6%) 96(30.8%) 129(41.3%) 87(27.9%)
2 7(58.3%) 1(8.3%) 4(33.3%) 6(60.0%) 2(20.0%) 2(20.0%) 21(34.4%) 18(29.5%) 22(36.1%)
3 1(33.3%) 2(66.7%) 0(0.0%) 1(50.9%) 0(0.0%) 1(50.0%) 6(42.9%) 4(28.6%) 4(28.6%)
Tumor size(cm) 0.073 0.410 0.001
b4 60(65.2%) 14(15.2%) 18(19.6%) 56(65.9%) 14(16.5%) 15(17.6%) 192(42.7%) 153(34.0%) 105(23.3%)
≧4 68(50%) 32(23.5%) 36(26.5%) 57(56.4%) 20(19.8%) 24(23.8%) 235(32.3%) 263(36.2%) 229(31.5%)
Tumor location 0.266 0.015 0.020
Cardia 29(69%) 6(14.3%) 7(16.7%) 30(88.2%) 3(8.8%) 1(2.9%) 130(32.7%) 135(34.0%) 132(33.2%)
Body 28(66.7%) 6(14.3%) 8(19%) 17(65.4%) 3(11.5%) 6(23.1%) 97(40.4%) 92(38.3%) 51(21.3%)
Antrum 55(49.1%) 26(23.2%) 31(27.7%) 53(52%) 23(22.5%) 26(25.5%) 184(37.8%) 173(35.5%) 130(26.7%)
Whole 16(50%) 8(25%) 8(25%) 13(54.2%) 5(20.8%) 6(25%) 16(30.2%) 16(30.2%) 21(39.6%)
Differentiation b0.0001 0.095 0.006
Well 23(82.1%) 3(10.7%) 2(7.1%) 12(37.5%) 4(37.5%) 0(0%) 39(47.0%) 31(37.3%) 13(15.7%)
Moderate 55(68.8%) 13(16.3%) 12(15%) 36(37.5%) 6(37.5%) 10(19.2%) 82(37.5%) 90(37.5%) 51(19.2%)
Poor and undifferentiated 50(41.7%) 30(25%) 40(33.3%) 20(37%) 27(37.5%) 34(63%) 306(35.1%) 295(33.9%) 270(31.0%)
Lauren type b0.0001 0.103 0.142
Intestinal type 80(71.4%) 12(10.7%) 20(17.9%) 70(67.3%) 17(16.3%) 17(16.3%) 133(33.3%) 156(39.0%) 111(27.8%)
Diffuse or mixed 48(41.4%) 34(29.3%) 34(29.3%) 43(52.4%) 17(20.7%) 22(26.8%) 294(37.8%) 260(33.5%) 223(28.7%)
CEA 0.010 0.002 0.0005
Elevated 11(33.3%) 12(36.4%) 10(30.3%) 11(39.3%) 4(14.3%) 13(46.3%) 69(27.6%) 88(35.2%) 93(37.2%)
Normal 117(60%) 34(17.4%) 44(22.6%) 102(64.6%) 30(19%) 26(16.5%) 102(38.6%) 30(35.4%) 26(26.0%)
CA199 b0.0001 b0.0001 b0.0001
Elevated 20(35.7%) 12(21.4%) 24(42.9%) 23(44.2%) 8(15.4%) 21(40.4%) 40(22.2%) 63(35.0%) 77(42.8%)
Normal 108(62.8%) 34(19.8%) 30(17.4%) 90(67.2%) 26(19.4%) 18(13.4%) 387(38.8%) 353(35.4%) 257(25.8%)
Depth of invasion b0.0001 b0.0001 b0.0001
T1 16(100%) 0(0%) 0(0%) 7(63.6%) 4(36.4%) 0(0%) 74(49.3%) 55(36.7%) 21(14%)
T2 12(75%) 4(25%) 0(0%) 11(91.7%) 1(8.3%) 0(0%) 64(48.1%) 38(28.6%) 31(23.3%)
T3 3(42.9%) 0(0%) 4(57.1%) 13(76.5%) 4(23.5%) 0(0%) 78(29.9%) 110(42.1%) 73(28.0%)
T4a 75(65.2%) 22(19.1%) 18(15.7%) 57(68.7%) 14(16.9%) 12(14.5%) 198(36.1%) 174(31.8%) 176(32.1%)
T4b 22(29.7%) 20(27%) 32(43.2%) 25(39.7%) 11(17.5%) 27(42.9%) 13(15.3%) 39(45.9%) 33(38.8%)
Lymph node metastasis b0.0001 b0.0001 b0.0001
N0 32(71.1%) 11(24.4%) 2(4.4%) 40(74.1%) 10(18.5%) 4(7.4%) 188(48.0%) 128(32.7%) 76(19.4%)
N1 27(75%) 5(13.9%) 4(11.1%) 20(83.3%) 3(12.5%) 3(4.2%) 61(33.9%) 75(41.7%) 44(24.4%)
N2 37(55.2%) 10(14.9%) 20(29.9%) 26(63.4%) 3(7.3%) 12(29.9%) 61(29.3%) 77(37.0%) 70(33.7%)
N3 32(40%) 20(25%) 28(35%) 27(40.3%) 18(26.9%) 22(32.8%) 117(29.5%) 136(34.3%) 144(36.3%)
Distant metastasis b0.0001 b0.0001 0.0004
M0 120(66.3%) 30(16.6%) 31(17.1%) 108(72%) 24(16%) 18(12%) 404(38.1%) 366(34.5%) 290(27.4%)
M1 8(17%) 16(34%) 23(49%) 5(13.9%) 10(27.8%) 21(58.3%) 23(19.7%) 50(42.7%) 44(37.6%)
Stage b0.0001 b0.0001 b0.0001
I 18(81.8%) 4(18.2%) 0(0%) 12(75%) 4(25%) 0(0%) 108(52.4%) 64(31.1%) 34(16.5%)
II 20(87%) 1(4.3%) 2(8.7%) 31(86.1%) 5(13.9%) 0(0%) 125(41.8%) 105(35.1%) 69(23.1%)
III 82(60.3%) 25(18.4%) 29(21.3%) 65(66.3%) 15(15.3%) 18(18.4%) 171(30.8%) 197(35.5%) 187(33.7%)
IV 8(17%) 16(34%) 23(49%) 5(13.9%) 10(27.8%) 21(58.3%) 23(19.7%) 50(42.7%) 44(37.6%)

RS: radiomic score.
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first. TheOSwas defined from the date of surgery to the date of all-cause
death or the latest follow-up used for censoring.

2.2. Image acquisition and imaging texture analysis

The details regarding the acquisition parameters, CT image retrieval
procedure and imaging texture analysis are presented in Supplemen-
tary Materials. The inter- and intra-observer reproducibility for
region-of-interest-based texture feature extraction was analyzed by
two experienced radiologists (readers 1 and 2 with 11 and 10 years of
clinical experience in abdominal CT study interpretation, respectively)
(Fig. S1). The radiologists were blind to the clinical and histopathologi-
cal data but were aware that the patients had gastric cancer.

2.3. Feature selection and radiomics signature building

The LASSO Cox regression model was used to select the most useful
prognostic features of all the texture features, and a multiple-feature-
based radiomics signature, the radiomics score, was then constructed
for predicting survival in the training cohort. [43,52] The “glmnet” pack-
age was used to perform the LASSO Cox regression model analysis. The
complete details are provided in Supplementary Materials.

2.4. Validation of radiomics signature

The potential association of the radiomics signaturewith DFS and OS
wasfirst assessed in the training cohort and then validated in the valida-
tion cohorts by using Kaplan-Meier survival analysis. The patients were
classified into high-, medium-, or low radiomics score groups, the
thresholds of which were identified using X-tile. [6] Then, the
same threshold values were applied to the validation cohorts. Stratified
analyses were performed to explore the potential association of
the radiomics signature with the DFS and OS using subgroups within
the TNM stage and clinicopathological risk factors from all patients.
The evaluation of the radiomics signature as an independent biomarker
was performed by integrating clinicopathological risk factors into the
multivariable Cox proportional hazards model using a backward step-
wise approach. [16,26]

2.5. Assessment of incremental value of radiomics signature in individual
DFS and OS estimation

To demonstrate the incremental value of the radiomics signature to
the TNM staging systemand other clinicopathological risk factors for in-
dividualized assessment of DFS andOS, both a radiomics nomogramand
a clinicopathological nomogram were developed in the training cohort
(Fig. S2). The radiomics nomogram incorporated the radiomics signa-
ture and the independent clinicopathological risk factors based on the
multivariate Cox analysis. The clinicopathological nomogram incorpo-
rated only the independent clinicopathological risk factors.

The incremental value of the radiomics signature to the TNM staging
system and other clinicopathological risk factors was assessed with
respect to calibration, discrimination, reclassification, and clinical use-
fulness. The performance of the radiomics nomogram was compared
to that of both the TNM staging system and the clinicopathological
nomogram.

To compare the predicted survival with the actual survival, calibra-
tion curves were generated. The agreement between the predicted sur-
vival and the actual survival was also analyzedwith Bland–Altman plot.
To quantify the discrimination performance, Harrell's concordance
index (C-index) was measured. [14] To quantify the improvement of
usefulness added by the radiomics signature, a net reclassification im-
provement (NRI) calculation was also applied. [38] Finally, a decision
curve analysis determined the clinical usefulness of the radiomics
nomogram by quantifying the net benefits at different threshold proba-
bilities. [46]
2.6. Statistical analysis

Differences in distributions between the variables examined were
assessed with the unpaired, 2-tailed χ2 test or the Fisher exact test as
appropriate. The Kaplan-Meier method and log-rank test were used to
estimate DFS and OS. Multivariate analyses were performed using the
Cox proportional hazards model. Statistical analysis was conducted
with R software (version 3.1.0) and SPSS software (version 19.0).
Bonferroni correction was applied to obtain the corrected P value for
multiple comparisons. The packages in R that were used in this study
are reported in Supplementary Materials. A two-sided P value b 0.05
was considered significant.

3. Results

The clinicopathological characteristics for the training cohort, inter-
nal validation cohort and external validation cohort are listed in Table 1.
Of the 1591 patients included in the study, 1081 (67.9%)weremen, and
the median (interquartile range [IQR]) age of all patients was 57
(49–65) years. In the training cohort, the median (IQR) survival time
for DFS and OS were 29 (6–70) and 45 (11–74) months, respectively.
In the internal validation cohort, the median (IQR) survival times for
DFS and OS were 31 (9–48) and 39 (17.0–51.25) months, respectively,
and in the external validation cohort, the median (IQR) survival times
for DFS and OS were 36.87 (20.32–55.79) and 38.03 (22.9–56.07)
months, respectively.

The inter and intraobserver reproducibility of the texture feature
extractionwas high (SupplementaryMaterials). Therefore, all outcomes
were based on the measurements of the first radiologist.

3.1. Construction of the radiomics score-based radiomics signature

A LASSO Cox regressionmodel was used to build a prognostic classi-
fier, which selected 19 potential predictors from the 269 features iden-
tified in the training cohort (Fig. S3). The radiomics signature was
constructed, including a radiomics score calculation formula (Supple-
mentary Materials). The optimum cutoffs generated by the X-tile plot
were −1.1 and −0.8 (Fig. S4). Accordingly, patients were classified
into a low-radiomics score group (radiomics score b −1.1), a
medium-radiomics score group (−1.1 ≤ radiomics score b −0.8), and
a high-radiomics score group (radiomics score ≥ −0.8). We assessed
the prognostic accuracy of the radiomics score in the training cohort
using time-dependent receiver operator characteristics (ROC) analysis
at different follow-up times (Fig. 1A). The 5-year DFS and OS were
59.4% and 67.2%, respectively, for the low-radiomics score group;
13.0% and 17.4%, respectively, for the medium radiomics score group;
and both 0 for the high radiomics score group (hazard ratios[HRs]
2.980 (2.421–3.669) and 3.722(2.964–4.673), respectively; all P b

0.001 and corrected P b 0.001; Fig. 1A). We then performed the same
analyses (time-dependent ROC analysis and Kaplan-Meier survival
analysis) in the internal validation cohort and similar results were ob-
served (HR 3.137 (2.493–3.947) and 3.415(2.691–4.333), respectively;
all P b 0.001 and corrected P b 0.001; Fig. 1B). To confirm that the
radiomics signature had an excellent prognostic value in different pop-
ulations, we further applied it to the external validation cohort, and
found similar results (Fig. 1C).When thepatientswere stratified by clin-
icopathological risk factors, the radiomics signature remained a clini-
cally and statistically significant prognostic predictor (Fig. S5–8).

We also assessed the distribution of radiomics scores, recurrence
and survival statuses as well as the expression of 19 radiomics
features in the internal and external cohorts (Fig. S9–10). Patients
with higher radiomics scores were more likely to have recurrences
and deaths. In univariable analysis, low radiomics score patients were
associated with significantly poorer OS and DFS (Table S1). Variables
demonstrating a significant effect on OS and DFS were included in the
multivariable analysis. Multivariate Cox regression analysis after



Fig. 1. Radiomics score measured by time-dependent ROC curves and Kaplan-Meier survival in the training, internal and external validation cohorts. (A) Training cohort. (B) Internal
validation cohort. (C) External validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic accuracy in the training and validation cohorts. We calculated P-values using
the log-rank test. Data are the AUC or P-value. ROC = receiver operator characteristic. AUC = area under the curve. HR = hazard ratio.
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Table 2
Multivariable association of the radiomics score and clinicopathological characteristics with disease-free survival and overall survival in the training cohort.

Variables Disease-free survival Overall survival

HR (95%CI) p HR (95%CI) p

Radiomics score 1.744 (1.346–2.261) b0.0001 3.308 (1.752–3.040) b0.0001
Differentiation status 0.008 0.019
Well Reference Reference
Moderate 2.242 (1.037–4.850) 0.040 2.150 (0.890–5.195) 0.089
Poor or undifferentiation 2.835 (1.330–6.044) 0.007 2.904 (1.213–6.954) 0.017
CA199 (elevated vs. nomal) 1.829 (1.243–2.692) 0.002 1.963 (1.313–2.934) 0.001
Depth of invasion 0.0005 0.011
T1 Reference Reference
T2 1.625 (0.296–8.923) 0.576 1.546 (0.281–8.497) 0.617
T3 5.052 (0.942–27.102) 0.059 4.971 (0.930–26.578) 0.061
T4a 3.010 (0.703–12.884) 0.137 2.472 (0.571–10.704) 0.226
T4b 6.269 (1.425–27.579) 0.015 4.279 (0.968–18.927) 0.055
Lymph node metastasis b0.0001 0.0002
N0 Reference Reference
N1 0.951 (0.478–1.890) 0.886 0.919 (0.441–1.918) 0.822
N2 0.952 (0.517–1.751) 0.873 0.947 (0.494–1.817) 0.871
N3 3.806 (2.110–6.866) b0.0001 2.124 (1.126–4.007) 0.020
Distant metastasis (yes vs. no) 6.240 (3.976–9.793) b0.0001 3.518 (2.322–5.330) b0.0001
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adjustment for clinicopathological variables revealed that the radiomics
score remained a powerful and independent prognostic factor for DFS
and OS in the training, internal and external validation cohorts
(Tables 2 and S2–3).

We performed stratified analyses of GC patients with stage I, II, III,
and IV disease in the combined internal and external cohorts. Radiomics
score could distinguish patients with different prognoses in stage I, II, III,
and IV (Fig. 2).

3.2. Assessment of incremental value of radiomics signature in individual
DFS and OS performance

The radiomics nomograms for DFS and OS are presented in Fig. 3A.
The calibration curves of the nomograms at 1, 3, or 5 years are shown
in Fig. 3B-C, and there was good agreement among the estimations
with the radiomics nomogram and actual observations in the training,
internal and external cohorts. The Bland-Altman type plots also showed
that the radiomics nomograms had a good predictive effect in the train-
ing, internal andexternal validation cohorts, especially for actual survival
N20 months (Fig. S11). We also constructed two clinicopathological no-
mograms for DFS andOS only using these clinicopathological risk factors
(Fig. S12). The discrimination performance of the radiomics signature
improved when it was integrated into the radiomics nomogram along
with the clinicopathological risk factors (C-index for the radiomics no-
mogram: DFS, 0.850 (95% CI: 0.825, 0.875); OS 0.860 (0.835, 0.885) in
the training cohort; Table 3). Compared to either the TNM staging sys-
tem or the clinicopathological nomogram, the radiomics nomogram
showed a better discrimination capability with higher C-indexes in the
training, internal and external cohorts (Table 3). Furthermore, the inclu-
sion of the radiomics signature in the clinicopathological nomogram
yielded a total NRI of 0.283 (95% CI: 0.086, 0.421; P = 0.01) and 0.317
(0.134, 0.500; P b 0.001; in the training cohort) for DFS and OS, respec-
tively, showing improved classification accuracy for survival outcomes
(Table S5 andFig. S13). Similar resultswere observedboth in the internal
and external validation cohorts.

The decision curve analysis showed that the radiomics nomogram
had a higher overall net benefit than the clinicopathological nomogram
and the TNM staging system across the majority of the range of reason-
able threshold probabilities (Fig. 4).

3.3. Radiomics signature and adjuvant chemotherapy

Furthermore, we investigated whether low, medium, or high
radiomics score patients with stage II and III GC could benefit from
postoperative adjuvant chemotherapy. A test for an interaction between
radiomics score and adjuvant chemotherapy indicated that the benefit
from adjuvant chemotherapy was superior among patients with high
radiomics scores (internal cohort: OS, HR 0.148(0.066–0.333), P b

0.001 and corrected P b 0.001; DFS, 0.176(0.083–0.374), P b 0.001 and
corrected P b 0.001; and external cohort: OS, HR 0.394(0.293–0.529),
P b 0.001 and corrected P b 0.001; DFS, 0.412(0.306–0.554), P b 0.001
and corrected P b 0.001; all P b 0.0001 for interaction; Table 3) than
among those with low and medium scores. The corresponding
Kaplan-Meier survival curves, which comprehensively compared low,
medium, with high radiomics score by treatment, are shown in Fig. 5.
The results from the subset analysis using radiomics score
classifier revealed that chemotherapy significantly increased DFS
and OS in the high-radiomics score group (internal cohort: P b 0.001
and corrected P b 0.001, P b 0.001 and corrected P b 0.001; and
external cohort: P b 0.001 and corrected P b 0.001, P b 0.001
and corrected P b 0.001; respectively), but had no significant effect in
the low-radiomics score group (internal cohort: P = 0.510 and
corrected P = 1.000, P = 0.345 and corrected P = 0.999;
and external cohort: P = 0.325 and corrected P = 0.975, P = 0.384
and corrected P = 0.999; respectively; Fig. 5). Patients with medium
radiomics scores also obtained a survival benefit from chemotherapy,
although not significantly in the internal cohort (internal cohort: P =
0.062 and corrected P = 0.186, P = 0.292 and corrected P = 0.876;
and external cohort: P = 0.002 and corrected P = 0.006, P = 0.004
and corrected P=0.012; respectively). Furthermore, when the patients
were stratified by clinicopathological risk factors, similar results were
also observed (Fig. S14–15). Consequently, these results suggested
that the radiomics score could successfully identify patients with stage
II and III GC who are suitable candidates for chemotherapy.
4. Discussion

This study extends the analysis of individual imaging features to
an “-omics”-based approach for survival estimation. A multiple-
feature-based radiomics signature was identified to be an independent
prognosis factor in patients with GC. The radiomics signature success-
fully stratified those patients into high-, medium-, and low-radiomics
score groups with significant differences in DFS and OS. The radiomics
nomograms performed better than the traditional staging system and
clinicopathological nomograms, demonstrating well the incremental
value of the radiomics signature for individualized DFS and OS
estimation.



Fig. 2. Kaplan-Meier survival analysis of disease-free survival and overall survival according to the radiomics score classifier in subgroups of GC patients in the total internal and external
cohorts. Total internal cohort (left pane): (A) Stage I (n = 38). (B) Stage II (n = 59). (C) Stage III (n = 234). (D) Stage IV (n = 83). External cohort (right pane): (A) Stage I (n = 206).
(B) Stage II (n = 299). (C) Stage III (n = 555). (D) Stage IV (n = 117).
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The present radiomics signature, consisting of 19 texture features,
provides a noninvasive, fast, low-cost and reproducible method for
obtaining phenotypic information, potentially accelerating the
development of personalized medicine. The findings from previous
studies have supported the hypothesis that phenotypic and
proteogenomic information of the tumor can be deduced from
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Table 3
Treatment interaction with the radiomics score for disease-free survival and overall survival in patients with stage II and III disease.

Radiomics score Chemo No chemo Disease-free survival Overall survival

Yes vs No chemo, HR (95% CI) P P value for interaction Yes vs No chemo, HR (95% CI) P P value for interaction

Internal cohort (n = 293)
High score 113 85 0.176(0.083–0.374) b0.001 0.148(0.066–0.333) b0.001
Medium score 21 25 0.565(0.300–1.065) 0.077 b0.0001 0.717(0.381–1.352) 0.304 b0.0001
Low score 27 22 0.871(0.576–1.318) 0.514 0.806(0.514–1.266) 0.350

External cohort (n = 854)
High score 145 111 0.412(0.306–0.554) b0.001 b0.0001 0.394(0.293–0.529) b0.001 b0.0001
Medium score 210 92 0.584(0.412–0.829) 0.003 0.601(0.423–0.854) 0.005
Low score 207 89 0.788(0.489–1.269) 0.327 0.807(0.497–1.309) 0.385

Chemo: chemotherapy.
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radiologic images. [4,28,40] However, interpreting the complex associa-
tions between the biological processes and radiomics features still re-
mains an intractable challenge. [45] On the one hand, the biological
processes involve multiple interacting components. On the other
hand, it is difficult to correlate a single radiomics-based factor with a
pathophysiological basis in an intuitive method. Therefore, the con-
struction ofmultifactor panels is amore common approach for outcome
estimation in the “-omics” setting. [4,28,40] Radiomics refers to the
comprehensive quantification of tumor phenotypes by applying a
large number of quantitative image features. [13] According to the
radiomics hypothesis, the genomic heterogeneity may translate to ex-
pression in an intratumoral heterogeneity that can be assessed through
imaging and that would ultimately exhibit worse prognosis.
[9,10,21,29] The radiogenomics analysis by Aerts et al. revealed that a
prognostic radiomic signature, capturing intratumour heterogeneity, is
associated with underlying gene expression patterns. [1] As demon-
strated in the present study, themultifeature radiomics signature effec-
tively predicts survival outcomes, which also supports the hypothesis
that the radiomics signature has the potential to capture intratumoral
heterogeneity in a noninvasive method. [1,9,27,29,37] In oncology,
radiogenomics enable a deeper characterization and understanding of
tumor biology in its entirety, including capturing the intrinsic tumor
heterogeneity that can drive tumor development. [32,39] Further effort
in radiogenomics is needed to elucidate the relationship between tumor
genomics characteristics and their imaging appearance aswell as devel-
op imaging biomarkers incorporatingphenotypic and genotypicmetrics
that can predict risk and outcomes, thereby better stratifying patients
for more precise therapeutic care. [11,32,39]

The complex nature and biological processes of malignancy involve
multiple interacting components, which may be better reflected when
one takes into account the interactions between different features.
[22–25,30,37] As the first attempt, to the best of our knowledge, to ad-
dress the issueof survival estimation using amulticomponent radiomics
signature in GC, our study supported the suggestion that multiple vari-
ables could provide a more statistically robust approach. [34,35] Al-
though the selected 19 features were observed to be associated with
DFS and OS (Figs. S16–17), the radiomics signature developed by the
Lasso-Cox regression model showed better prognostic value than any
single feature (Fig. S18).

Current guidelines recommend chemotherapy as a standard compo-
nent for advanced GC therapies, whereas existing studies have shown
that a subgroup of patients does not benefit frompresent chemotherapy
Fig. 3. Use of the constructed radiomics nomogram to estimate DFS and OS for gastric cancer, al
and OS (right). The patient's radiomics score is located on the radiomics score axis. To determin
her radiomics score, a linewas drawn straight upward to the point axis, and this process was re
The final sum is located on the total point axis. To find the patient's probability of DFS and OS
(left, (B)) and OS (right, (C)) in the training, internal and external validation cohorts show t
observed 1-, 3-, and 5-year outcomes. Nomogram-estimated DFS is plotted on the x-axis, and
a perfect estimation by an ideal model, in which the estimated outcome perfectly correspon
alignment of which with the diagonal dotted line represents a better estimation. (B) (C):
validation cohort (lower panels).
strategies. Thus, the accurate identification of subgroups of patients will
improve the prognostic system and lead to more personalized therapy.
A few studies have assessed the potential of texture analysis for treat-
ment response assessment. Ahn et al. showed that CT texture analysis
is useful for the prediction of therapeutic response after cytotoxic che-
motherapy in patients with liver metastasis from colorectal cancer. [2]
Yoon et al. reported that heterogeneous texture features on CT images
are associated with better survival in patients with HER2-positive
advanced gastric cancer who received trastuzumab-based treatment.
[51] In thepresent study,we showed that chemotherapy provides a bet-
ter survival benefit to stage II and III GC patients classified as high
radiomics score and that further use of the radiomics score enables a
more accurate identification of patientswhomight benefit fromchemo-
therapy. For patientswith low radiomics scores,more effective systemic
approaches to improve treatment outcomes need to be identified. Thus,
the radiomics score is both a prognostic and predictive tool in stage II
and III disease. Thus, patients with higher radiomics scores have a
greater likelihood of recurrence and a clear benefit from chemotherapy.
The mechanism of the relationship between radiomic features and che-
motherapy has not been shown thoroughly, but it may be associated
with the strong correlation between intratumor heterogeneity radiomic
features and cell cycling pathways [1], and further radiogenomics stud-
ies may provide additional information and strategies for treatment.
[31]

TNM staging is themost commonly used system to predict outcome
for GC patients. However, patients within the same stage show different
genetic, cellular, and clinicopathological characteristics, and their sur-
vival is not uniform.(Cancer Genome Atlas Research, [7]; [33,41]) As
shown in the present study, the radiomics signature successfully identi-
fied high-risk patientswith poor survival outcomeswithin stages I, II, III,
and IV, for whommore intensified treatment was needed. These results
suggested that the radiomics signature reinforced the prognostic
ability of TNM stage, thereby adding prognostic value to TNM staging.
To provide a more individualized staging system, nomograms have
been developed to evaluate a large number of significant clinicopatho-
logical predictors to better predict the prognosis of individual
patients. The improved prediction of individual outcomeswould be use-
ful for counselling patients, personalizing treatment, and scheduling
patients' follow-ups. Although there are several GC nomograms avail-
able, no particular nomogram has been used widely in clinical set-
tings. [17,18,50] In the present study, we developed and validated two
nomograms, which included the radiomics signature, differentiation
ong with the assessment of themodel calibration. (A) Radiomics nomogram for DFS (left)
e the number of points toward the probability of DFS and OS the patient receives for his or
peated for each variable. The points achieved for each of the risk factorswas then summed.
, a line was drawn straight down. Calibration curves of the radiomics nomogram for DFS
he calibration of each model in terms of the agreement between the estimated and the
the observed tumor relapse rate is plotted on the y-axis. Diagonal dotted line represents
ds to the actual outcome. Solid line represents performance of the nomogram, a closer
Training cohort (upper panels); Internal validation cohort (middle panels); External



Fig. 4. Decision curve analysis for each model in the training and validation cohorts. The y-axis measures the net benefit. The net benefit was calculated by summing the benefits (true
positive results) and subtracting the harms (false positive results), weighting the latter by a factor related to the relative harm of an undetected cancer compared with the harm of
unnecessary treatment. The radiomics model had the highest net benefit compared to both the other models and simple strategies such as follow-up of all patients (green line) or no
patients (horizontal black line) across the full range of threshold probabilities at which a patient would choose to undergo imaging follow-up.
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status, T stage, N stage, M stage, and CA199 level, to improve the accu-
racy of prognosis for GC patients. These nomograms can be used to
better predict an individual patient's probability of 1-, 3-, and 5-year
DFS and OS. The nomograms performed well with a higher C-
index and positive NRI (P b 0.05). The decision curve analysis
demonstrated that the radiomics nomogram was superior to both the
clinicopathological nomogram and TNM staging system across the
majority of the range of reasonable threshold probabilities,
which indicated that the radiomics signature added incremental
value for individualized estimation. Compared to previous studies,
the radiomics nomograms greatly improved accuracy by integrating
the radiomics signature. However, the Bland-Altman type plots
showed that the radiomics nomograms didn't have a excellent predic-
tive effect for actual survival b20 months (Fig. S11). It is unclear
what is the reason for these large discrepancies for short survival
times. One possible explanation is the difference in patient populations.
The staging of short survival cases was generally later. These patients'
survival time was easily affected by the surrounding environment in
China, such as treatment condition, the economy condition, and
rural/urban. [22] For example, patients with stage III GC were more
likely to obtain greater survival benefit from chemotherapy than stage
I or II patients with relatively longer survival, and stage III patients
were more likely to receive chemotherapy than stage II patients.
[22,25] The discrepancies also suggested that a summary performance



Fig. 5. Adjuvant chemotherapy benefit compared using disease-free survival (DFS) and overall survival (OS) for stage II and III gastric cancer patients in the total internal cohort and
external cohort. Kaplan-Meier survival curves for patients with stage II and III gastric cancer in different subgroups, which were stratified by the receipt of adjuvant chemotherapy.
Total internal cohort (N = 293): left pane; External cohort (N = 854): right pane.
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metric like concordance does not tell the entire story, more reasonable
methods for evaluation of prediction model need to be developed in
furture.

The limitations of the present study included the relatively small
sample size, and the retrospective nature of the data collection. Al-
though the preferred designwould be a prospective longitudinal cohort
study, [34] the protracted length of a prospective longitudinal cohort
study in GC (on account of the longwait required for survival outcomes)
may make the study daunting. [36] Although a large-scale independent
prospective multicenter validation cohort is warranted to evaluate the
generalizability of the results, the decision curve analysis used in this
study,which enables the evaluation of clinical relevancewithout thene-
cessity for additional validation data in a traditional decision analytic
approach, [46,47] demonstrated that the radiomics signature and
radiomics nomogram hold great potential for clinical application in
postoperative outcome estimation. Furthermore, the use of adjuvant
chemotherapy was not within a randomized comparison, and the deci-
sion to treat or not to treat patients after surgery was made by the
patients and/or clinicians. Therefore, wewill develop amulticenter, pro-
spective study to validate these results in a larger population in the fu-
ture. In addition, other predictive biomarkers may be included to
improve the accuracy of the nomograms.

In summary, the radiomics signature can effectively predict survival
and add prognostic value to the TNM staging system. Moreover, the
radiomics signature may be a useful predictive tool to predict patient
benefit from chemotherapy. In addition, the radiomics nomogram
may serve as a potential tool to guide individual care.
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