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Abstract: We establish a general linear response relation for spiking neuronal networks, based on
chains with unbounded memory. This relation allow us to predict the influence of a weak amplitude
time dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics
(without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily
far in the past. Using this approach, we show how the linear response is explicitly related to the
collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike
train statistics. We illustrate our results with numerical simulations performed over a discrete time
integrate and fire model.

Keywords: neuronal network dynamics; spike train statistics; linear response; non-Markovian
dynamics; Gibbs distributions; maximum entropy principle

1. Introduction

Neurons communicate by short-lasting electrical signals called action potentials or
“spikes”, allowing the rapid propagation of information throughout the nervous system,
with a minimal energy dissipation [1]. The spike shape is remarkably constant for a given
neuron, and it is a contemporary view to consider spikes as quanta (bits) of information [2].
As a result, information is presumably encoded in the spike timing [3].

The simplest quantitative way to characterize the spiking activity of a neuron is its
firing rate r(t), where r(t)dt is the probability that this neuron spikes during a small interval
[t, t + dt]. Under the influence of an external stimulus the firing rate changes. A classical
ansatz, coming from the Volterra expansions [2] is to write the variation in the firing rate of
a neuron as the convolution form:

δ(1)[r(t)] = (K ∗ S)[t], (1)

where the exponent (1) recalls that we consider a first-order effect of the stimulus S, that is,
the stimulus is weak enough so that higher-order terms in the Volterra expansion can be
neglected. This is an example of linear response: the variation in the rate is proportional
to the stimulus. Here, K is a convolution kernel constrained by the underlying network
dynamics. For example, in sensory neurons, where S and K are functions of space and time,
the convolution (1) takes the explicit form:

(K ∗ S)[t] =
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ t

τ=−∞
K(x, y, t− τ)S(x, y, τ)dτdxdy, (2)

where K decays sufficiently fast at infinity (in space and time) to ensure that the integral
is well defined. K mimics the receptive field (RF) of the neuron. In general, the response
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of spiking neuronal networks to a time-dependent stimulus does not only affect rates, it
also has an impact on higher-order correlations between neurons, because neurons are
connected through synapses. This situation is sketched in Figure 1.

Figure 1. A time-dependent stimulus (A) is applied at time t0 to some neurons of a spiking neuronal network (B). As a
result, the spiking activity is modified as well as spike correlations between neurons (C), even for neurons not directly
stimulated, because of direct or indirect synaptic interactions. These are represented in the figure by the weights W .

In particular, sensory neurons collectively convey to the brain information about external
stimuli using correlated spike patterns resulting from the conjunction of stimulus influence,
intrinsic neurons dynamics and neurons interactions via synapses [4–8]. This correlated firing
has been linked to stimulus encoding [9], stimulus discrimination [10,11] and to intrinsic
properties of the network which remain in absence of stimulus [12]. However, disentan-
gling the biophysical origins of the correlations observed in spiking data is still a central
and difficult problem in neuroscience [2,13,14]. As a consequence, correlations in spiking
neuronal networks have attracted a considerable amount of attention in the last years, from
experimental data analysis perspectives [4,6,7,15] as well as from the theoretical modeling
viewpoint [1,16–20].

On one hand, novel experimental recording techniques such as Multi-Electrode Ar-
rays (MEA) permit the measurement of the collective spiking activity of larger and larger
populations of interacting neurons responding to external stimuli [21,22]. These recordings
allow, in particular, for better characterizations of the link between stimuli and the corre-
lated responses of a living neuronal network, paving the way to better understand “the
neural-code” [2]. Yet, neuronal responses are highly variable [13]. Even at the single neuron
level, when presenting repetitions of the same stimulus under controlled experimental
conditions, the neural activity changes from trial to trial [23,24]. Thus, researchers are
seeking statistical regularities in order to unveil a probabilistic, causal, relationship between
stimuli and spiking responses [4,5,7,25–27].

On the other hand, mathematical models of spiking neuronal networks offer a com-
plementary approach to biological experiments [13,14,28,29]. Based on bio-physically plau-
sible mechanisms describing the dynamics of neurons, mathematical modeling provides
a framework to characterize the population spike train statistics in terms of biophysical
parameters, synaptic connectivity, history of previous spikes and stimuli. The hope is that
understanding these aspects in a model may help to better the processing and extraction of
information from real data.
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In this article, we consider a spiking neuronal network model where the non-linear
dynamics and neurons interactions naturally produce spatio-temporal spikes correlations.
We assume that these neurons reach a stationary state without stimuli and from a given
time are submitted to a time-dependent stimulation (See Figure 1). How are the spatio-
temporal spike correlations modified by this stimulus? We address this question in the
context of linear response theory using methods from ergodic theory and so-called chains
with complete connections [30], extending the notion of Markov chains to infinite memory,
providing a generalized notion of Gibbs distribution. We show that spatio-temporal
response is written in terms of a history-dependent convolution kernel applied to the
stimuli, generalizing (2) to more general observables than rates. We compute explicitly this
kernel in a specific model example and analyze the validity of our linear response formula
by numerical means.

The linear response determines how the expectation value of an observable of a
dynamical system changes upon weakly perturbing the dynamics. The response of a
system, originally at equilibrium, to a time-dependent stimulus is proportional to the
stimulus, with coefficients obtained via correlation functions computed at equilibrium. The
theory we develop has its roots in non-equilibrium statistical physics (briefly reviewed in
Section 2.1). A seminal result in this context is the fluctuation–dissipation theorem [31],
where the linear response only depends on the correlation functions of the unperturbed
system. Our approach proceeds along similar lines, meaning that the linear response can
be predicted from the spikes correlations of the unperturbed system (stationary state). We
derive a result of this type for a discrete-time integrate and fire model addressing a central
question: which correlations matter and how they are related to synaptic interactions?
Among the applications of our results is the characterization of population receptive fields
in terms of the underlying synaptic connectivity, non-linear dynamics and background
activity, the prediction of higher-order correlations in the population responses to non-
stationary weak amplitude stimuli, assessing the role of the synaptic connectivity in motion
processing from the spiking response to, etc.

The paper is organized as follows. In Section 2, we briefly review linear response
in statistical physics and ergodic theory allowing us to make a link between neuronal
networks, considered as dynamical systems, and the statistics of spikes. We introduce the
formalism of chains with unbounded memory (which are, as we explain, equivalent to
left-sided one-dimensional Gibbs distributions), allowing the handling of non-stationary
spike distribution with unbounded memory. In Section 3, we derive the general linear
response Formula (16) used throughout the paper. This equation expresses the time-
dependent variation in the average of an observable f as a time series of specific correlation
functions computed with respect to spontaneous activity (without stimulus). This result,
reminiscent of the fluctuation-dissipation theorem in statistical physics [32,33], is applied
here to spike statistics. In Section 4 we introduce a spiking neuronal network model to
instantiate our analysis. This model has been presented in [34]. We associate the spiking
activity to a discrete stochastic process defined from transition probabilities where memory
is unbounded. These probabilities are written as a function of the parameters of the
model. We explicitly wrote a discrete-time form of the convolution kernel (1) as an explicit
function of the model parameters, especially synaptic weights. The expression relies
on a Markovian approximation of the chain and on a decomposition theorem of spike
observables, introduced in a more general context by Hammersley and Clifford in 1971 [35]
(see Section 2.2). In Section 5 we illustrate through an example our linear response theory
applied. In particular, we show how one can predict the variation in the firing rate and in
the delayed pairwise correlation between two neurons from the mere knowledge of the
stimulus and relevant spontaneous correlations. Finally, in Section 6 we discuss our results.
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2. Linear Response, Gibbs Distributions and Probabilistic Chains with
Unbounded Memory

Neuronal networks can be considered either as dynamical systems (when the dynam-
ics is known) or as spike generating processes characterized by transition probabilities
computed from spike train observations. In the first case, it is natural to seek a linear
response from dynamics itself, using approximations (e.g., mean-field [36]). In the second
case, one has to define a probability distribution on the spike trains in order to investigate
the effect of a perturbation. In this section, we show how these two approaches are related,
making a link between the classical statistical physics approach of linear response, dynam-
ical systems and ergodic theory, and neuronal networks. We introduce then the general
formalism of chains with unbounded memory allowing the handling of non-equilibrium
linear response for spiking neuronal networks. All of the material in this section is known
in different domains, statistical physics, ergodic theory, stochastic processes, neuronal
networks, and is presented here for a better understanding of the next sections.

2.1. Linear Response in Statistical Physics

For simplicity, we consider in this introductory section a dynamical system taking a
finite number of “configurations” denoted by ω. In statistical physics, the linear response
theory can be addressed in these terms. In a system at thermodynamic equilibrium, the
probability of a configuration ω is given by the Boltzmann–Gibbs distribution:

µ[ω ] =
1
Z

e−
H(ω )
kBT , (3)

where Z = ∑ω e−
H(ω )
kBT is called the partition function, with kB, the Boltzmann constant and

T the temperature. The function H(ω ) is called the energy

H(ω ) = ∑
α

λαXα(ω ). (4)

The functions Xα are extensive quantities (proportional to the number of particles)
such as energy, electric charge, volume, number of particles, magnetic field, . . . The
conjugated parameters λα correspond to intensive quantities (not proportional to the
number of particles), like temperature, electric potential, pressure, chemical potential,
magnetic susceptibility, . . . . In general, they depend on the location in the physical space
(e.g., the temperature depends on the position in a fluid). At equilibrium, they are uniform
in space though. The form of H, i.e., the choice of the λα and Xα is constrained by the
physical properties of the system. It is also constrained by boundary conditions.

In standard statistical physics courses, the Gibbs distribution form (3) is obtained as a
consequence of the Maximum Entropy Principle [37]. For a probability measure P on the
set of configurations, the statistical entropy is:

S[P ] = −kB ∑
ω

log P[ω ] log P[ω ]. (5)

Denote EP[ ] the expectation with respect to P. The Maximum Entropy Principle seeks a
probability distribution maximizing the statistical entropy under the constraint that the
average energy is constant, i.e., EP[ H ] = C for any probability measure P on the set of
configurations. This probability exists and is unique when the set of configurations is finite;
this is (3). When this set is infinite (e.g., thermodynamic limit) additional summability
conditions are required on H to ensure existence and uniqueness of P [38,39].

A non-equilibrium situation arises when the λαs are not uniform in space, generating
gradients ~∇λα (temperature gradient, electric potential gradient ...). These gradients result
in currents of Xα (e.g., a temperature gradient induces a heat current). In general, the
currents are nonlinear functions of gradients. The Onsager linear response theory assumes
that currents are linear combinations of gradients (i.e., gradients are weak enough so that
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non-linear terms can be neglected). Known examples are Ohm’s law where the electric
current is proportional to the gradient of the electric potential, Fourier’s law where the
heat flux is proportional to the temperature gradient, Fick’s law etc. Several gradients can
be simultaneously involved like in the Peltier effect. The proportionality coefficients are
called Onsager coefficients [40].

Now, the property that interests us is that Onsager coefficients are obtained as cor-
relations functions computed at equilibrium (Kubo relations [32]). Thus, the knowledge
of correlations at equilibrium allows the inference of the non-equilibrium response of the
system to weak perturbations.

2.2. Linear Response in Spiking Neuronal Networks

Neuronal networks are modeled by dynamical systems (possibly stochastic). Therefore,
the linear response theory can be addressed using the tools briefly presented in the previous
section. This has been done for discrete-time in the Amari–Wilson–Cowan model [41,42],
where the convolution kernel K appearing in (2) can be explicitly computed [43,44]. Notably,
one can compute the response of a neuron to a weak harmonic perturbation of another neuron,
exhibiting specific resonances and functional connectivity distinct from the synaptic graph.

When dealing with spiking models such as the Integrate and Fire, the dynamics are not
differentiable anymore (because of the mechanism of reset at threshold). Still, the Markov
chain formalism (and its extension to infinite memory) can be used. In particular, we
exhibit an example where transition probabilities can be explicitly computed and directly
related to the dynamics.

We consider a network of N neurons, labeled by the index k = 1 . . . N. We define a
spike variable ωk(n) = 1 if neuron k has emitted a spike in the time interval [nδ, (n + 1)δ[,
and ωk(n) = 0 otherwise. We denote by ω(n) := [ωk(n) ]

N
k=1 the spike-state of the entire

network at time n, which we call a spiking pattern. We denote by A = { 0, 1 }N , the
state space of spiking patterns in a network of N neurons; a spike block denoted by ωn

m,
n ≥ m, is the sequence of spike patterns ω(m), ω(m + 1), . . . , ω(n); blocks are elements
of the product set An−m also denoted An

m in the text. We use this last notation because
we consider processes with infinite memory (m→ −∞) and we want to have an explicit
notation An

−∞ for the corresponding set of events. The time-range (or “range”) of a block
ωn

m is n−m + 1, the number of time steps from m to n. We call a spike train an infinite
sequence of spikes both in the past and in the future. The set of spike trains is thus Ω ≡ AZ.
To simplify notations we note a spike train ω ∈ Ω. The shift operator σ : Ω → Ω is
σω = ω′, with ω′(n) = ω(n + 1). This allow us to go one step forward in time along the
spike train ω.

We note F≤n the set of measurable events (filtration) before time n and F the filtration
on Ω. P(Ω,F ) is the set of probability measures on (Ω,F ).

We use the notion of (spike) observable. This is a function f : Ω→ R that associates a
real number to a spike-train. We say that the observable f : Ω→ R has range R = D + 1 if
f (ω) ≡ f (ωD

0 ). It follows from the Hammersley–Clifford theorem [35,45] that any range-R
observable can be written in the form:

f (ω) = ∑
l

fl ml(ω), (6)

where fl are real numbers, the coefficients of the decomposition of f in the finite space of
range R-observables. The functions ml spanning this space are called monomials [8]. They
have the form:

ml(ω) =
n

∏
k=1

ωik (tk).

where ik = 1 . . . N is a neuron index, and tk = 0 . . . D. Thus, ml(ω) = 1 if and only if, in
the spike train ω, neuron i1 spikes at time t1, . . . , neuron ik spikes at time tk. Otherwise,
ml(ω) = 0. The number n is the degree of the monomial; degree one monomials have the
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form ωi1(t1), degree two monomials have the form ωi1(t1)ωi2(t2), and so on. Thus, mono-
mials are similar to what physicists call (spike) interactions; in our case these interactions
involve a time delay between spikes. There are L = 2NR monomials of N neurons and
range R and one can index each of them by an integer l in one-to-one correspondence with
the set of pairs (ik, tk) (see Equation (A2) in the Appendix A). The advantage of monomial
representation is to focus on spike events, which is natural for spiking neuronal dynamics.

We now introduce time-dependent observables. These are functions f (t, ω) depending
on time t (continuous or discrete) and on the spike train ω. The notation f (t, ω) stands here
for f (t, ω

[ t ]
−∞) where [ t ] is the integer part of t: the function depends on the spike train ω

via spikes preceding the current time t. This is an implementation of causality. A range-R
time dependent observable is a function f (t, ω) ≡ f (t, ω

[ t ]
[ t ]−D). The decomposition (6) also

holds for a time dependent range-R observable

f (t, ω) = ∑
l

fl(t)ml(σ
[ t ]ω),

where fl(t) are now functions of time, and σ[ t ] is the [ t ]-iterate of the time shift operator σ.

2.3. Homogeneous Markov Chains and Gibbs Distributions

A “natural” way to characterize the statistics of observed spike trains is to associate
them to a Markov chain with transition probabilities Pn

[
ω(n)

∣∣∣ωn−1
n−D

]
, where the index n

in Pn indicates that the transition probabilities depend on time n. This approach is “natural”
because it captures causality by conditioning on the past spikes. We call D the memory
depth of the chain and set R = D + 1.

2.3.1. Invariant Probability

Let us start the discussion when transition probabilities are independent of time (ho-
mogeneous Markov chain). In this case, we drop the index n in the transition probabilities,
P
[
ω(n)

∣∣∣ωn−1
n−D

]
. Assuming that all transition probabilities are strictly positive, it follows

from the Perron-Frobenius theorem [46,47] that the Markov chain has a unique invariant
probability p on AD. From the Chapman–Kolmogorov equation [46] one constructs, from
p and transition probabilities, a probability measure µ on P(Ω,F ). where:

µ[ωn
m ] =

n

∏
l=m+D

P
[
ω(l)

∣∣∣ωl−1
l−D

]
p
[
ωm+D−1

m

]
, ∀m < n ∈ Z. (7)

As we now discuss, there is a natural correspondence between µ and exponential distribu-
tions of the form (4) (Gibbs distributions).

2.3.2. Transfer Matrix

Let us now consider a range-R observable:

H(ω ) = ∑
l

hl ml(ω), (8)

where hl > C > −∞. Any block ωD
0 of range R = D + 1 can be viewed as a transition from

a block v(u) = ωD−1
0 to the block v(u′) = ωD

1 . We write ωD
0 ∼ v(u)v(u′). By extension,

for two blocks v(u), v(u′) of range D ≥ 1 we say that the transition v(u) → v(u′) is legal
if there is a block ωD

0 ∼ v(u)v(u′). On this basis, one can construct a transfer matrix with
positive entries:

L
v(u),v(u′) =

{
eH(ωD

0 ), if ωD
0 ∼ v(u)v(u′);

0, otherwise.
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It follows from the Perron-Frobenius theorem [46,47] that L has a unique real positive
eigenvalue s, strictly larger in modulus than the other eigenvalues, and with positive right
eigenvector LR = sR, and left eigenvector LL = sL. Moreover, the range-R observable:

φ(ωD
0 ) = H(ωD

0 )− log R
(

ωD−1
0

)
+ log R

(
ωD

1

)
− log s

defines an homogeneous Markov chain [48] with transition probabilities P
[
ω(D)

∣∣∣ωD−1
0

]
=

eφ(ωD
0 ).

2.3.3. Invariant Probability and Gibbs Distribution

The unique invariant probability of this Markov chain is:

p(ωD−1
0 ) = R

(
ωD−1

0

)
L
(

ωD−1
0

)
.

Using the Chapman–Kolmogorov Equation (7) one extends p to a probability µ on Ω,
where, for m + n > D :

µ
[
ωn

m |ωm−1
m−D−1

]
=

e∑n−D
l=m−D H(ωl+D

l )R
(
ωn

n−D+1
)

L
(

ωm−1
m−D

)
sn−m+1 . (9)

This emphasizes the Markovian nature of the process since the conditioning has a finite
time horizon of depth D.

It follows therefore that the probability of observing a spike block ωn
m, given a certain

past ωm−1
m−D−1 is proportional to e∑n−D

l=m−D H(ωl+D
l ). If H is formally interpreted as an energy

then ∑n−D
l=m−D H

(
ωl+D

l

)
is the energy of the block ωn

m. Note that, in contrast to (4) we have
removed the − sign which has no reason to be present in this context, and is a source of
nuisance when doing computations.

This establishes a first relationship with Gibbs distributions of the form (3), with a
strong difference though. More precisely one has, ∃ A, B > 0 such that, for any block ωn

0 ,

A ≤
µ
[
ωn

0
]

e−(n−D+1)P(H)e−∑n−D
k=0 H(ωk+D

k )
≤ B,

which defines, in ergodic theory, a Gibbs measure in the sense of Bowen [49]. Whereas we
assumed (3) to hold on a finite set of states characterizing the system at a given time, here ω
is a trajectory of the system describing its time evolution. In addition, the probability of the
block ωn

m is conditioned upon the past, which, in statistical physics would correspond to
determine the probability of a block of binary variables (say spins) ωn

m with left boundary
conditions ωm−1

m−D−1. This analogy is further developed in the next section.
In the case of a Markov chain, the entropy (5) extends to:

S(µ) = −∑
ωD

0

p
(

ωD−1
0

)
P
[
ω(D)

∣∣∣ωD−1
0

]
log P

[
ω(D)

∣∣∣ωD−1
0

]
,

where we have dropped the Boltzmann constant as it plays no role here. Then, it can be
shown that µ satisfies a variational principle [48,49]; it maximizes S[ν ] + Eν[ H ], where ν
is an invariant probability on P(Ω,F ). If Eν[ H ] is fixed this amounts to maximizing the
entropy under the constraint that the average energy Eν[ H ] is fixed. Finally, the supremum
F = S[ν ] + Eν[ H ] corresponds to the free energy; the generating function of cumulants.

We have therefore shown that a potential of the form (8) is associated with a ho-
mogeneous Markov chain where the invariant probability, extends the notion of Gibbs
distribution, introduced in Section 2.1, to systems with memory where the probability to be
in a state depends on a finite history. The extension to infinite history is made in the next
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section. As an important remark, the detailed balance condition is not required to define
Gibbs distributions from Markov chains.

2.4. Chains with Infinite Memory and Gibbs Distributions

In the previous section we have made two important assumptions: (i) memory is
bounded (finite memory depth D); (ii) the correspondence between Markov chains and
Gibbs form was established for homogeneous Markov chains.

However, when considering neural networks, the memory may neither constant nor
bounded: consider for example an Integrate and Fire model where the memory goes back to
the last time in the past when the neuron has fired; in general, it is not possible to bound this
time. So, the most general formalism is to consider chains with unbounded memory [50–52].
Of course, as we discuss below, Markovian approximations are possible and useful. Still,
one needs to properly control these approximations. In addition, we want to consider here
the case of a system submitted to a time-dependent stimulus, where the dynamic is not
time-translation invariant.

Thus, we are now considering a family of transition probabilities of the form
Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
, which represent the probability, that at time n, one observes the spiking

pattern ω(n) given the (unbounded) network spike history. Such a non-Markovian stochas-
tic process is known as a “chain with complete connections” or a “chain with unbounded
memory” [30] defined in more detail here. This section follows very closely from [53].

Definition 1. A system of transition probabilities is a family {Pn}n∈Z of functions with Pn[· | · ] :
A×An−1

−∞ → [0, 1] such that the following conditions hold for every n ∈ Z:

(a) For every ω(n) ∈ A the function Pn[ω(n) | · ] is measurable with respect to F≤n−1.
(b) For every ωn−1

−∞ ∈ An−1
−∞ ,

∑
ω(n)∈A

Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
= 1.

Definition 2. A probability measure µ in P(Ω,F ) is consistent with a system of transition
probabilities {Pn}n∈Z if:∫

h(ωn
−∞)µ(dω) =

∫
∑

ω(n)∈A
h
(

ωn−1
−∞ ω(n)

)
Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
µ(dω), (10)

for all n ∈ Z and all F≤n-measurable functions h. The probability measure µ, when it exists,
is called a chain with complete connections consistent with the system of transition probabilities
{Pn}n∈Z. It is possible that multiple measures are consistent with the same system of transition
probabilities.

We now give conditions ensuring the existence of a probability measure consistent with
the system of transition probabilities [53].

Definition 3. A system of transition probabilities is non-null on Ω if, for all n ∈ Z and all
ωn
−∞ ∈ An

−∞:

P
[
ω(n)

∣∣∣ωn−1
−∞

]
> 0

We note, for n ∈ Z, m ≥ 0, and r integer:

ω
m,n
= ω′, if ω(r) = ω′(r), ∀r ∈ {n−m, . . . , n}.

Definition 4. Let m be a positive integer. The m-variation of Pn[ω(n) | · ] is:
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varm[Pn[ω(n) | · ]] = sup
{
| Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
− Pn[ω(n) | ω′n−1

−∞ ] |: ω
m,n
= ω′

}
(11)

Definition 5. The function Pn[ω(n) | · ] is continuous if varm[Pn[ω(n) | · ]]→ 0 as m→ +∞.

The intuitive meaning of continuity is the following. The quantity varm[Pn[ω(n) | · ]]
corresponds to the maximum variation one can observe on the probability of the spike
state at time n, given that the history is fixed up to time n−m. Thus, continuity implies
that this variation tends to zero as m tends to infinity: the further in the past that the spike
sequence is fixed, the smaller the probability that the past influences the present.

The following result holds (see [53]):

Theorem 1. A system of continuous transition probabilities on a compact space has at least one
probability measure consistent with it.

Uniqueness requires additional technical assumptions [53]. These conditions hold in
the discrete time integrate and fire model [34] considered in Section 4.

Let us now elaborate on the link with Gibbs distributions. First, we define φ(n, ω ) :
Z×Ω→ R by:

φ(n, ω ) ≡ log P
[
ω(n)

∣∣∣ωn−1
−∞

]
, (12)

and:

Φ(m, n, ω) =
n

∑
r=m

φ(r, ω ). (13)

Then:
P
[
ωn

m

∣∣∣ωm−1
−∞

]
= eΦ(m,n,ω) = e∑n

r=m φ(r,ω ) (14)

and:
µ[ωn

m] =
∫
Am−1
−∞

eΦ(m,n,ω)µ(dω). (15)

These equations emphasize the connection with Gibbs distributions in statistical
physics where φ acts as an “energy” [53,54]. From now on we use the term “potential”
instead. The correspondence in our case is to consider “time” as a 1-dimensional “lattice”
and the “boundary conditions” as the past ωm−1

−∞ of the stochastic process. In contrast
to statistical physics, and because the potential is defined via transition probabilities,
the normalization factor (partition function) is equal to 1. For this reason, we call φ a
normalized Gibbs potential.

Equations (14) and (15) are similar to (9) with an essential difference: the memory is
now infinite, and the potential φ has an infinite range. As it is well-known in statistical
physics [38,39], infinite range potentials require specific conditions to be associated with
a unique Gibbs distribution. There is a mathematically well-founded correspondence
between chains with complete connections and Gibbs distributions [38,39,53]. However,
while chains with complete connections define transition probabilities where the present
is conditioned upon the past, Gibbs distributions allow conditioning “upon the future”
as well. More generally, Gibbs distributions in statistical physics extend to probability
distributions on Zd where the probability (3) to observe a certain configuration of spins
in a restricted region of space is constrained by the configuration at the boundaries of
this region. They are therefore defined in terms of specifications [38,39], which determine
finite-volume conditional probabilities when the exterior of the volume is known. In one
spatial dimension (d = 1), identifying Z with a time axis, this corresponds to conditioning
both in the past and in the future. In contrast, families of transition probabilities with an
exponential continuity rate define the so-called left-interval specifications (LIS) [53,55].
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This leads to not equivalent notions of “Gibbsianness” [56]. We shall not develop on these
distinctions here and call Gibbs distribution a chain with the complete connection.

3. Linear Response for Neuronal Networks with Unbounded Memory

We consider a neural system where spike statistics is characterized by a time-translation
invariant Gibbs distribution (chain with unbounded memory) µ(sp) where “sp” stands for
“spontaneous”. That is, we suppose that, in the absence of a stimulus, the spontaneous
dynamics is stationary. We assume that a stimulus S(t) is applied from time t = t0, and
that conditions of existence and uniqueness of a chain with complete connection µ are
fulfilled in the presence of the stimulus (an example is given in the next section). We note
n0 = [ t0 ]. For times anterior to n0, µ identifies with µ(sp), that is, for any m < n ≤ n0,
for any block ωn

m, µ[ωn
m ] = µ(sp)[ωn

m ]. In contrast, for n > n0 spike statistics is modified.

Consider a range-R observable f (t, ω) then Eµ[ f (t, .) ] def
= Eµ(sp) [ f (t, .) ] + δ[ f (t, .) ] where

δ[ f (t, .) ] = 0 for t < t0 and δ[ f (t, .) ] 6= 0 for t ≥ t0.
The goal is to establish an explicit (formal) equation for δ[ f (t, .) ], as a function of the

stimulus. This is done via a Volterra-like expansion in powers of the stimulus, cut to the first
order so as to obtain a linear response in terms of a convolution between the stimulus and
a convolution kernel K f , depending on f , δ(1)[ f (t, .) ] =

[
K f ∗ S

]
(t). This way, we obtain a

relationship between the proportionality coefficient K f in the linear response, and specific
correlation functions computed at equilibrium (spontaneous activity). This provides a
Kubo relation holding in the case of neuronal networks with unbounded memory and
for an arbitrary range-R observable f . In contrast to Volterra expansion, our formalism
allows to explicit the dependence of K f in the neuronal network characteristics (parameters
fixing the individual neuron dynamics and connectivity-synaptic weights). An example is
provided in the next section.

3.1. First Order Expansion

We assume that the statistics of spikes is described by time-dependent chains with
unbounded memory, with potential φ(n, ω). We note δφ(n, ω) = φ(n, ω)− φ(sp)(ω ). We
define likewise Φ(n, ω) = Φ(sp)(ω ) + δΦ(n, ω) using (13).

From the definition (12), eφ(sp)
corresponds to the family of transition probabilities{

P(sp)
}

defining the Gibbs distribution µ(sp) in the spontaneous regime, whereas eφ

corresponds to the family of transition probabilities { P } defining the Gibbs distribution µ
in time-dependent stimuli-evoked regime. For n > n0, we have:

eΦ(n0+1,n,ω ) = eΦ(sp)(n0+1,n,ω )+δΦ(n0+1,n,ω ) = eΦ(sp)(n0+1,n,ω )

[
1 +

+∞

∑
p=1

δΦ(n0 + 1, n, ω)p

p!

]
,

which, from Equation (13), gives:

P
[
ωn

n0+1
∣∣ωn0
−∞

]
= P(sp)

[
ωn

n0+1
∣∣ωn0
−∞

] [
1 +

+∞

∑
p=1

δΦ(n0 + 1, n, ω)p

p!

]
.

Taking the first-order approximation of the exponential, we obtain:

eΦ(n0+1,n,ω ) ∼ eΦ(sp)(n0+1,n,ω ) [1 + δΦ(n0 + 1, n, ω) ].

However, while Φ(n0 + 1, n, ω ) and Φ(sp)(n0 + 1, n, ω ) are normalized potentials,
i.e., the log of a conditional probability, the first order approximation of eΦ(sp)(n0+1,n,ω )
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[1 + δΦ(n0 + 1, n, ω) ] is not. Normalization is obtained formally by introducing the
partition function:

Z
[
ωn0
−∞
]
= ∑

ωn
n0+1

eΦ(sp)(n0+1,n,ω )[1 + δΦ(n0 + 1, n, ω)],

constrained by the past sequence ωn0
−∞, so that the quantity

P(1)
[
ωn

n0+1
∣∣ωn0
−∞

]
≡ eΦ(sp)(n0+1,n,ω )

Z
[
ωn0
−∞
] [1 + δΦ(n0 + 1, n, ω) ],

is the first order approximation of P
[
ωn

n0+1

∣∣ωn0
−∞

]
.

Setting:

Z(sp)[ωn0
−∞
]
= ∑

ωn
n0+1

eΦ(sp)(n0+1,n,ω ),

we have, to first order:

1
Z
[
ωn0
−∞
] = 1

Z(sp)
[
ωn0
−∞
]
1 − ∑

ωn
n0+1

eΦ(sp)(n0+1,n,ω )

Z(sp)
[
ωn0
−∞
] δΦ(n0 + 1, n, ω)

.

However, as Φ(sp) is the log of a conditional probability, Z(sp)[ωn0
−∞
]
= 1. So, finally,

we obtain, to first order:

P(1)
[
ωn

n0+1
∣∣ωn0
−∞

]
∼ P(sp)

[
ωn

n0+1
∣∣ωn0
−∞

] [
1 + δΦ(n0 + 1, n, ω) − E(sp)[ δΦ(n0 + 1, n, .) | ωn0

−∞
] ]

,

where E(sp)[ ] denotes the expectation with respect to µ(sp). We use E(sp)[ ] instead of
Eµ(sp) [ ] to alleviate notations.

3.2. Time Dependent Average of an Observable

We now consider a time-dependent observable f with finite range R ≡ R f . We assume
t− t0 > R f . We set R f = D f + 1. Setting n = [ t ] we note En[ f (t, .) ] =

∫
f (t, ω)µ(dω).

Here, a note of explanation is necessary. Functions f (t, ω) are random functions, where
the randomness comes from ω. So, the law of f (t, ω) is determined by the probability µ.
En[ f (t, .) ] is the average of the continuous time dependent observable f (t, ω), averaged
over the discrete time spike train ω, up to the discrete time n = [ t ] (by definition f (t, .)
does not depend on spike events occurring at times posterior to n). Note that this average
cannot be defined by an ergodic time average procedure as, here, the probability is non
stationary (see Section 5 for a numerical implementation).

Because f has finite range R f we may write:

En[ f (t, .) ] = ∑
ωn

n−D f

f
(

t, ωn
n−D f

)
µ[ωn

n−D f
] = ∑

ωn
n0+1

f
(

t, ωn
n−D f

)
µ[ωn

n0+1].

The last equality holds because f (t, ω ) is independent of ωn0
−∞. Thus, using (15):

En[ f (t, .) ] = ∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

P
[
ωn

n0+1
∣∣ωn0
−∞

]
µ(dω)

= ∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

P
[
ωn

n0+1
∣∣ωn0
−∞

]
µ(sp)(dω),

where the last equation holds because, on F≤n0 , µ = µ(sp).
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Thus, replacing P
[
ωn

n0+1

∣∣ωn0
−∞

]
by P(1)

[
ωn

n0+1

∣∣ωn0
−∞

]
, we obtain, up to first order:

En[ f (t, .) ] ∼ ∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

P(sp)
[
ωn

n0+1
∣∣ωn0
−∞

]
µ(sp)(dω)

+ ∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

P(sp)
[
ωn

n0+1
∣∣ωn0
−∞

]
δΦ(n0 + 1, n, ω) µ(sp)(dω)

− ∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

P(sp)
[
ωn

n0+1
∣∣ωn0
−∞

]
E(sp)[ δΦ(n0 + 1, n, .) | ωn0

−∞
]

µ(sp)(dω).

The first term is E(sp)[ f (t, .) ] from (15). The second term is:

∑
ωn

n0+1

∫
An0
−∞

f (t, ω ) δΦ(n0 + 1, n, ω) P
[
ωn

n0+1
∣∣ωn0
−∞

]
µ(sp)(dω) = E(sp)[ f (t, .) δΦ(n0 + 1, n, .) ]

from the consistency property (10), and because by assumption (n− n0 > R f ), f (t, ω ) does
not depend on ωn0

−∞.

For the third term:

∑
ωn

n0+1

f
(

t, ωn
n−D f

) ∫
An0
−∞

E(sp)[ δΦ(n0 + 1, n, ω) | ωn0
−∞
]

P(sp)
[
ωn

n0+1
∣∣ωn0
−∞

]
µ(sp)(dω)

= E(sp)
[

f (t, .) E(sp)[ δΦ(n0 + 1, n, ω) | ωn0
−∞
] ]

.

However, by assumption f (t, ωn
n−D f

) does not depend on ωn0
−∞ (n − n0 > D f ),

whereas by definition of the conditional expectation E(sp)[ δΦ(n0 + 1, n, ω) | ωn0
−∞
]

is the
projection on the sigma-algebra F≤n0 . As a consequence, we have:

E(sp)
[

f (t, .) E(sp)[ δΦ(n0 + 1, n, .) | ωn0
−∞
] ]

= E(sp)[ f (t, .) ] E(sp)
[

E(sp)[ δΦ(n0 + 1, n, .) | ωn0
−∞
] ]

= E(sp)[ f (t, .) ] E(sp)[ δΦ(n0 + 1, n, .) ].

Summing up, we have, using (13):

En[ f (t, .) ] = E(sp)[ f (t, .) ] +
n=[ t ]

∑
r=n0+1

(
E(sp)[ f (t, .) δφ(r, .) ]− E(sp)[ f (t, .) ] E(sp)[ δφ(r, .) ]

)
,

Using the correlation function:

C(sp)[ f (t, .), g(t′, .)
] def
= E(sp)[ f (t, .)g(t′, .)

]
− E(sp)[ f (t, .) ]E(sp)[ g(t′, .)

]
we obtain

δ(1)[ f (t, .) ] =
n=[ t ]

∑
r=n0+1

C(sp)[ f (t, .), δφ(r, .) ]. (16)

This equation expresses that the time-dependent variation in the average of an observ-
able f is expressed, to the first order, as a time series of correlation functions, between f
and the time-dependent variation of the normalized potential, computed with respect to
the equilibrium distribution. This is our main result.

It is similar to the fluctuation-dissipation theorem in statistical physics [32,33]. Here,
it holds for Gibbs distributions with infinite range potential φ(t, ω). A crucial point is
the convergence of the series when the initial time of perturbation, n0 tends to −∞. This
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holds if correlations C(sp)[ f (t, .), δφ(r, .) ] decay sufficiently fast, typically, exponentially.
We consider only this case in this article.

One of the advantages of this relationship is that averages are taken with respect to
µ(sp). In the case of experimental data, these averages can be approximated by empirical
averages on spontaneous activity. The monomial decomposition of (16) can be found in the
Appendix B.

4. An Example: Linear Response in a Conductance Based Integrate and Fire Model
4.1. Discrete Time Integrate and Fire Network Model

The Leaky Integrate and Fire model (LIF) consider a point neuron k (without spatial
extension), with membrane potential Vk, membrane capacity Ck, resistance R, submitted to
a current Ik(t). Call θ the spiking threshold. The sub-threshold dynamics is:

Ck
dVk
dt

+
1
R

Vk = Ik(t), if Vk(t) < θ. (17)

If there is a time tk such that the membrane potential of neuron k reaches the firing
threshold, Vk(tk) ≥ θ, the neuron k fires an action potential, i.e., it emits a spike and the
membrane potential of neuron k is reset to a fixed reset value Vres instantaneously. The
neuron’s membrane potential remains at this value during a time denoted by ∆ called
“refractory period”, i.e., Vk(t′) = Vres, t′ ∈ [tk, tk + ∆].

To illustrate our results we use a “simple” model corresponding to a discrete-time LIF
network [34]. The main reason to choose this model is to facilitate numerical simulations
as handling continuous-time dynamics with spikes event, although manageable mathe-
matically [57] is difficult to handle numerically [58]. To further simplify the analysis we
fixing the sampling time dt = 1, the capacitance Ck = 1, τ = RC, γ = 1− 1/τ,∈ [0, 1[ is
called the“leak rate”. The evolution of the membrane potential Vk is ruled by the following
sub-threshold equation:

Vk(n + 1) = γ Vk(n) + Ik(t).

Note that by setting Ck = 1 we are not considering units of measurements anymore.
We now explicitly consider an interconnected network of neurons. The network

of synaptic connectivity is represented by a matrix of components Wkj which can be
positive or negative to characterize inhibition or excitation respectively. We consider
random fluctuations by adding a standard Gaussian additive noise ξk(n) controlled by the
amplitude σB. We also consider a constant stimulus I0 and a time dependent stimulus Sk(t).
Thus Ik(t) = ∑j Wkjωj(n) + I0 + Sk(t) + σBξk(n), and thus our equation finally reads:

Vk(n + 1) = γ Vk(n) + ∑
j

Wkjωj(n) + I0 + Sk(t) + σBξk(n), if Vk(n) < θ. (18)

Note that γ, the decay term, is related to the leak characteristic time (18) by:

τ =
1

1− γ
.

The condition γ < 1 define the exponential decay in the spike history dependence via
the characteristic time:

τγ = −
[

1
log γ

]
. (19)

This characteristic time can be interpreted as follows. Integrating Equation (18) up to
the last time where voltage was reset in the past, τk(n, ω) gives the following:

Vk(n + 1, ω) =
N

∑
j=1

Wkj ηkj(n, ω) + I0
1− γn+1−τk(n,ω)

1− γ
+

n

∑
l=τk(n,ω)

γn−lSk(l) + σB

n

∑
l=τk(n,ω)

γn−lξk(l), (20)
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where:

ηkj(n, ω) =
n

∑
l=τk(n,ω)

γn−l ωj(l),

The first term on the right-hand side of (20) corresponds to the synaptic contribution.
The second corresponds to the integration of the constant term I0, used to fix the baseline
activity. The third term corresponds to the integration of a time-dependent stimulus Sk(t)
and the fourth to the integrated noise term with intensity σB.

For each n ∈ Z, conditionally to ωn−1
−∞ , Vk(n) is Gaussian random variable. It can be

decomposed in the following way:

Vk(n, ω) = V(syn)
k (n, ω) + V(I)

k (n, ω) + V(S)
k (n, ω) + V(noise)

k (n, ω)

We now consider the “spontaneous” voltage V(sp)
k (n, ω) and the evoked response due

to the external time dependent stimulus V(S)
k (n, ω).

V(sp)
k (n, ω) = V(syn)

k (n, ω) + V(I)
k (n, ω) + V(noise)

k (n, ω)

=
N

∑
j=1

Wkj ηkj(n, ω) + I0
1− γn+1−τk(n,ω)

1− γ
+ σB

n

∑
l=τk(n,ω)

γn−lξk(l)
(21)

V(S)
k (n, ω) =

n

∑
l=τk(n,ω)

γn−lSk(l)

4.2. Transition Probabilities of the Discrete Time LIF Model

In the limit of small σB, the family of transition probabilities Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
can be

written explicitly in terms of the parameters of the spiking neuronal network model. The
discrete-time LIF model is conditionally independent i.e., it factorizes over neurons once
the spike history has been fixed [34]. The same property is held for the continuous-time
version of this model [59]. However, a more complete version of this model also includes
electric synapses [57]. In that case, the conditional independence is lost.

Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
=

N

∏
k=1

Pn

[
ωk(n)

∣∣∣ωn−1
−∞

]
,

where:

Pn

[
ωk(n)

∣∣∣ωn−1
−∞

]
= ωk(n)Π(Xk(n− 1, ω) ) + (1−ωk(n) ) (1−Π(Xk(n− 1, ω) ) ),

(22)
with:

Π(x) =
1√
2π

∫ +∞

x
e−

u2
2 du,

and:

Xk(n− 1, ω)
def
=

θ −Vk(n− 1, ω)

σk(n− 1, ω)
, (23)

where,

σ2
k (n− 1, ω) =

1− γ2(n−τk(n−1,ω))

1− γ2

corresponds to the variance of the noise integrated up to time n− 1.
Combining (12) and (22), we obtain the normalized potential for the discrete time

LIF model.
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φ(n, ω ) =
N

∑
k=1

φk(n, ω ),

where

φk(n, ω ) = ωk(n) log Π(Xk(n− 1, ω) ) + (1−ωk(n) ) log(1−Π(Xk(n− 1, ω) ) ), (24)

which depends on all of the parameters of the network via the variable Xk(n− 1, ω) (23).

Remark 1. The function Π(x) is a sigmoid which tends to 1 when x → −∞ and tends to 0 when
x → ∞. This has two consequences:

1. When Xk(n− 1, ω) → +∞ (which arises when V(sp)
k (n− 1, ω) → −∞),

Π(Xk(n− 1, ω) ) → 0) so that φk(n, ω ) → −∞. This expresses that the probability of
having a spike at time n when Xk(n− 1, ω) becomes large (neuron strongly hyper-polarized)
tends to 0. The same argument holds mutatis mutandis for the limit Xk(n− 1, ω)→ −∞.

2. When | Xk(n− 1, ω) | is large (neuron either strongly hyper-polarized or strongly depolar-
ized) the effect of a variation of the membrane potential on the firing probability is negligible.
Thus, we study the effect of a perturbation in bounded range for Xk(n− 1, ω):

0 < ε < Π(Xk(n− 1, ω) ) < 1− ε < 1, (25)

uniformly in n, ω. This is ensured by natural assumptions on synaptic weights and on σB,
the mean-square deviation of the noise, which has to be bounded away from 0.

4.3. Expansion of the Normalized Potential

The normalized potential of the Discrete time LIF model can be separated into: (i) a
“spontaneous” part φ(sp)(ω), which before time t0 is independent of the stimuli and time
and; (ii) a “perturbation” part δφ(n, ω) depending on a time-dependent stimuli, which
is non-zero from time t0. Mathematically this is achieved by adding an extra term to the
spontaneous potential after time t0.

φ(n, ω) =

{
φ(sp)(ω) if n < [ t0 ];
φ(sp)(ω) + δφ(n, ω) if n ≥ [ t0 ] .

Note that, at this stage, this is just a definition of δφ(n, ω) = φ(n, ω)− φ(sp)(ω).

From Section 3 this perturbation induces a time-dependent variations on the average
of an observable f :

µn[ f (n, ·)] = E(sp)[ f (n, ·) ] + δ(1)[ f (n, ·) ],

If n ≤ t0, δ(1)[ f (n, ·) ] = 0, ∀ f (n, ·) as µn = µ(sp). Thus, the term E(sp)[ f (n, ·) ] refers
to an average with respect to the unperturbed system and δ(1)[ f (n, ·) ]. As we show, the
variation δ(1) can be explicitly written in terms of the variation on the normalized potential
induced by the introduction of the stimulus.

Note that if the external stimuli are switched on at time t0, spike statistics are still con-
strained by the previous spontaneous activity, since transition probabilities have memory. This
effect is especially salient in the discrete-time LIF model which has an unbounded memory.

We rewrite (23) in the form:

Xk(n− 1, ω) = X(sp)
k (n− 1, ω) + δXk(n− 1, ω),
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where

X(sp)
k (n− 1, ω) =

θ −V(sp)
k (n− 1, ω)

σk(n− 1, ω)

is independent of the stimulus, and:

δXk(n− 1, ω) = −
V(S)

k (n− 1, ω)

σk(n− 1, ω)
= − 1

σk(n− 1, ω)

n−1

∑
l=τk(n−1,ω)

γn−1−lSk(l),

where the last equality holds because S(n) = 0 for n < t0.
In the next computation we write X(sp)

k , δXk instead of X(sp)
k (n− 1, ω), δXk(n− 1, ω)

to alleviate notations. We make a series expansion of φk(n, ω ) at X(sp)
k , under the conditions

of (25). We have:

log Π(X(sp)
k + δXk) = log Π(X(sp)

k ) +
+∞

∑
u=1

a(u)(X(sp)
k )

u!
(δXk )

u,

log
(

1−Π(X(sp)
k + δXk)

)
= log

(
1−Π(X(sp)

k )
)
+

+∞

∑
u=1

b(u)(X(sp)
k )

u!
(δXk )

u

where a(u) and b(u) are the u-th derivative of log Π(x) and log(1−Π(x)). In particular:

a(1)(x) =
Π′(x)
Π(x)

; b(1)(x) = − Π′(x)
1−Π(x)

.

Therefore,

δφk(n, ω ) =
+∞

∑
u=1

δφ
(u)
k (n, ω ),

where:
δφ

(u)
k (n, ω ) = H(u)

k (n, ω) [δXk(n− 1, ω) ]u,

with:

H(u)
k (n, ω) =

1
u!

[
ωk(n) a(u)

(
X(sp)

k (n− 1, ω)
)
+ (1−ωk(n) )b(u)

(
X(sp)

k (n− 1, ω)
) ]

. (26)

This expansion holds for any value of X(sp)
k (n− 1, ω). However, when this quantity

becomes large in absolute value, one has to consider more and more terms in the expansion
to approach sufficiently well the function δφk(n, ω ). This is a well-known property of the
function Π (which can be written in terms of the error function): the Taylor expansion
converges very slowly near infinity and other expansions are more efficient (e.g., Bürmann
series [60]). Here, we consider the effect of a perturbation in a range where the function Π
does not saturate. In addition, we restrict ourselves to cases where the first order of the
Taylor expansion is sufficient to characterize the response. This is ensured by conditions of
the form (the same holds mutatis mutandis for b):

| δXk | � (u! )
1

u−1

∣∣∣∣∣∣
a(1)
(

X(sp)
k

)
a(u)

(
X(sp)

k

)
∣∣∣∣∣∣

1
u−1

; u > 1.

Applied to the second order this gives a condition:

| δXk(n− 1, ω) | � 2∣∣∣X(sp)
k (n− 1, ω) + a(1)

(
X(sp)

k (n− 1, ω)
) ∣∣∣ , (27)
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which becomes more and more restrictive as one gets away from X(sp)
k (n− 1, ω) = 0 i.e.,

away from the linear region of the sigmoid Π. Note that the condition X(sp)
k (n− 1, ω) ∼ 0

corresponds to a voltage close to the firing threshold. We insist that this constraint is
not a limitation of our approach, but instead, a limitation of linear response applied in
neuronal systems where the response of a neuron is characterized by a saturating function.
Away from the linear part of the sigmoid, nonlinear effects dominate the response. In the
numerical simulations, we use the mean-field approximation where we replace τk(r− 1, .)
by its average value µ[τk(r− 1, .) ] = r− 1− 1

νk
where the inverse 1

νk
of the average firing

rate νk of neuron k is the mean time between two spikes.
Under these conditions we obtain:

δφ
(1)
k (r, ω ) = −

H(1)
k (r, ω)

σk(r− 1, ω)

r−1

∑
l=r−1− 1

νk

γr−1−l Sk(l)

where we have replaced n by r in view of (16).
The function δφ

(1)
k (r, ω ) is the first order variation of normalized potential when

neurons are submitted to a weak time dependent stimulus, under the approximation (24).
There are two contributions. The integral includes the effect of the stimulus on the dynam-
ics flow; the term H(1)

k (r, ω), given by Equation (26), contains the effect of the network

via the terms a(1)
(

θ−V(sp)
k (r−1,ω)

σk(n−1,ω)

)
, b(1)

(
θ−V(sp)

k (r−1,ω)

σk(n−1,ω)

)
where V(sp)

k (r− 1, ω) is given by

Equation (21). Note that the dependence on synaptic weights is non-linear because a(1)

and b(1) are non-linear.
In order to study the linear response theory in this model, one has to properly handle

numerically:

(1) The spike train statistics, especially finding a numerical way to perform a suitable
averaging, not only for the spontaneous probability measure where time-ergodic
average can be used but also for the non-stationary response where ergodicity does
not take place;

(2) The long memory tail in the dynamics;
(3) Find an illustrative example with a good range of parameters showing convincing,

original, non-trivial results while avoiding prohibitive computational times.

It is not evident to us that classical spiking neural network simulators such as
BRIAN [61], although quite efficient, could easily handle (1) in conjunction with (2). The
model presented below, has been studied both from the mathematical side and the nu-
merical side [8,34]. Additionally, we have designed a simulation tool, PRANAS, de-
voted to the analysis of population spike train statistics and allowing to properly han-
dle Gibbs distributions from numerical simulations or experimental data, with a spe-
cific module dedicated to this model [62]. This software is freely downloadable at
https://team.inria.fr/biovision/pranas-software/ on simple demand. The linear response
C++ codes and instructions required to reproduce these numerical results can be found at
https://github.com/brincolab/Linear-response.

4.4. Linear Response

We apply our main result (16) to the potential of the discrete-time model (24). Under
the approximations made in the previous section, we examine two forms of linear response
proposed in the paper.

1. The first-order expansion of the potential, (16). In the present context it becomes:

δµ(1)[ f (n) ] ∼ −
N

∑
k=1

n

∑
r=−∞

r−1

∑
l=r−1− 1

νk

γr−1−lC(sp)[ f (n, ·), ζ(r− 1, .) ] Sk(l),

https://team.inria.fr/biovision/pranas-software/
https://team.inria.fr/biovision/pranas-software/
https://github.com/brincolab/Linear-response
https://github.com/brincolab/Linear-response
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where we have set ζk(r − 1, ω) =
H(1)

k (r,ω)

σk(r−1,ω)
. In the numerical simulations we use

a Markovian approximation with memory depth D such that the sum ∑n
r=−∞ is

replaced by ∑n
r=n−D. D is typically determined by exponential decay of the terms

γl−r+1C(sp)[ f (n, ·), ζk(r− 1, .) ], which is controlled, on one hand, by γ (with a char-
acteristic time τγ = −

[
1

log γ

]
), and the correlation C(sp)[ f (n, ·), ζk(r− 1, .) ], which is

controlled by the spectral gap in the Perron–Frobenius matrix. In this approximation
we have:

δµ(1)[ f (n) ] ∼ −
N

∑
k=1

n

∑
r=n−D

r−1

∑
l=r−1− 1

νk

γr−1−lC(sp)[ f (n, ·), ζk(r− 1, .) ] Sk(l).

Using the stationarity of µ(sp) we have C(sp)[ f (n, ·), ζ(r− 1, .) ] = C(sp)[ f (n− r + 1, ·), ]
ζk(0, .) where r ∈ [n− D, n] so that m = n− r + 1 ∈ [1, D + 1]. Then, introducing the
N × D matrix K(1) with entries :

K(1)
k,m = C(sp)[ f (m, ·), ζk(0, .) ],

we may write δµ(1)[ f (n) ] in the form:

δµ(1)[ f (n) ] ∼ −
N

∑
k=1

D+1

∑
m=1

1
νk

∑
l=0

γl K(1)
km Sk(n−m− l). (28)

2. The first order Hammersley–Clifford expansion of H(1)
k which corresponds to ex-

pand ζk(0, ω) to the lowest order in the Hammersley–Clifford expansion, ζk(0, ω) ∼
γ
(1)
k ωk(0) with:

γ
(1)
k = a(1)(θL,k)− b(1)(θL,k),

with a(1)(x) = Π′(x)
Π(x) , b(1)(x) = − Π′(x)

1−Π(x) . This gives an approximation similar to
the fluctuation-dissipation theorem where the linear response is a sum of pairwise
correlation functions. In the discrete time model it reads:

δµ(HC1)[ f (n) ] ∼ −2
√

1− γ

σB
γ(1)

N

∑
k=1

D+1

∑
m=1

1
νk

∑
l=0

γl K(HC1)
km Sk(n−m− l). (29)

where :
K(HC1)

k,m = C(sp)[ f (m, ·), ωk(0, .) ].

We have used the superscript “HC1” to refer to the lowest-order Hammersley–Clifford
approximation from (28). The interest of this approximation (and more generally,
of the Hammersley–Clifford expansion is that it can be obtained without knowing
explicitly the potential φ (by a mere fit of the coefficients γ

(1)
k ). We expect however

(28) to give a better approximation of the linear response than (29). Note that the

effective threshold corresponds to θL,k =
θ− I0

1−γ√
1

2(1−γ)
σB

, is independent of k in this case.

This explains why γ(1) gets out of the sum and lost its index k in (29).

5. Numerical Simulations
5.1. Averaging Method

We need to compute numerically averages with respect to the invariant probability
µ(sp). As µ(sp) is ergodic it is in principle possible to get them by time averaging. However,
we also want to compute averages in the presence of a stimulus, where ergodicity does
not take place. In addition, a notation like E(sp)[ f (n, ·) g(r, ·) ] appearing all over the paper
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involves a subtlety: we are computing the average of time-dependent quantities (via the
first argument in f (n, ·), g(r, ·)) with respect to an invariant probability on the second
argument, ω. The mathematical meaning is the following:

E(sp)[ f (n, ·) g(r, ·) ] =
∫

Ω
f (n, ω) g(r, ω)µ(sp)(dω).

We numerically compute such quantities by generating M spike trains, denoted ω(m),
m = 1 . . . M, of length T, with the spontaneous dynamics, thus distributed according to
µ(sp). Then:

∫
Ω

f (n, ω) g(r, ω)dµ(sp)[ω ] ∼ 1
M

M

∑
m=1

f (n, ω(m)) g(r, ω(m)). (30)

The equality holds in the limit M → ∞. Here, we chose M = 10,000 or M = 100,000.
Fluctuations about the mean are ruled by the central limit theorem, so they decrease like

1√
M

with a proportionality factor depending on the observables f and g.

5.2. Results

We consider a one-dimensional lattice of N = 30 neurons, separated by a lattice
spacing dx, with null boundary conditions. The connectivity is depicted in Figure 2. Each
neuron excites its neighbours with a weight Wk±1,k = w+ > 0 and inhibits its second
neighbours with a weight Wk±2,k = w− < 0. We compare the spontaneous activity (with a
noise term and a constant term I0 to fix the baseline activity, as in (18)) to the dynamics in
the presence of Gaussian pulse, with width ∆, propagating at speed v from left to right:

S(x, t) =
A√

2π ∆
e−

1
2

(x−v t )2

2 ∆2 , (31)

where x, t are continuous space-time variables. The neuron k is located at xk = k δ and
time is updated at each t = n b where b is a time bin. In the simulations dx = 1 mm,
v = 2 mm/s, b = 10 ms, ∆ = 1 mm. The term A represent the amplitude and is variable
to show the validity of the linear response theory as the amplitude of the stimulus increases.
We fix θ = 1, γ = 0.6, corresponding to a characteristic decay time (19) τγ = −

[
1

log γ

]
∼ 2.

The memory D appearing in the summations (28), (29) was taken to be D = 10 from the
study of correlation decay rate. This is a good compromise between the convergence of
these sums and the computational time.

The constant stimulus I0 is fixed to have a good baseline activity. We consider the
activity without and with stimulus with moderate excitatory connectivity and strong
inhibitory connectivity (w+ = 0.2, w− = 2). In Figure 3 we show the spike network activity
in spontaneous activity (left) and in the presence of a moving stimulus (right). The strong
inhibition is particularly visible in the presence of the stimulus.



Entropy 2021, 23, 155 20 of 30

Figure 2. Connectivity pattern of the model. Neurons (black filled circles) are located into a one-
dimensional lattice with spacing dx. They are connected to nearest neighbors through excitatory
connections (red) with weight w+ and to second nearest neighbors through inhibitory connections
(blue) with weight w−. These neurons are submitted to a space-time dependent stimulus S(x, t) (top
line, blue trace) traveling at speed v from left to right. This modifies the average activity µ[ f (x, t) ] by
a variation δµ[ f (x, t) ] (bottom trace).

Figure 3. Spiking activity of the network. Left panel shows the spontaneous activity and right panel in the presence of a
moving stimulus (31).

5.3. Linear Response for Firing Rates

We first present the results of linear response for the observable f (n, ω) = ωkc(n),
where kc = N

2 is the index of the neuron located at the center of the lattice. Thus,
µ[ f (n, ω) ] ≡ r(kc, t), the firing rate of this neuron as a function of time. In spontaneous
activity it is a constant; under stimulation it depends on time. In Figure 4 we show the
effect of the stimulus on the average value of this observable for different amplitudes
values. One observes the combined effect of the stimulus and of the connectivity.



Entropy 2021, 23, 155 21 of 30

Figure 4. Linear response of f (ω, n) = ωkc (n) for different values of stimulus amplitude A. Blue curve: Empirical average
trace computed from (30). Orange: Linear response computed from Equation (28). Green: Linear response computed from
Equation (29).

We next studied how correlation functions in spontaneous activity depend on space
and time. One observes that they decay relatively fast with the time delay of m (Figure 5).
In addition, they are multiplied by γm in (28), (29). Therefore the contribution to the linear
response series decay exponentially fast and the series can be truncated to low order. Here
we took a maximal order D = 10.



Entropy 2021, 23, 155 22 of 30

Figure 5. Correlation functions corresponding to the firing rate of the neuron kc =
N
2 as a function of the neuron index k

(abscissa), for different values of the time delay m. (Left) correlations with stimulus. (Right) correlations in the spontaneous
regime. Top. m = 0, middle m = 1, bottom m = 2, 3, 9.

Finally, as shown in Figure 4, we compute the linear response δµ(1)[ f (t) ], δµ(HC1)[ f (t) ]
and compare them to the response obtained by empirical averages.

5.4. Linear Response for Higher Order Observables

Here, we consider the pairwise observable f (ω, n) = ωkc−2(n − 3)ωkc(n) where
kc = N

2 . This is an example of an observable with a time delay. Neurons kc − 2 and kc
mutually inhibit each other so we expect that the state of neuron kc − 2 before n impact the
state of neuron kc at time n. However, the correlation between those states depends as well
on the state of the other neurons.

Similarly to the previous section we have plotted in Figure 6 the empirical estimation
of the linear response under the two approximations (28), (29).
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Figure 6. Linear response of the observable f (n, ω) = ωkc−2(n− 3)ωkc (n). Here, we consider the same amplitudes and as
Figure 4.

5.5. Validity of the Linear Response

The linear response is expected to hold when the stimulus amplitude is weak. What
does that mean? A mathematical answer is given by Equation (27) although remaining at a
rather abstract level. Here, we compute the distance:

d2(δµ(th)[ f (n) ], δµ(exp)[ f (n) ]) =
T

∑
n=1

(
δµ(th)[ f (n) ]− δµ(exp)[ f (n) ]

)2
, (32)

between the theoretical curves δµ(th)[ f (n) ] and the experimental curve δµ(exp)[ f (n) ], as a
function of the stimulus amplitude A, in the two examples of observable investigated here.
Note that distance here is not normalized: it does not take into account the amplitude of
the response. This explains why the distance is larger in the case of firing rates than in the
delayed pairwise case, as in the latter the norm of the curve is quite smaller. The result is
presented in Figure 7. As expected, the error in both cases increases with the amplitude
of the stimulus, and it increases slower for (28) than for the lowest order Hammersley–
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Clifford expansion (29). It is interesting to see how the curves differ when A increases (see
Figures 4 and 6). The empirical average curves clearly exhibit a non-linear saturation (e.g.,
firing rate cannot exceed 1) that is not reproduced by the linear response theory. This is
further commented on in the discussion section.

Figure 7. d2 distance (32) between the curves δµ(1)[ f (n) ], δµ(HC1)[ f (n) ] and the empirical curve, as a function of the
stimulus amplitude A. The left panel shows the distance between rate curves (Section 5.3) and right panel distance between
pairwise with delay (Section 5.4).

5.6. Comments on Numerical Results

With these simulations, we have been able to illustrate our results. We are able
to predict the time variation of an observable under a non-stationary stimulation, from
the mere knowledge of the stimulus and the spontaneous statistics. In particular, our
results hold for observables with time delays, considerably enlarging the scope of linear
response theories in neuronal networks. The comparison with classical fluctuation theory
also emphasizes the role played by higher-order terms. Linear response requires that the
stimulus has a weak enough amplitude. We see very well this effect numerically. As the
amplitude A of the stimulus increases, we check the increasing discrepancy between the
empirical averages and the prediction.

6. Discussion

In this paper, we have addressed the following question: How is the average of an
observable f (t, ω) affected by a weak time-dependent stimulus. We studied this question
in a theoretical setting, using the linear response theory and probability distributions with
unbounded memory generalizing the usual definition (3) of Gibbs distributions in statistical
physics courses. Our goal was to show a general mathematical formalism allowing one to
handle spike correlations as a result of neuronal network activity in response to a stimulus.
The most salient result of this work is that the difference of an observable average in
response to a time-dependent external stimulus of weak amplitude can be computed from
the knowledge of the spontaneous correlations, i.e., from the dynamics without the stimulus.
This result is not surprising from a non-equilibrium statistical physics perspective (Kubo
relations, fluctuation–dissipation relation [31,33]). However, to the best of our knowledge,
this is the first time it has been established for spiking neuronal networks. The novelty
of our approach is that it provides a consistent treatment of the expected perturbation of
higher-order correlations, going in this way, beyond the known linear perturbation of firing
rates and instantaneous pairwise correlations; in particular, it extends to time-dependent
correlations.

In addition, we made explicit the linear response kernel in terms of the parameters
determining individual networks dynamics and neuron connectivity. We have provided
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an explicit example of this for a well-known class of models, the LIF model. This makes
explicit the role of the neuronal network structure (especially synaptic weights) in the
spiking response. As we show, the stimulus-response and dynamics are entangled in
a complex manner. For example, the response of a neuron k to a stimulus applied on
neuron i does not only depends on the synaptic weight Wki but, in general, on all synaptic
weights, because the dynamics create complex causality loops which build up the response
of neuron k [8,43,44]. Our linear response formula is written in terms of the parameters of
a spiking neuronal network model and the spike history of the network. Although a linear
treatment may seem a strong simplification, our results suggest that already, in this case,
the connectivity architecture should not be neglected. In the presence of stimuli, the whole
architecture of synaptic connectivity, history and the dynamical properties of the networks
are playing a role in the correlations through the perturbed potential. This agrees well
with results from a recent study exhibiting an exact analytical mapping between neuronal
network models and maximum-entropy models, showing that, in order to accurately
describe the statistical behavior of any observable in the Maximum Entropy model, all the
synaptic weights are needed, even to predict firing rates of single neurons [8].

Higher order terms can not only play a significant role in spatial terms, as shown
in [63,64], but also in temporal terms. Indeed, as argued throughout this paper, neuronal
interactions involve delays that have to be integrated into a model attempting to explain
spike statistics [21]. Note, however, that contrary to what is usually believed, detailed
balance is absolutely unnecessary in order to properly handle time correlations [65–67].
Note also that binning-which can be convenient to remove short-range time-correlations
from the analysis-dramatically changes the nature of the process under investigation,
rendering it non-Markovian [68]

We have also introduced the monomial expansion by providing a canonical way of de-
composing the potential, describing the stationary dynamics. Moreover, the Hammersley–
Clifford decomposition allows us to obtain the coefficients weighting the monomials in
terms of the parameters constraining dynamics. In the case of the discrete-time LIF model,
this allowed us to show the explicit dependence of the coefficients in terms of synaptic
weights. Although the basis of monomials is quite huge, standard results in ergodic theory
and transfer matrices/operators state that we can neglect high order terms because of the
exponential correlation decay.

In the example we present we study the following question: What is the role of this
lateral connectivity in motion processing in sensory neurons? Clearly, one may expect it
to induce spatial and temporal correlations in spiking activity, as an echo, a trace, of the
object’s trajectory. These correlations cannot be read in the variations of firing rate; they
also cannot be read in synchronous pairwise correlations as the propagation of information
due to lateral connectivity necessarily involves delays. This example raises the question
about what information can be extracted from spatio-temporal correlations in a network of
connected neurons submitted to a transient stimulus.

Our results are written in terms of Kernels which can be found for any observable,
generalizing the concept of receptive fields to general spatio-temporal observables beyond
firing rates. This is the analogous of having “population receptive fields” which are an
extension of the concept of receptive-field usually associated individual sensory neurons.
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Appendix A. Example Hammersley–Clifford Decomposition

The decomposition (6) is straightforward. However, we would like to give a simple,
yet illustrative example. Let us consider 1 neuron at times 0 and 1. The spiking patterns
are ω = (ω1(0)ω1(1))=(0, 0 ), (1, 0 ), (0, 1 ), (1, 1 ), and, a function of these patterns takes
four values: f (0, 0 ) = F0, f (1, 0 ) = F1, f (0, 1 ) = F2, f (1, 1 ) = F3. We have:

f (ω) = F0 (1−ω1(0) )(1−ω1(1) ) + F1 ω1(0)(1−ω1(1) )

+F2 (1−ω1(0) )ω1(1) + F3 ω1(0)ω1(1),

that we may rewrite in the form (6) :

f (ω) = f0 + f1 ω1(0) + f2 ω1(1) + f3 ω1(0)ω1(1);

f0 = F0; f1 = F1 − F0; f2 = F2 − F0; f3 = F0 − F1 − F2 + F3

More generally the transformation from the “function” representation (the vector F of Fis
in the example) to the monomial representation (the vector f , of fls) is given by the linear
transformation:

f = Q · F, (A1)

where Q is a triangular matrix given by [45]:

Qll′ =

{
(−1 )d(l)−d(l′); l′ v l
0; otherwise

Here the notation l′ v l means the following: To each spike block ωD
0 , one can associate a

unique integer:

l =
N

∑
k=1

D

∑
n=0

2n N+k−1 ωk(n), (A2)

called the index of the block. We define the block inclusion v on ΩN,R: ωD
0 v ω ′0−D if

ωk(n) = 1⇒ ω′k(n) = 1 (all bits ’1’ in ωD
0 are bits ’1’ in ω ′0−D), with the convention that

the block of degree 0 is included in all blocks. By extension l′ v l means that all bits ’1’ in
the block corresponding to the integer l are included in the block corresponding to l′ [8].

The result (A1) shows that the coefficient of a monomial is the linear combination
of function values where the number of terms in the combination increases with the
monomial degree.

Appendix B. Monomials Decomposition

Appendix B.1. Linear Response in the Finite-Range Potential Approximation

Although φ, φ(sp) have infinite range, their memory dependence can decay fast,
typically exponentially. This property is independent of the application of a stimulus: it
holds for φ and φ(sp) as well, hence for δφ. In this case, the infinite range potentials can
be approximated by a finite-range one. We use here a classical result in ergodic theory: a
potential φ with an exponentially decaying variation (11) (more generally, so-called regular

https://github.com/brincolab/Linear-response
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potential) can also be approximated by a finite-range potential φ(R) in the sup norm where
‖φ− φ(R)‖ ≤ CΘR, for some 0 < Θ < 1 [69]. Equivalently the chain with infinite memory
can be replaced by a Markov chain of memory depth D, D = R + 1. Therefore, δφ can
be approximated by a range-R potential δφ(R). Using the monomial decomposition (6),
we have:

δφ(r, ω) ∼∑
l′

δφl(r)ml(ω
r
r−D).

In this setting, (16) becomes:

δ(1)[ f (t) ] =
n=[ t ]

∑
r=n0+1

∑
l,l′

fl(t) δφl′(r) C(sp)[ml(ω
n
n−D), ml′(ω

r
r−D)

]
.

However, µ(sp) is stationary by assumption. Hence the correlation
C(sp)[ml(ω

n
n−D), ml′(ω

r
r−D)

]
only depends on the two monomials ml , ml′ and on the time

lag n− r, i.e., C(sp)[ml(ω
n
n−D), ml′(ω

r
r−D)

]
= C(sp)[ml ◦ σn−r, ml′ ], that we write Cl,l′(n− r)

to alleviate notations. Thus:

δ(1)[ f (t) ] =
n=[ t ]

∑
r=−∞

∑
l,l′

fl(t)Cl,l′(n− r) δφl′(r),

so that the linear response is a linear decomposition of monomial correlations com-
puted at equilibrium. We can write this in a more compact form introducing the L-
dimension vectors f (t) =

(
fl(t)

)L
l=1, δφ(r) =

(
δφl(r)

)L
l=1 and the matrix C(n− r) =(

Cl,l′(n− r)
)L

l,l′=1. We write δ(1)[ f (t) ] in the form:

δ(1)[ f (t) ] =
n=[ t ]

∑
r=−∞

〈 f (t) | C(n− r) · δφ(r)〉, (A3)

where 〈 | 〉 denotes the standard scalar product.
This has three important consequences.

Appendix B.2. The Convolution Kernel

For a time independent observable f (ω) we introduce K f (m) the L× L matrix with
entries:

K f ;l,l′(m) = fl Cl,l′(m),

so that:

δ(1)[ f (t) ] =
n=[ t ]

∑
r=−∞

∑
l,l′

K f ;l,l′(n− r)δφl′(r),

which is a discrete convolution. It is close to the form (1) with the difference that the time
is discrete, coming from our spike trains discretization. The stimulus, explicit in (1) is
here hidden in δφ(r). We give an illustration of this in the next section. However, the
fundamental result is that the convolution kernel defined this way is a linear combination
of monomial correlations functions. This has, therefore, the form of a Kubo equation
where the monomials play the role of the physical quantities introduced in Section 2.1.
As mentioned above, the main and essential difference is that, in contrast to Physics, we
have no a priori idea which monomials are the most important (except straightforward
arguments on the decaying probability of high order monomials). There is no known
principle to guide the choice.
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