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Abstract

We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across
multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for
Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment
(EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes
(grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III,
1999-2000, and 2001-2002) and three race-ethnicities: non-Hispanic whites (n =6,634), non-Hispanic blacks (n =3,458), and
Mexican Americans (n=3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP,
phenotype-class, direction of effect, and race-ethnicity at p<<0.01, allele frequency >0.01, and sample size >200. Of these 69
PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported
associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-
ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported
results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks,
contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense
SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels
in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP
rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E
levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results
of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple
traits, through generating novel hypotheses for future research.
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Author Summary

The Epidemiological Architecture for Genes Linked to
Environment (EAGLE) study performed a Phenome-Wide
Association Study (PheWAS) to investigate comprehensive
associations between a wide range of phenotypes and
single-nucleotide polymorphisms using the diverse geno-
typic and phenotypic data that exists across multiple
populations in the National Health and Nutrition Exami-
nation Surveys (NHANES), conducted by the Centers for
Disease Control and Prevention (CDC). In this study, we
replicated known genotype-phenotype associations, iden-
tified genotypes associated with phenotypes related to
previously reported associations, and most importantly,
identified a series of novel genotype-phenotype associa-
tions. We also identified potential pleiotropy; that is, SNPs
associated with more than one phenotype. We explored
the features of these PheWAS results, characterizing any
potential functionality of the SNPs of this study, deter-
mining association results that were found in more than
one racial/ethnic group for the same SNP and phenotype,
identifying novel direction of effect relationships for SNPs
demonstrating potential pleiotropy, and investigating the
association results in the context of gene-based biological
networks. Through considering the SNP associations on
multiple phenotypic outcomes, as well as through explor-
ing pleiotropy, we may be able to leverage the results of
PheWAS to uncover more of the complex underlying
genomic architecture of complex traits.

Introduction

Genome-wide association studies (GWAS) have led to the
discovery of thousands of variants associated with disease and
phenotypic outcomes [1]. GWAS focus on investigating the
association between hundreds of thousands to over a million single
nucleotide polymorphisms (SNPs) and a single, or small set, of
phenotypes and/or disease outcomes. While a wealth of informa-
tion about the relationship between SNPs and phenotypes has been
revealed, an extensive picture of the complex genetic architecture
underlying common disease has yet to be elucidated. In addition,
the relationship between SNPs and multiple phenotypes (pleiotropy)
is only beginning to be explored.

A complementary approach to GWAS are phenome-wide
association studies (PheWAS), an approach for investigating the
complex networks that exist between human phenotypes and
genetic variation, through testing a series of SNPs for association
with a large and diverse set of phenotypes [2-5]. These analyses
can be used to investigate the relationship between genetic variants
and presence/absence of disease and phenotypic outcomes as well
as the association between genetic variation and intermediate
clinically measured variables such as cholesterol levels, blood
pressure measurements, and total iron binding capacity. Phe WAS
can be used to replicate relationships found in GWAS as well as to
discover novel associations and generate hypotheses for further
research. This approach also allows for the detection of SNPs with
pleiotropic eflects, where one genetic variant is associated with
multiple phenotypes [6,7]. Investigating the interrelationships that
exist between phenotypes as well as between genetic variation and
phenotypic variation has the potential for uncovering the complex
mechanisms underlying common human phenotypes.

Here we describe a Phe WAS using epidemiologic data from the
National Health and Nutrition Examination Surveys (NHANES)
collected by the Centers for Disease Control and Prevention and
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accessed by the Epidemiological Architecture for Genes Linked to
Environment (EAGLE) study as part of the Population Architec-
ture using Genomics and Epidemiology (PAGE) network [8]. A
major focus of the PAGE network is the replication and
generalization of GWAS-identified variants in diverse populations,
as the majority of published GWAS have been performed in
populations of European-descent with little generalization across
other racial/ethnic groups. Thus, the PAGE network has pursued
investigating associations for genetic variants that have been well
replicated in previous research across ancestry groups beyond
European-descent.

As a part of PAGE, EAGLE genotyped 80 GWAS-identified
variants in two NHANES datasets representing three surveys:
NHANES 111, collected between 1991 and 1994, and Continuous
NHANES which was collected between 1999-2000 and 2001—
2002 across three race-ethnicities. The majority of the SNPs
within our study were chosen for genotyping based on published
lipid trait genetic association studies (51 SNPs), but our study also
included SNPs previously associated with phenotypes such as C-
reactive protein levels, coronary heart disease, and age-related
macular degeneration, with detailed information about these SNPs
in S1 Table. Genotyping was performed in a total of 14,998
NHANES participants with DNA samples including 6,634 self-
reported non-Hispanic whites, 3,458 self-reported non-Hispanic
blacks, and 3,950 self-reported Mexican Americans. Similar to the
PheWAS framework outlined by the PAGE study [3], we
performed comprehensive unadjusted tests of association for 80
SNPs with 1,008 phenotypes, using linear or logistic regression,
depending on the phenotype, stratified by race-ethnicity.

With this approach we replicated many previously reported
associations and identified novel genotype-phenotype relation-
ships. We have performed our analyses across multiple genetic
ancestries. Most importantly, we have also found indications of
pleiotropy for a number of the SNPs included in our investigation.
Contrasting the association results for SNPs with multiple
phenotypes, interesting direction of effect differences were
identified. We further explored the relationship between SNPs,
genes, and known biological relationships between the genes,
identifying network relationships within these results. The findings
in this paper demonstrate that PheWAS is a useful method for
both validating findings from GWAS and discovering previously
unknown genotype-phenotype relationships in diverse populations,
enriching our understanding of the complex underpinnings of
human phenotypes.

Results

The study population characteristics for the epidemiologic
surveys accessed by EAGLE for this PheWAS are given in
Table 1. Across the data collected for NHANES, there were
14,998 participants with DNA samples. More than half of the
participants were female (54.12%), and the median age was 43.
While ~44% of the samples were from participants self-described
as non-Hispanic white (n =6,634), more than half of the samples
were from participants self-described as either non-Hispanic black
(n=3,458) or Mexican American (n= 3,950). As expected, based
on ascertainment and changes in consenting for genetic studies
[9], NHANES III had more female and non-European partici-
pants with DNA samples compared with Continuous NHANES.

As detailed in the PheWAS workflow diagram shown in Fig. 1,
we first identified 184 phenotype classes across NHANES from a
total of 1,008 unique variables available for analysis in NHANES
IIT and Continuous NHANES, respectively (Table 2). We then
performed unadjusted single SNP tests of association assuming an
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Table 1. Study population characteristics.

PheWAS in the EAGLE Study

NHANES Il (n=7,159)

Continuous NHANES (n=7,839) Combined NHANES (n=14,998)

% Female* 56.67
Median age 38
NHW 51
NHB 33
MA 33
Race-ethnicity
% NHW 36.74
% NHB 29.45
% MA 28.96
Number of phenotypes 750

51.79 54.12
47 43

52 51

45 38

43 38
51.07 44.23
17.22 23.06
23.94 26.34
258 489

*y?=35.95; p<<0.0001.
doi:10.1371/journal.pgen.1004678.t001

additive genetic model for each SNP and phenotype (within each
phenotype class) in NHANES III and Continuous NHANES. Our
criteria for a significant PheWAS result was a SNP-phenotype
association observed in both NHANES III and Continuous
NHANES with p-value <0.01, for SNPs with an allele frequency
>0.01, and a sample size >200, for the same race-cthnicity,
phenotype-class, and direction of effect. We identified 69 Phe WAS
results meeting this significance threshold. Of these 69 PheWAS

Abbreviations: non-Hispanic white (NHW), non-Hispanic black (NHB), Mexican American (MA).

results, 39 replicated previously reported SNP-phenotype associ-
ations from the literature. Of the remaining results, 9 were related
to previously reported associations in the literature, and 21 were
novel SNP-phenotype associations. Moreover, 13 SNPs showed
evidence of pleiotropy — where a particular SNP was associated
with more than one phenotype. For the majority of results meeting
our PheWAS criteria for replication, each SNP had multiple
assocliations for each phenotype class; thus, in the text we report

Match NHANES
Phenotypic Phenotypes
Measures _—> into < Phenotypic
Phenotype Measures
Genotyped Classes
SNPs Genotyped SNPs
Calollate Calculate
o SNP-
Shi: Phenotype
Phenotype oup
S Associations
(eoaaions for Continuous
for NHANES 11 NHANES

Fig. 1. Overview of the approach for this study. Genotypic and phenotypic data were collected in NHANES Il and Continuous NHANES. The
phenotypes for the two studies were matched into phenotype classes. Comprehensive associations were calculated for the genotypes and
phenotypes for each survey independently. The results that were found in both surveys, with p<0.01, for the same phenotype-class, and race-
ethnicity, and same direction of effect, were maintained for further inspection in this study.

doi:10.1371/journal.pgen.1004678.g001
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Fig. 2. Replicating results for PheWAS. This is a plot of SNP-phenotype associations observed in both NHANES Il and Continuous NHANES with
p-value <0.01, for SNPs with an allele frequency >0.01, and a sample size >200, for the same race-ethnicity, phenotype-class, and direction of effect.
Plotted are results where the significant SNP-phenotype association matches a previously reported SNP-Phenotype association. The first column
indicates the chromosome and base pair location of the SNP. The second column indicates the SNP ID, the associated phenotype-class, the self-
reported race-ethnicity (NHW = Non-Hispanic Whites, NHB = Non-Hispanic Blacks, or MA = Mexican Americans), and the coded-allele. The next
column contains a colored box if association results were available for natural log transformed Continuous NHANES (Continuous NHANES In+1), un-
transformed Continuous NHANES phenotypes, NHANES Il untransformed phenotypes (NHANES lll), or transformed NHANES Ill phenotypes (NHANES
Il In+1) (see methods for more details on phenotype transformation). The next column indicates the p-value for each association, and the triangle
direction indicates whether the association had a positive (triangle pointed to the left) or negative direction of effect (triangle pointed to the right).
The following columns indicate magnitude of the effect (beta), the coded allele frequency (CAF), and the sample size for the association.

doi:10.1371/journal.pgen.1004678.9g002

only the most statistically significant result. We detail all
association results meeting our PheWAS criteria for replication
in S2, S3, and S4 Tables and Table 3.

Replication of Known Results

As a positive control, we first sought evidence for associations
that replicate findings from the literature. Replication of previously
reported associations validates our PheWAS pipeline and data
integrity. Thirty-nine out of the 69 (56.5%) of our PheWAS
assoclations have previously been described in the literature with
the same direction of effect, and our results for these associations
are presented in S2 and S3 Tables as well as visualized in Fig. 2. A
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proportion of the phenotypes could have phenotypic harmoniza-
tion such that we could explore the association result for the
phenotype across both surveys, NHANES III and Continuous
NHANES, which we refer to as NHANES Combined. A
Combined NHANES result was not available for every phenotype,
as not all phenotypes could be harmonized across both surveys
even if phenotypes could be binned into phenotype classes across
both surveys. Our result tables contain this NHANES Combined
information when available.

The majority of the SNPs within our study (51 out of 80), but not
all of the SNPs, were chosen for genotyping based on published lipid
trait genetic association studies (for example, [10-12]), and of these,
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Fig. 3. Related results for PheWAS. This is a plot of SNP-phenotype associations observed in both NHANES Ill and Continuous NHANES with p-
value <0.01, for SNPs with an allele frequency >0.01, and a sample size >200, for the same race-ethnicity, phenotype-class, and direction of effect.
Plotted are results where the significant SNP-phenotype association is closely related to the phenotype of a previously reported SNP-Phenotype
association. The first column indicates the chromosome and bp location of the SNP. The second column indicates the SNP ID, the associated
phenotype-class, the self-reported race-ethnicity (NHW = Non-Hispanic Whites, NHB = Non-Hispanic Blacks, or MA = Mexican Americans), and the
coded-allele. The next column contains a colored box if association results were available for natural log transformed Continuous NHANES
phenotypes (Continuous NHANES In+1), un-transformed Continuous NHANES phenotypes, NHANES Il untransformed phenotypes (NHANES llI), or
transformed NHANES Il phenotypes (NHANES Ill In+1) (see methods for more details on phenotype transformation). The next column indicates the p-
value for each association, and the triangle direction indicates whether the association had a positive (triangle pointed to the left) or negative
direction of effect (triangle pointed to the right). The following columns indicate magnitude of the effect (beta), the coded allele frequency (CAF), and
the sample size for the association.

doi:10.1371/journal.pgen.1004678.g003

19/23 lipid-associated SNPs were associated with lipid traits in this cholesterol levels in non-Hispanic whites from NHANES III
PheWAS. For example, total cholesterol levels and LDL cholesterol (p=0.0050, B=-0.012, n=2,436) and Continuous NHANES
levels have been previously associated with the SNP rs646776 near (p=0.0053, p=—0.015, n=13,966). In the larger sample size of
CELSR2 in European-descent populations [13-15]. In this Combined NHANES, this association with total cholesterol levels was
PheWAS, we observed a significant association between rs646776 maintained (p=1.1 x107 %, f=—0.014, n=16,404). Given that total
(coded allele G) and total cholesterol levels in NHANES III cholesterol includes HDL-C and that HDL-C is inversely correlated
(p=38.17x10"°% B=—7.66, n=2,224) and Continuous NHANES with triglycerides [18,19], this PheWAS finding was also expected.
(p=9.15x10"7, B=—0.014, n=3,943) for non-Hispanic whites

with the same direction of effect as the association previously Novel Associations

reported for this SNP and LDL cholesterol levels. The association The remainder of the Phe WAS results with phenotypes that did
between rs646776 and total cholesterol remained significant in not match previously reported SNP-phenotype associations had
Combined NHANES (p=1.0x10""% = —0.029, n=6,389). phenotypes very distinct from previously reported phenotypes. A
total of 21/69 (~30%) PheWAS results are potentially novel

Related Associations findings. These are associations with a greater divergence between
After determining results where the phenotype of our associa- the previously associated phenotype for a given SNP and the
tion matched that of the same SNP-phenotype association in the associated phenotype found in this study (Table 3). We found
GWA catalog, we evaluated whether any of our phenotypes were novel results for all three racial/ethnic groups. However, only one
extremely similar to previously published SNP-phenotype associ- novel result meeting our Phe WAS significance criteria generalized
ations. There were a total of 9/69 (~13%) PheWAS results where across two or more populations showing the same direction of
the SNPs had been previously associated with lipid measurements effect: protoporphyrin levels in both non-Hispanic whites and

not exactly matching the respective lipid measurements of our Mexican Americans for the ABCG2 SNP rs2231142 (coded allele
study (S4 Table and Fig. 3). For example, the SNP rs515135 near Q). Of the replicating measures for protoporphyrin levels, the most
APOB/KLHL29 has been previously reported to be associated significant results for this association in Mexican Americans for
with LDL cholesterol (LDL-C) levels in European-descent NHANES III was: p=2.61x 1077, B=-0.075, n=2,029, for
populations [16,17]. In this PheWAS, rs515135 (coded allele G) Continuous NHANES was: p=2.0x10"*, B=—0.079, n=968,
was assoclated with total cholesterol levels in non-Hispanic whites. and for Combined NHANES: p=9.41x10"% PB=-5.1,
For this SNP, the most significant results meeting our PheWAS n=3,897. The most significant result for this association in non-
replication criteria from NHANES IIT were: p=0.0024, B =4.85, Hispanic whites was for NHANES III: p =6.0 % 107%, p=—0.062,
n=2,569 and Continuous NHANES were: p= 1.06x1072, n=2,587 and for Continuous NHANES was: p= 6.6x107%
B=0.026, n=3959. This variant was also associated with total B=—0.06, n=1,667. This SNP was previously associated with
cholesterol levels in Combined NHANES (p=1.39x107", uric acid [20-23]. We also found this SNP to be associated with

B=5.13, n=6,528). uric acid in non-Hispanic whites and Mexican Americans with the

Another example of a closely related association was for SNP same direction of effect as previously reported associations, as well
157557067 near APOB, previously found to be associated with as an additional novel result for blood pressure measurements only
triglyceride levels in European-descent populations [17]. In this in Mexican Americans with an opposite direction of effect. The
PheWAS, 157557067 (coded allele G) was associated with total number of novel results was similar across race-ethnicities, even
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with the difference in sample size across non-Hispanic whites, non-
Hispanic blacks, and Mexican Americans that could affect power
for detection of novel associations.

An example novel result showing a very unique divergence from
previously reported associations was for the SNP rs11206510
(coded allele T) near the gene PCSK9Y. This SNP has been
previously associated with coronary heart disease [24], LDL-C
[16,17,25], and myocardial infarction [26] in European-descent
populations, but we did not replicate any of those previously
reported associations. In this study we found this SNP was
associated with serum globulin levels in Mexican Americans from
NHANES III (p=0.0095, B=0.0120, n=2,023), Continuous
NHANES (p=0.0042, B=0.012, n=1871), and Combined
NHANES (p=8.7x 107 Bp=0.015, n= 3,894). We contrasted
the direction of effect of this SNP with the previously reported
associations for this SNP and the direction of effect was the same.

Another example of novel divergence from previously reported
results involved two SNPs we found to be associated with white
blood cell count in non-Hispanic blacks. The SNP rs1800795
(coded allele G) near /L6 previously was associated with C-reactive
protein levels [27-29]. In our study, this SNP was associated with
white blood cell counts in non-Hispanic blacks from NHANES III
(p=0.0047, B=-0.34, n=2038) and Continuous NHANES
(p=0.0048, B=-0.071, n=1,316). We also found that
rs4355801 in TNFRSFI1B was associated with white blood cell
counts in non-Hispanic blacks from NHANES III (p =0.0036,
B=0.30, n=6,991), Continuous NHANES (p =0.0079, = 0.378,
n=3,728), and Combined NHANES (p=5.77x107°, B=0.042,
n=3,411). Previously, TNFRSFIIB rs4355801 (coded allele G)
was associated with bone mineral density in women of European-
descent [30]. We did not observe a significant Phe WAS association
with C-reactive protein or bone mineral density in our study for
these two SNPs, respectively.

We found a total of six novel PheWAS-significant results
associated with circulating vitamin levels (vitamin E, vitamin A,
and folate). For example, a PheWAS-significant association for the
missense SNP rs1260326 (coded allele T) in the gene GCKR was
found with vitamin A levels in non-Hispanic whites from
NHANES III (p=6.1x10"°, p=1.30, n=2,250), Continuous
NHANES (p=1.11x10"*, p=2.34, n=1,639), and Combined
NHANES (p=1.06x10"°, B=1.65, n=4,189). This SNP was
previously associated with serum albumin levels and serum total
protein levels in European- and Japanese-descent individuals [31],
non-albumin protein levels in Japanese-descent individuals [32],
platelet counts [33], cardiovascular disease risk factors [34], C-
reactive protein levels [35], urate levels [20], total cholesterol and
triglyceride levels [36], and chronic kidney disease [37] in
individuals of European ancestry, and liver enzyme levels in
European- and Asian-descent populations [38]. None of these
previously reported associations replicated in our study. We
compared the positive direction of effect of this SNP rs1260326,
associated with vitamin levels, with previously reported associa-
tions. Associations with the same coded allele (1) with urate levels
[20], serum albumin levels [31], serum total protein levels [31],
platelet counts [33], liver enzyme levels[38], cardiovascular disease
risk factors [34], C-reactive protein levels [35], total cholesterol
and triglyceride levels [36], chronic kidney disease [37] all had a
positive direction of effect. This SNP was associated with non-
albumin protein levels [32] with a negative direction of effect.

Identification of Pleiotropy

While any of the novel PheWAS associations indicate potential
pleiotropy as all of the SNPs of this study have previously reported
genome-wide associations, within our study, we found 13 SNPs
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with more than one significant PheWAS phenotype class (Table 4
and Fig. 4). While the majority of these were SNPs were associated
with more than one lipid phenotype, there were nine SNPs
assoclated with other phenotypes.

For example, the missense SNP in ABCG2 rs2231142, also
described in novel results, was found to have two novel
associations, protoporhyrin (in non-Hispanic whites and Mexican
Americans) and blood pressure levels (Mexican Americans), and
one replication of a previously known association with uric acid
levels (non-Hispanic whites and Mexican Americans). The results
for this SNP are plotted in Fig. 5.

For another example, rs2338104, an intronic SNP in KCTDI0,
which was previously associated with HDL cholesterol (HDL-C) in
European-descent populations [17,25], was associated here with
hemoglobin and hearing levels, both novel results in non-Hispanic
whites (Fig. 6). Another example of potential pleiotropy was for
SNP rs1800588 near LIPC, previously associated HDL-C in
European-descent populations [15]. We observed significant
assoclations between this SNP and the novel phenotypes of folate
(in Mexican Americans) and vitamin E levels (in non-Hispanic
whites), as well as replication for cholesterol and the related
phenotype of triglycerides (both in non-Hispanic whites; Fig. 7).
The intronic SNP rs174547 of FADSI provides another example.
This SNP was previously associated with phospholipid levels [39],
resting heart rate [40], phosphatidylcholine levels [41], HDL-C
and triglyceride levels [17] in individuals of European ancestry.
Here, this SNP is associated with ferritin levels in Mexican
Americans and with folate levels in non-Hispanic blacks.

To further characterize these putative pleiotropic relationships,
we compared and contrasted direction of effect for each
association (Table 4). We found variants related to potentially
protective effects for certain traits, and a potential risk effects for
other traits. For example, intergenic SNP rs12678919 near LPL
was associated with HDL cholesterol levels in non-Hispanic whites
with a positive direction of effect and hearing in non-Hispanic
blacks with a negative direction of effect (coded allele G). Intronic
SNP rs174547 in FADSI was associated with ferritin levels in
Mexican Americans with a positive direction of effect and folate (in
non-Hispanic blacks) and triglycerides (in non-Hispanic whites)
with a negative direction of effect (coded allele T). The intronic
SNP rs6855911 in SLC2A9 was associated with uric acid (in both
non-Hispanic blacks and Mexican Americans) with a negative
direction of effect and thigh circumference measurements (non-
Hispanic blacks) with a positive direction of effect (coded allele G).

Investigating Interrelationships within PheWAS Results

PheWAS-significant results provide an opportunity to explore
the relationships between SNPs, genes, traits/outcomes, and
pathways or other known relationships between genes and gene-
products. We used the software tool Biofilter to identify the genes
the PheWAS-significant SNPs were within or closest to. We then
used Biofilter to annotate the resultant genes using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [42], Gene-
Ontology (GO) [43], and NetPath [44] which allowed us to
identify any known connections between genes due to shared
biological pathways or other known biological connections. After
stratifying the results by race-ethnicity, we used Cytoscape [45] to
visualize the connections between genes based on their annotation.
We present here the networks where there were two or more SNPs
significant in our PheWAS connected via genes and those two or
more genes were connected by a pathway or other gene-gene
connection.

For example, Fig. 8 shows one example for PheWAS results in
Mexican Americans, where LPL SNP rs328 had a significant
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Table 4. Pleiotropic results.

Previously Published What

Nearest Distance Coded Phenotype (NHGRI Gene

Gene to Gene SNP Allele Regulatory Evidence Context GWAS Catalog) (BF) Phenotype-Classes

LPL 19452 rs12678919 G no Intergenic HDL Cholesterol, N/A HDL-Cholesterol

Triglycerides (NHW +), Triglycerides
(NHW +)
APOB 21376 rs562338 T no Intergenic LDL Cholesterol N/A Cholesterol (NHW -),
Hearing (NHB +)
FADS1 0 rs174547 T 6: Minimal binding intron Resting heart rate, HDL ~ FADS1 Ferritin (MA +), Folate
evidence, motif hit cholesterol, Metabolic (NHB -), Triglycerides
traits, Phospholipid levels (NHW -)
(plasma), Metabolite
levels, Triglycerides, Lipid
metabolism phenotypes

KCTD10 0 rs2338104 G 6: Minimal binding intron HDL Cholesterol KCTD10 Hearing (NHW +),
evidence, motif hit Hemoglobin (NHW -)

GCKR 0 rs780094 G 3a: Less likely to affect intron Metabolic syndrome, GCKR Glucose (MA +),
binding, TF binding Phospholipid levels Potassium intake
+ any motif + DNase (plasma), Triglycerides, (MA -), Vitamin B6
peak Fasting glucose-related intake (MA -)

traits, LDL cholesterol,
Fasting insulin-related
traits, Uric acid levels,
Metabolic traits,
C-reactive protein

SLC2A9 0 rs6855911 G no intron Urate Levels SLC2A9 Kidney (Uric Acid)

(MA, NHB, -), Body
measurements (NHB +)

CELSR2 152 rs646776 G 1f: Likely to affect nearGene-3 Coronary heart disease,  N/A Cholesterol (MA,
binding and linked to Response to statin NHB, NHW -), LDL
expression of a gene therapy, Cholesterol, total, Cholesterol (MA -)
target, eQTL + TF Progranulin levels,
binding/DNase peak Myocardial infarction

(early onset), LDL
cholesterol

ZNF259 359 rs964184 G 1f: Likely to affect nearGene-3 Cholesterol, total, LDL N/A Cholesterol (MA,
binding and linked to cholesterol, Phospholipid NHW +), Triglycerides
expression of a gene levels (plasma), (MA, NHW +), Vitamin
target, eQTL + TF Hypertriglyceridemia, E (MA, NHW, +)
binding/DNase peak Vitamin E levels, Metabolic

syndrome, Triglycerides,
Lipoprotein-associated
phospholipase A2 activity
and mass, HDL cholesterol,
Coronary heart disease

LIPC 500 rs1800588 T 4: Minimal binding nearGene-5 HDL cholesterol N/A Cholesterol (NHW +),
evidence, TF binding Folate (MA -),

+ DNase peak Triglycerides (NHW +),
Vitamin E (NHW +)

ABCG2 0 rs2231142 C 5: Minimal binding STOP-GAIN Uric acid levels, Urate ABCG2 Blood Pressure
evidence, TF binding levels (diastolic) (MA +),
or DNase Peak Kidney (Uric Acid) (MA,

NHW -),
Protoporphyrin (MA,
NHW -)

LPL 0 rs328 G 5: Minimal binding STOP-GAIN HDL cholesterol, LPL HDL Cholesterol (MA,
evidence, TF binding Triglycerides NHW +), Triglycerides
or DNase Peak (NHW -)

CELSR2 0 rs12740374 T 4: Minimal binding UTR-3 LDL cholesterol, Coronary CELSR2 Cholesterol (MA, NHB,
evidence, TF binding heart disease NHW -), LDL
+ DNase peak Cholesterol (MA, NHB -)

BUD13 0 rs28927680 G no UTR-3 Triglycerides BUD13 Triglycerides (MA, NHW

-), Vitamin E (NHW -)

These are the SNPs of this study that had a PheWAS significant association with more than one phenotype. Results marked with a star in the phenotype-class column

indicate they are a novel result for this study, not a “related” or replicating result.

doi:10.1371/journal.pgen.1004678.t004
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PheWAS in the EAGLE Study
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Fig. 4. Potentially pleiotropic results. These are the PheWAS-significant results of this study with more than one distinct phenotype-class
associated with the same SNP. This is a plot of SNP-phenotype associations observed in both NHANES IIl and Continuous NHANES with p-value <
0.01, for SNPs with an allele frequency >0.01, and a sample size >200, for the same race-ethnicity, phenotype-class, and direction of effect. Plotted
are results where the significant SNP-phenotype association matches a previously reported SNP-Phenotype association. The first column indicates the
chromosome and bp location of the SNP. The second column indicates the SNP ID, the associated phenotype-class, the self-reported race-ethnicity
(NHW = Non-Hispanic Whites, NHB = Non-Hispanic Blacks, or MA = Mexican Americans), and the coded-allele. The next column contains a colored
box if association results were available for natural log transformed NHANES Il phenotypes (NHANES IIl In+1), un-transformed NHANES Il phenotypes
(NHANES 111), or natural log transformed Continuous NHANES phenotypes (Continuous NHANES In+1) (see methods for more details on phenotype
transformation), or untransformed Continuous NHANES phenotypes. The next column indicates the p-value for each association, and the triangle
direction indicates whether the association had a positive (triangle pointed to the left) or negative direction of effect (triangle pointed to the right).
The following columns indicate magnitude of the effect (beta), the coded allele frequency (CAF), and the sample size for the association.

doi:10.1371/journal.pgen.1004678.9g004

association with HDL-C levels, and the FADS1 SNP rs17547 had
an association with ferritin levels. Both genes are found in the
TGF-B receptor regulated NetPath pathway. Fig. 9 shows another
example in Mexican Americans in which three SNPs were
assoclated with uric acid levels: rs2231142, rs7442295, rs685911.
One of the SNPs is located within the gene ABCG2, and the other
two SNPs are located within SLC2A49 (blue boxes). Both ABCG2
and SLC2A9 are found within the GO biological process “urate
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metabolic process”, a collection of the gene products involved in
the chemical reactions and pathways involving urate. These same
connections were also found for non-Hispanic whites, as this group
had a PheWAS-significant association between these SNPs and
uric acid levels. One of the SNPs, rs2231142, was also associated
with diastolic blood pressure and protoporphyrin levels.

Fig. 10 displays an example using KEGG and the Mexican
American PheWAS results. LPL and LIPC both are involved in
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Results for rs2231142
NHANES 9902: Uric acid (mg/dL) (NHW) -
4.6e-09

NHANES 9902: Protoporphyrin (ug/dL RBC) (NHW) - NHANES 9902: Uric acid (umol/L) (NHW) -

. NHANES 9902: LN+1 Uric acid (mg/dL) (NHW) -
NHANES 9902: Protoporphyrin (umol/L RBC) (NHW) - NEIAKES 9805 TN Uric(:;% (u:n(oVL) ()NHW) )

NHANES IIl: LN+1 K5 for third BP measure (diastolic, nmHg) (MA) + NHANES I1I: LN+1 Protoporphyrin (ug/dL RBC) (MA) -
NHANES III: K5 for third BP measure (diastolic. nmHg) (MA) + NHANES IIl: LN+1 Overall average K5, diastolic, BP(age5+) (MA) +
NHANES 9902: Diastolic: Blood pres(3rd rdg) mm Hg (MA) + NHANES III: Overall average K5, diastolic, BP(age5+) (MA) +
NHANES III: Protoporphyrin (umol/L RBC) (MA) - NHANES Ill: Uric acid (umol/L) (NHW) -

NHANES III: Protoporphyrin (ug/dL RBC) (MA) -
NHANES 9902: Protoporphyrin (ug/dL RBC) (MA) -

NHANES 9902: Protoporphyrin (umol/L RBC) (MA) -
NHANES 9902: LN+1 Protoporphyrin (umol/L RBC) (NHW) -
NHANES I11:K5 for second BP measure(diastolic, nmHg) (MA) +

NHANES IlI: Serumuricacid (umol/L) (NHW) -
NHANES III: Uric acid (mg/dL) (NHW) -
NHANES III: Serumuricacid (mg/dL) (NHW) -

NHANES IIl: LN+1 Protoporphyrin (ug/dL RBC) (NHW) -

NHANES 9902: LN+1 Uric acid (umol/L) (MA) -
NHANES 9902: LN+1 Protoporphyrin (ug/dL RBC) (NHW) - |

NHANES I1l: LN+1 Protoporphyrin (umol/L RBC) (MA) -
T NHANES IIl: LN+1 :Protoporphyrin (umol/L RBC) (MA) -

\ NHANES IIl: LN+1 Protoporphyrin (umol/L RBC) (NHW) -

NHANES IlI: LN+1 Uric acid (mg/dL) (NHW) -

NHANES 9902: LN+1 Uric acid (mg/dL) (MA) -
NHANES 9902: LN+1Protoporphyrin (umol/L RBC) (MA) -
NHANES Ill: Uric acid (umol/L) (MA) -

o NHANES IIl: LN+1 Serumuricacid (mg/dL) (NHW) -
NHANES III: Serumuricacid (umol/L) (MA) - NHANES I11: LN+1 Uric acid (umolL) (NHW) -
NHANES III: Uric acid (mg/dL) (MA) - '
NHANES III: LN+1 Serumuricacid (umol/L) (NHW) -
NHANES IlI: Serumuricacid (mg/dL) (MA) -

NHANES IlI: Protoporphyrin (umol/L RBC) (NHW) -

NHANES III: LN+1 K5 for second BP measure(diastolic nmHg) (MA) + NHANES Il Protoporphyrin (ug/dL RBC) (NHW) -

NHANES 9902: LN+1 Protoporphyrin (ug/dL RBC) (MA) - NHANES III: LN+1 Serumuricacid (umol/L) (MA) -
NHANES 9902: Uric acid (mg/dL) (MA) - NHANES IIl: LN+1 Uric acid (umol/L) (MA) -
NHANES 9902: Uric acid (umol/L) (MA) - NHANES IIl: LN+1 Uric acid (mg/dL) (MA) -

NHANES IIl: LN+1 Serumuricacid (mg/dL) (MA) -

Fig. 5. Sun plot of (p<0.01) results for ABCGrs2231142, coded allele C. This SNP has been previously reported to be associated with uric acid
levels. Significant SNP-phenotype associations (p<<0.01) are plotted clockwise with the smallest p-value result at the top. The length of the each line
corresponds to the -log(p-value) of each result, with the longest line representing the most significant result for this SNP, meeting our PheWAS
replication criteria for inclusion. Study, transformed (LN +1) or untransformed (none) phenotype description, self-reported race-ethnicity, and
direction of effect are listed for each association. This SNP was associated with a number of phenotypes in this study including uric acid levels (as
previously published) in non-Hispanic whites (NHW) and Mexican Americans (MA), protoporphyrin levels in non-Hispanic whites and Mexican
Americans, and diastolic blood pressure in Mexican Americans.

doi:10.1371/journal.pgen.1004678.9g005

Results for rs2338104

NHANES IIl: LN+1 Mean cell hemoglobin (pg) (NHW) -
0.002

NHANES 9902: Right threshold @ 500Hz (NHW) + NHANES Ill: LN+1 Meancellhemoglobin (pg) (NHW) -

NHANES Ili: Rightearairhearlvl,repeat,1000Hz(dB) (NHW) + NHANES Ill: Mean cell hemoglobin (pg) (NHW) -

NHANES III: Right Threshold @ 1000Hz-Second Reading (NHW) + NHANES Il Meancellhemoglobin (pg) (NHW) -

NHANES 9902: Mean cell hemoglobin (pg) (NHW) - NHANES 9902: LN+1 Mean cell hemoglobin (pg) (NHW) -

NHANES 9902: Mean Cell Hemoglobin Concentration (MCHC) (g/dL) (NHW) - NHANES 9902: LN+1 Mean Cell Hemoglobin Concentration (MCHC) (g/dL) (NHW) -

Fig. 6. Sun plot of (p<<0.01) results for KCTD70rs2338104, coded allele G. This SNP was previously associated with HDL-C levels. Significant
SNP-phenotype associations (p<<0.01) for this study are plotted clockwise with the smallest p-value result at the top. The length of the each line
corresponds to the -log(p-value) of each result, with the longest line representing the most significant result for this SNP, meeting our PheWAS
replication criteria for inclusion. Study, transformed (LN +1) or untransformed (none) phenotype description, self-reported race-ethnicity, and
direction of effect are listed for each association. This SNP was associated with mean cell hemoglobin levels, as well as right ear hearing levels in non-
Hispanic whites (NHW).

doi:10.1371/journal.pgen.1004678.9006
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Results for rs1800588

NHANES Ill: LN+1 Serumtriglycerides(mg/dL) (NHW) +
2.9-05

NHANES IlI: Serumfolate(ng/mL) (MA) =
NHANES Ill: Serum folate (ng/mL) (MA) -
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rs1800588

NHANES IIl: LN+1 Triglyceride (mg/dL) (NHW) +

NHANES IlI: Cholesterol, Total(mg/dL) (NHW) +
NHANES IlI: Total cholesterol (mmol/L) (NHW) +

[ / NHANES |lI: Total cholesterol (mg/dL) (NHW) +

/r NHANES IIl: LN+1 Serumtriglycerides:SI(mmol/L) (NHW) +
/ / /
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Fig. 7. Sun plot of (p<0.01) results for L/PC rs1800588, coded allele T. This SNP was previously associated HDL-C in European-descent
populations. Significant associations (p<<0.01) are plotted clockwise with the most significant value result at the top. The length of the each line
corresponds to the -log(p-value) of each result, with the longest line representing the most significant result for this SNP, meeting our PheWAS
replication criteria for inclusion. Study, transformed (LN +1) or untransformed (none) phenotype description, self-reported race-ethnicity, and
direction of effect are listed for each association. This SNP was associated with a number of phenotypes including folate in Mexican Americans (MA),
total cholesterol in non-Hispanic whites (NHW), triglyceride levels in non-Hispanic whites, and vitamin E levels in non-Hispanic whites.

doi:10.1371/journal.pgen.1004678.g007

the KEGG biological process “glycerolipid metabolism”. LPL
SNP rs328 was associated in this study with HDL-C, while LIPC
SNP rs1800588 was associated with folate levels. LPL was also
involved in the KEGG pathway “Peroxisome Proliferator-
Activated Receptor (PPAR) signaling pathway”, along with
APOAS, which was associated with triglyceride levels through its
SNP rs3135506. PPARs are transcription factors activated by
lipids.

Discussion

For this PheWAS, performed using the data of NHANES, we
have replicated a number of previously published results and have
found novel and pleiotropic associations. For example, for
rs2231142, a missense SNP in ATP-binding cassette subfamily G
member 2 (ABCG2), we replicated previous associations with uric
acid levels observed in European-descent populations and in
Mexican Americans with the same direction of effect. Additionally,
we identified a novel association for this SNP with protoporphyrin
in both the European-descent population and Mexican Ameri-
cans, where the coded allele (C) was associated with increased uric
acid levels as well as increased protoporphyrin. This PheWAS
finding is intriguing in light of some of the known connections that
link protoporhyrin with uric acid levels, suggesting the potential
for this SNP to have an impact on the levels of one or both
resulting in the associations identified here. Protoporhyrin
combines with heme to form iron-containing proteins. This gene
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is in the bile secretion pathway [42], and bile consists of substances
including bilirubin, which is converted from heme/porphyrin
[43]. Thus, the observed association is consistent with a known
biological process. There is also a known correlation between
ferritin levels and uric acid levels, and urate forms a coordination
complex with iron to diminish electron transport, acting as an iron
chelator and antioxidant [46]. This correlation implies an
expected link between protoporphyrin and uric acid association
results; however, we did not observe an association with ferritin
levels in this study for this SNP.

The PheWAS significant association between rs2231142 and
blood pressure levels was only observed in Mexican Americans.
However, the direction of effect is opposite as seen for uric acid
levels and protoporphyrin. There is a demonstrated positive
correlation between high blood pressure and high serum uric acid
levels [44,45], but the relationships between rs2231142 and
diastolic blood pressure compared with serum uric acid levels in
our study were inconsistent, suggesting an independent relation-
ship between this SNP and the two phenotypes. Thus, this is an
example of the novel discoveries that can occur with the PheWAS
approach that would not be found through only investigating the
association between multiple SNPs and a single trait outcome or
phenotype.

Another intriguing result was for rs2338104, an intronic SNP in
the potassium channel tetramerisation domain containing 10
(KCTDI10) gene, which is a member of the polymerase delta-
interacting protein 1 gene family. KCTDI10 has been previously

December 2014 | Volume 10 | Issue 12 | 1004678



rrit|

rsd74547

FADS1

LPL

Fig. 8. Using PheWAS results, Biofilter, and Cytoscape to
explore gene-gene connections with NetPath. We used Biofilter
to annotate the SNPs of this PheWAS with gene information. We then
mapped the genes to concomitant pathways or other gene groupings
through GO, KEGG, and NetPath. This is one example for the results for
Mexican Americans and annotation with NetPath. The pink diamonds
are associated phenotypes of this PheWAS, the green hexagons are
SNPs, blue boxes are genes, and circles are biological connections that
link genes together, in this case the two genes are in the same TGF
NetPath biological pathway. Thus, we see that in the PheWAS results,
the LPL SNP rs328 had a significant association with HDL cholesterol
levels, and FADST rs17547 association with Ferritin levels, and both
genes are found in the TGF beta receptor pathway.
doi:10.1371/journal.pgen.1004678.g008

associated with DNA synthesis/cell proliferation [46], HDL
cholesterol levels [13,21], and interaction with an ubiquitin ligase
[47]. In this study, KCDT10 rs2338104 was associated with right
ear hearing levels and mean cell hemoglobin levels in non-
Hispanic whites. The biological function of KCDT10 has not been
extensively studied; consequently, biological explanations for the
relationship between this variant and hearing or mean cell
hemoglobin do not yet exist.

Novel associations for hematologic traits were found in this
PheWAS. The SNP rs1800795 near gene interleukin 6 (IL6) and
rs4355801 in tumor necrosis factor receptor superfamily, member
11b (TNFRSF11B) had significant association with white blood
cell counts in non-Hispanic blacks. There are known associations
between hematologic traits and genetic variants on chromosome 1
in African Americans, spanning a wide region of chromosome 1
[47]. This region of association is due to the presence of the
African-derived Duffy Null polymorphism, a genetic variant
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protective against Plasmodium vivax malaria. Presence of this
variant explains the lower white blood cell and neutrophil counts
in African Americans [48]. However, neither rs1800795 nor
rs4355801 are located on chromosome 1 and therefore represent
potentially unique associations with hematologic traits.

Further novel associations with circulating vitamin levels were
found. The SNP rs1260326 was associated with vitamin A in non-
Hispanic whites. Vitamin E was associated with rs13266634,
1528927680, and rs1800588 in non-Hispanic whites and rs964184
in non-Hispanic whites and Mexican Americans. Additionally,
folate levels were associated with rs174547 in non-Hispanic blacks
and rs1800588 in Mexican Americans. When considering the
direction of effect for the vitamin levels, we found that rs174547,
an intronic SNP in fatty acid desaturase 1 (FADSI), was
associated with ferritin and iron levels with different direction of
effect in Mexican Americans. Conversely, vitamin E showed the
same direction of effect as triglycerides. Recent findings indicate a
potential relationship between vitamin L intake and triglyceride
levels for certain SNPs [49]. Thus, these results may be reflective
of an interaction between variability in vitamin E intake and
genetic variance.

Other SNPs with pleiotropic effects showed associations with
different directions of effect. For example, rs780094 in the intron
of glucokinase regulator (GCKR) was associated with serum
glucose levels with a positive direction of effect (0.67) and
potassium and vitamin B6 intake levels with a negative direction
of effect (B=-0.05 and —0.11, respectively) in Mexican
Americans. This result is consistent with the demonstrated inverse
relationship between potassium intake and glucose intolerance
[50]. Likewise, glucose tolerance has been found to increase upon
vitamin B6 supplement intake in women with gestational diabetes
mellitus [51,52]. One possibility, requiring further investigation, is
that this SNP modulates the effect of vitamin B6 and potassium on
glucose levels.

Fourteen of our results showed both a significant PheWAS
association and the same direction of effect for a different race-
ethnicity. We did not investigate non-significant results with a
similar direction of effect for this study. We evaluated the
differences in allele frequency across the two surveys, across
race-cthnicity, for the SNPs that met our criteria for PheWAS
replication (S5 Table). There were not consistent trends between
similar or markedly different allele frequencies and whether we did
or did not see the same SNP-phenotype associations across more
than one race-ethnicity. The reason for differences in association
may lie in the variation between linkage disequilibrium patterns
across populations. Additionally, as genetic architecture can vary
across different race-ethnicities, there is the potential for finding
novel associations that exist in only one population. Low power
due to sample size could have also contributed to fewer significant
associations in non-Hispanic black and Mexican American
populations, when compared to non-Hispanic whites, as the
sample sizes were generally smaller. Further, phenotypic outcome
is impacted by both genetic variation and environmental exposure
variation, and thus some associations may not replicate across
race-ethnicity in part due to potentially different environmental
exposure across racial/ethnic groups. Also, there are differences in
the median age across race-ethnicity for the two surveys that could
contribute to being unable to detect SNP-phenotype associations
across different race-ethnicities.

We found examples of gene-gene connections that link our
PheWAS results from the SNP to gene to pathway level. These
examples show the utility of applying known information about
genes to provide biological context for individual PheWAS results
through visually linking the information together. Multiple
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Fig. 9. Using PheWAS results, Biofilter, and Cytoscape to explore gene-gene connections with GO biological processes. Three SNPs
were associated with uric acid levels in Mexican Americans: rs2231142, rs7442295, rs685911 (green hexagons). One of the SNPs is within the gene
ABCG2, and the other two SNPs are within SLC2A9 (blue boxes). Both ABCG2 and SLC2A9 are found within the GO biological process “urate metabolic
process”, a collection of the gene products involved in the chemical reactions and pathways involving urate. This was also found for non-Hispanic

whites.
doi:10.1371/journal.pgen.1004678.g009

connections not readily apparent when exploring tabular results
can be highlighted with this approach. For example, Fig. 9 shows
three SNPs within two different genes that are within the GO
biological process of “urate metabolic process”, a group of gene
products involved in the chemical reactions and pathways
involving urate. These SNPs are all associated with uric acid
levels in our PheWAS. These SNPs have previously reported
associations with uric acid levels, and these genes are known to be
involved with pathways that contain urate. However, through
connecting phenotypes, SNPs, genes, and pathways, and visual-
izing the results, we can more clearly show how single genetic
variants are likely biologically linked to outcome variation.
Further, this example shows the SNP rs2231142 associated with
two other phenotypes, as described earlier in this discussion.

We also presented network results in Figs. 8, 9 and 10. The
results presented in Fig. 8 show two SNPs in different genes that
both are found in the TGF-B receptor regulated NetPath pathway.
This would not have been evident in the PheWAS without
applying annotation from known pathways. Fig. 10 shows one
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example of two genes involved in the KEGG biological process
“glycerolipid metabolism”. Here, one SNP is associated with
HDL-C levels, and, interestingly, a separate SNP in the network is
associated with folate levels. Plasma folate levels have been
associated with lipoprotein profiles [49]. Further, the LPL SNP
rs328 was associated in this study with HDL-C and is also involved
the KEGG pathway “Peroxisome Proliferator-Activated
Receptor (PPAR) signaling pathway”, along with a SNP in
APOAS5, which was associated with triglyceride levels. PPARs are
transcription factors activated by lipids. In the future we will
continue to use this network approach, to highlight both the
biological context that supports results found in PheWAS and the
biological annotation that may identify relationships that forge
new hypotheses about the connection between genetic variation
and complex outcomes.

One limitation to the current PheWAS approach is the risk of
false-positive associations due to the large number of tests for
association between SNPs and phenotypes. For this analysis, we
required replication of association results across NHANES to

in
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Fig. 10. Using PheWAS results, Biofilter, and Cytoscape to explore gene-gene connections with KEGG connections. The LIPC SNP
rs1800588 was associated with folate levels, the LPL SNP rs328 was associated with HDL cholesterol, and both of these genes are in the glycerolipid
metabolism KEGG pathway in Mexican Americans. The APOA5 SNP rs135506, associated with triglyceride levels in our study, shares the PPAR

signaling pathway along with LPL.
doi:10.1371/journal.pgen.1004678.9g010

reduce the type-1 error rate. Correcting for multiple hypothesis
testing to account for the comprehensive associations in Phe WAS,
and thus potentially inflated Type I error, based on the number of
tests/studies/groups can be problematic for multiple reasons.
Most multiple testing calculations assume independent tests, which
we do not have here as phenotypes are correlated across our
PheWAS studies. Also, our power from one result to another can
vary in part due to variations in sample size for the specific
phenotype. In addition we used phenotype-class binning of results
which results in different numbers of sub-phenotypes in each bin
for potential replication. Future work includes research into
identifying additional methods for multiple testing burden in
PheWAS, such as permutation testing. Another limitation to the
PheWAS approach is the high-throughput nature of the analysis.
For instance, adjustments were not made for participants on
medication that could modify or lower measurements such as
lipids. The results are considered preliminary and bear further
inquiry. However, it is notable that we observed replication of a
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number of previously published results with the same direction of
effect indicating that our high-throughput approach is functional
for a number of measures. Because we chose to seek replication
across NHANES surveys, we did not explore results unique to any
one survey.

A major strength of the PheWAS approach is the potential for
novel discoveries about genetic variants and their relation to
phenotypes for future investigation as well as to replicate results
found in GWAS. Phenome-wide associations provide the oppor-
tunity to uncover complex networks of phenotypes involved in
disease through tests of association between genetic variants and a
broad range of phenotypes. Ultilizing existing epidemiologic
collections such as the diverse NHANES allows for potential
generalization of variant-phenotype relationships across race-
ethnicities.

We have found novel associations for phenotypes such as white
blood cell count and vitamin levels for SNPs with different
previously known associations. We also have found indications of
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pleiotropy. Further, because this approach investigates single SNPs
with multiple phenotypes, results with contrasting direction of
effect can be investigated. We explored the results of this PheWAS
within the context of additional biological information including
the use of network diagrams. In addition, we were able to pursue
this across multiple race-ethnicities, whereas much of the approach
in GWAS has been within European Americans. The results
described here demonstrate the utility of the PheWAS approach to
expose relevant results that contrast what is known about the
relationships between multiple phenotypes and between genotype
and phenotype to uncover the complex nature of human traits.

Materials and Methods

Study Design and Populations

Two NHANES surveys [53] were included in the PheWAS
analyses. The epidemiological survey data and DNA samples of
NHANES III were collected between 1991-1994 and Continuous
NHANES was collected between 1999-2000 and 2001-2002. For
some of the phenotypes, harmonization across NHANES III and
Continuous NHANES was possible. Thus, for a subset of
phenotypes, we were able to use the two surveys combined in
analyses we refer to as NHANES Combined. NHANES measures
the health and nutritional habits of U.S. participants regardless of
health status across race-ethnicity, by collecting medical, dietary,
demographic, laboratory, lifestyle, and environmental exposure
data via questionnaire, direct laboratory measures, and a physical
exam. In NHANES, specific age groups (such as the young elderly)
and racial/ethnic groups are oversampled. The epidemiological
data of NHANES and the associated DNA samples were collected
by the National Center on Health Statistics (NCHS) at the Centers
for Disease Control and Prevention (CDC). All procedures were
approved by the CDC Ethics Review Board and written informed
consent was obtained from all participants. Because no identifying
information is available to the investigators, Vanderbilt Univer-
sity’s Institutional Review Board determined that this study met
the criteria of “non-human subjects.”

Genotyping and SNP Selection

For this study, EAGLE genotyped 80 GWAS-identified variants
in two NHANES datasets representing three surveys: NHANES
111, collected between 1991 and 1994, and Continuous NHANES,
collected between 1999-2000 and 2001-2002. The majority of the
SNPs within our study were chosen for genotyping based on
published lipid trait genetic association studies. Also included in
this study are SNPs previously associated with a range of other
phenotypes, and we detail information about these SNPs in SI
Table, including the genotyping method for each SNP (unless the
SNP was already available within NHANES before EAGLE
genotyping, and there we cite the lab that provided the genotypic
data to NHANES). Genotyping was performed in a total of 14,998
NHANES participants with DNA samples including 6,634 self-
reported non-Hispanic whites, 3,458 self-reported non-Hispanic
blacks, and 3,950 self-reported Mexican Americans. Genotypes
included in this study were accessed from (1) genotyping
performed using Sequenom by the Vanderbilt DNA Resources
Core, or (2) existing data in the Genetic NHANES database. In
addition to genotyping experimental NHANES samples, blinded
duplicates provided by CDC and HapMap controls (n=360) as
part of the PAGE study were also genotyped. Quality control,
which included concordance and Hardy Weinberg Equilibrium,
was performed on all SNPs by the CDC. All SNPs that passed
quality control are available for secondary analyses through
NCHS/CDC.
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Statistical Methods

Single SNP unadjusted tests of association were performed for
80 SNPs available in NHANES IIT and Continuous NHANES
and 1,008 phenotypes. When the exact phenotype was measured
in NHANES III and Continuous NHANES, the unadjusted tests
of association were also performed for all samples as part of
Combined NHANES. As outlined in the PAGE Study [7] tests of
association between all SNPs and phenotypes were performed
using linear or logistic regression, depending on whether the
phenotype was binary or continuous. For categorical phenotypes,
binning was used to create new variables of the form “A versus not
A” for each category, and logistic regression was used to model the
new binary variables. All continuous phenotypes were natural log
transformed, following a y to log (y+1) transformation of the
response variable with +1 added to all continuous measurements
before transformation to prevent variables recorded as zero from
being omitted from analysis. All analyses were stratified by self-
reported race-ethnicity. Analyses were performed remotely in SAS
v9.2 (SAS Institute, Cary, NC) using the Analytic Data Research
by Email (ANDRE) portal of the CDC Research Data Center in
Hyattsville, MD.

NHANES Phenotypes

A wide range of phenotypic variables was available for both
NHANES III and Continuous NHANES. We used only
phenotypes for this study that could be binned into phenotype
classes across more than one NHANES (see phenotype classes
section for more details), so that we could seek replication for
association results across surveys. The phenotypes of this study are
listed in S6 Table. Detailed information on the collection of each
of the phenotypes is available through the CDC, for NHANES III
(http://www.cdc.gov/nchs/nhanes/nh3data.htm) and for Con-
tinuous NHANES (http://wwwn.cdc.gov/nchs/nhanes/search/
nhanes_continuous.aspx)

Phenotype Classes

To facilitate comparisons across NHANES, similar phenotypes
from each of the NHANES were binned into 184 “phenotype-
classes” (Table 2) via manual inspection of one person and reviewed
by a second individual, similar to the phenotype binning of [4]. The
development of phenotype-classes was necessary for several reasons.
First, not all phenotypes and exposures were surveyed or collected in
the same way for each iteration of NHANES, and thus could not be
completely harmonized. However, some of these phenotypes were
similar enough across surveys and to be binned into the same
phenotype-class (for example, “Arm Circumference” and “Upper
Arm Length” were both binned in the “Body Measurements (Arm)”
phenotype-class). Second, when matching phenotypes and expo-
sures, the labels across and within NHANES vary even for the same
phenotypes. For example “Vitamin A” and “Serum Vitamin A”
both measured the same phenotype and thus were both classified in
the “Vitamin A” phenotype-class. For the majority of PheWAS
results, there were multiple significant NHANES measures for each
phenotype class, and we reported the lowest p-value in descriptions
of the PheWAS results within the figures and the results. Our list of
the phenotypes of this study also includes their respective phenotype
class, listed in S6 Table.

Threshold of Significance

A significant PheWAS result met all of the following criteria: 1)
a SNP-phenotype association was observed in both NHANES III
and Continuous NHANES, 2) with p-value <0.01, 3) allele
frequency >0.01, 4) sample size >200, 5) for the same race-
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ethnicity, 6) phenotype class, and 7) direction of effect. For each of
these consistent associations, we examined tests of association
results for Combined NHANES. Significant PheWAS results were
then plotted using Phenogram [50] and PheWAS-View([51],
software specifically developed for visualization of PheWAS results
(http:/ /ritchielab.psu.edu/ritchielab/software/). The expanded
results for all 69 results meeting our Phe WAS significance criteria
are presented in S2 Table.

Correlations between Phenotypes

We calculated pairwise Pearson correlations between all
phenotypes that had a significant PheWAS result, for NHANES
IIT and Continuous NHANES,; stratified by race-ethnicity. For any
significant PheWAS phenotype, we listed correlations for any
phenotypes with a correlation >0.6 with the significant Phe WAS
phenotype list.

We took the absolute value of the correlations and used the
statistical package R [52] to create a clustered heat map of the
correlations with color ranging from light yellow to dark blue. We
present our correlation matrices in S1-S6 Figures. The most
correlated phenotypes are shown in a light yellow color, the less
correlated a phenotype pair, the more blue on the heatmap.

Biofilter

Biofilter [53,54] is a software package that allows the user to
download and automatically integrate several different knowledge
databases into a single accessible database called the Library of
Knowledge Integration, and then run queries via Biofilter with the
resultant integrated data (https://ritchielab.psu.edu/ritchielab/
software/). We used Biofilter to annotate the SNPs of this study
with the location and identification of the nearest genes to each of
our SNPs, from NCBI dbSNP and NCBI Gene (Entrez) (http://
www.ncbinlm.nih.gov/). We also applied information from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [42], Gene
Ontology (GO) [43], and NetPath [44]. This allowed us to
highlight known connections between genes. Thus, we were able
to identify any biological pathway or grouping connections
between the genes SNPs were in or near in our study.

Cytoscape

After we used Biofilter to annotate the genes as described above,
we stratified the results by race-ethnicity. We used Cytoscape [45]
to visualize the connections between genes based on their
annotation. Using this visualization tool, we explored networks
where one or more SNPs were connected, via genes, to mutual
pathways or genes, and we did not further investigate any resultant
networks comprised of single SNPs.

RegulomeDB

RegulomeDB [55] was used to annotate PheWAS-significant
SNPs in this study with functional and regulatory information for
our analyses. The results of this analysis are included in Table 4.
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