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Introduction: Sphingosine-1-phosphate (S1P) is a signaling lipid and crucial in vascular
protection and immune response. S1P mediated processes involve regulation of the
endothelial barrier, blood pressure and S1P is the only known inducer of lymphocyte
migration. Low levels of circulatory S1P correlate with severe systemic inflammatory
syndromes such as sepsis and shock states, which are associated with endothelial barrier
breakdown and immunosuppression. We investigated whether S1P levels are affected by
sterile inflammation induced by cardiac surgery.

Materials and Methods: In this prospective observational study we included 46 cardiac
surgery patients, with cardiopulmonary bypass (CPB, n=31) and without CPB (off-pump,
n=15). Serum-S1P, S1P-sources and carriers, von-Willebrand factor (vWF), C-reactive
protein (CRP), procalcitonin (PCT) and interleukin-6 (IL-6) were measured at baseline,
post-surgery and at day 1 (POD 1) and day 4 (POD 4) after surgical stimulus.

Results:Median S1P levels at baseline were 0.77 nmol/mL (IQR 0.61-0.99) and dropped
significantly post-surgery. S1P was lowest post-surgery with median levels of 0.37 nmol/
mL (IQR 0.31-0.47) after CPB and 0.46 nmol/mL (IQR 0.36-0.51) after off-pump
procedures (P<0.001). The decrease of S1P was independent of surgical technique
and observed in all individuals. In patients, in which S1P levels did not recover to
preoperative baseline ICU stay was longer and postoperative inflammation was more
severe. S1P levels are associated with its sources and carriers and vWF, as a more
specific endothelial injury marker, in different phases of the postoperative course.
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Determination of S1P levels during surgery suggested that also the anticoagulative effect
of heparin might influence systemic S1P.

Discussion: In summary, serum-S1P levels are disrupted by major cardiac surgery. Low
S1P levels post-surgery may play a role as a new marker for severity of cardiac surgery
induced inflammation. Due to well-known protective effects of S1P, low S1P levels may
further contribute to the observed prolonged ICU stay and worse clinical status. Moreover,
we cannot exclude a potential inhibitory effect on circulating S1P levels by heparin
anticoagulation during surgery, which would be a new pro-inflammatory pleiotropic
effect of high dose heparin in patients undergoing cardiac surgery.
Keywords: sphingosine-1-phosphate, systemic inflammation, sepsis, cardiac surgery, heparin, SIRS
INTRODUCTION

Cardiac surgery is still associated with a high early perioperative
in-hospital mortality (1, 2). Surgery related mortality has
partially been attributed to the surgery induced acute
inflammatory response. In this context, cardiopulmonary
bypass (CPB) induces severe inflammation and is associated
with higher risk of organ failure such as acute kidney injury
(AKI), which increases the risk of not surviving the hospital stay
by 2-fold (3–5). Although techniques such as off-pump
procedures may reduce postoperative mortality, the acute
inflammatory response after cardiac surgery remains
challenging due to the massive cardiovascular stress after
surgery (6). Mechanisms of surgery induced inflammation and
other causes of systemic inflammation are very similar. For
example, the clinical presentation of sepsis patients compared
to patients with severe postoperative inflammation after cardiac
surgery is indistinguishable and hemodynamic instability,
volume deficiency and lactate acidosis are leading symptoms
(7, 8). Hallmarks are hypotension caused by vasoplegia, edema
formation caused by endothelial barrier disruption and
uncontrolled cytokine secretion with an increased vulnerability
for secondary infections. All of these processes are potentially
regulated by the vascular protective G-protein coupled signalling
lipid sphingosine-1-phosphate (S1P) (9). S1P supports crucial
functions relevant in inflammation and in the control of
hyperinflammatory states: I) Regulation of the endothelial cell
(EC) barrier: S1P is fundamental for EC barrier stabilization by
regulating the EC cytoskeleton (10, 11). In-vivo models have
demonstrated a robust stabilizing effects of S1P preventing lung
edema and microvascular permeability induced by toxins
(endotoxin, lipopolysaccharide) or high-volume ventilation (12,
13). II) Recruitment of lymphocytes and host response: S1P is the
only known inducer of lymphocyte migration from lymphatic
organs into peripheral blood. Mice with depleted S1P levels are
lymphopenic (14–16). This effect of S1P on the immunity is
induced by FTY-720 (Fingolimod), which is a standard of care in
Multiple sclerosis. Moreover, S1P agonists are effectful inhibitors
of viral induced inflammation in mice infected with influenza
(17). Finally, S1P signaling may depend on its main carrier, high-
density lipoprotein (HDL) or albumin (18).
org 2
There is growing evidence that S1P levels are low in patients with
sepsis induced systemic inflammation and that low S1P levels
correlate with a higher mortality and morbidity (19–22). Moreover,
decreased S1P levels are predictive of hyperinflammatory shock with
similar precision as the sequential organ failure assessment (SOFA)
(20). Manipulating S1P-controlled processes by S1P substitution or
S1P-receptor activation are discussed as therapeutic options to
attenuate the systemic inflammatory response. These effects
are within the range of expectancy due to the well-known activities
of S1P on endothelial integrity, the immune response and as a pro-
survival factor (20, 23–25). Considering the observations in human
systemic inflammation and current experimental data, we aimed
to investigate S1P in patients undergoing cardiac surgery
induced inflammation.
MATERIALS AND METHODS

Study Design and Subjects
Forty-six adult patients (age >18 years) scheduled for elective
major cardiac surgery, with or without CPB, at the University
Heart and Vascular Center at the University Medical Center
Hamburg-Eppendorf, Germany, were enrolled in the study after
written informed consent was obtained. Non-inclusion criteria
was a preexisting infection or the suspicion thereof based on
laboratory results. Treatment of patients was entirely left to the
discretion of the caring surgeon, anesthesiologist and intensive
care provider. After insertion of an arterial radial catheter by the
caring anesthesiologist prior to anesthesia induction, the first
blood samples (7,5 ml volume) were drawn to define a
preoperative baseline. Blood samples were repeatedly drawn
after surgery, before transfer of the patient to the intensive care
unit (ICU), on the first postoperative day (POD1) and on the
fourth postoperative day (POD4). In six patients, additional
serum blood samples were drawn at skin incision, before CPB
and every 30 minutes during CPB. Laboratory tests included S1P
concentrations in blood, potential sources of S1P (red blood cells
(RBC), platelets), coagulation tests (partial thromboplastin time
(PTT), international normalized ratio (INR), inflammatory
markers (interleukin-6 (IL-6), procalcitonin (PCT), c-reactive
protein (CRP)), von-Willebrand factor antigen (vWF : AG),
October 2021 | Volume 12 | Article 761475
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fibrinogen), potential S1P carriers (high-density lipoprotein
(HDL), low-density lipoprotein (LDL), albumin), bilirubin and
creatinine. Except for S1P, all other laboratory measurements
were performed with routine patients’ diagnostic tests with
appropriate quality controls and clinical standards (Institute of
Clinical Chemistry and Laboratory Medicine at the University
Medical Center Hamburg-Eppendorf). In addition to basic
patient characteristics and performed surgical procedure we
documented the following clinical parameters during the
perioperative phase: duration of ECC and aortal cross-
clamping time, overall time of surgery, fluid balance, dosage of
vasoactive drugs, perioperative administration of blood products,
length of ICU stay and the Sequential Organ Failure Assessment
(SOFA) score on POD1.

Serum Preparation and S1P
Measurements
Blood serum was obtained by coagulation for at least 60 min,
cleared by centrifugation and immediately frozen and stored at
−80°C until further use. According to the manufacturer’s
protocol we used serum tubes filled with kaolin or silicate
coated beads to guarantee a full coagulation within the
expected time of at least 60 min (S-monovette™, Sarstedt,
Nümbrecht, Germany). S1P measurements were performed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
as previously described (26). Briefly, after the addition of internal
standard (1 nmol/mL S1P-d7, Avanti Polar Lipids, Alabaster,
AL, USA), 20 µL-aliquots of serum were de-proteinated by the
addition of 180 µL acetonitrile/water (80/20, vol/vol). Extracts
were cleared by centrifugation and subjected to reverse-phase
chromatography on a Zorbax SB-C8 column (2.1 × 50 mm;
Agilent Technologies, Santa Clara, CA, USA) at a flow rate of
0.35 mL/min. S1P was eluted by a binary gradient over six
minutes (methanol/acetonitrile/0.1% formic acid, 2.5/2.5/95, vol/
vol/vol to methanol/acetonitrile/0.1% formic acid, 30/30/40, vol/
vol/vol) and quantified by LC-MS/MS (Varian L1200 MS/MS,
Agilent Technologies, Waldbronn, Germany) in the multiple
reaction mode. Four level calibration curves and two levels of
quality controls (QCs) were included. Imprecision of the method
was determined to 8% and 9% for QC-low and QC-high samples,
respectively (26).

Statistical Analysis
The primary variable was S1P concentration in nanomoles (nmol)
per milliliter (mL). Differences between groups were tested for
significance by using non-parametric tests: Mann–Whitney U test
for two groups and Kruskal-Wallis analysis of variance (ANOVA)
for more than two groups. Data are presented as median with
interquartile range and in-vitro experiments asmeanwith standard
error of themean.Correlations andmultivariate regression analysis
were performed either by the Spearmans’ rank correlation test and
multivariate regression analysis using SPSS (version 21; IBM
Corporation, Armonk, NY, USA). In addition, a Kaplan-Meier
curvewas generated for subgroup analysis. For all tests, a P-value of
less than 0.05 was considered significant. Statistical analyses were
performed by using SPSS or GraphPad Prism (version 8.4.2,
GraphPad, La Jolla, CA, USA) with guidance from members of
Frontiers in Immunology | www.frontiersin.org 3
the Department of Medical Biometry and Epidemiology at the
University Hospital Hamburg-Eppendorf.
RESULTS

Circulatory S1P Levels Decrease,
Whereas Inflammatory Markers
Increase After Surgery
We included 46 patients admitted for elective cardiac surgery.
Thirty-one (67.4%) patients underwent on-pump procedures for
coronary artery bypass surgery (n=17), valve replacement/
reconstruction (n=13) or a combination of coronary artery
bypass surgery and valve replacement (n=1). Fifteen patients
(32.6%) underwent off-pump procedures (off-pump coronary
artery bypass surgery). All patients were admitted to hospital
because of coronary heart disease (CHD) and received the
preoperative standard of care for CHD. The chart in Figure 1
summarizes the included patient groups. We compared S1P levels
and five inflammatory markers to investigate whether levels were
altered in relation to pre-surgery levels and Table 1 is showing
basic patient characteristics. S1P was the only laboratory
characteristic, which significantly decreased compared to pre-
surgery baseline levels (Figure 2). The lowest S1P concentrations
were found post-surgery when patients were transferred to the
intensive care unit (ICU). All other markers showed a contrary
trend with significant peak levels either directly post-surgery
(leucocytes), on postoperative day (POD) 1 (procalcitonin/PCT,
interleukin-6/IL6), or POD4 (von-Willebrand-factor:AG/vWF :
AG, C-reactive protein/CRP, Figure 2).

Cardiac Surgery Disrupts Serum-S1P
Levels Irrespective of the Use of CPB
In order to investigate the influence of CPB on S1P kinetics we
defined two groups (Figure 1): patients operated with support of
CPB (referred to as on-pump), and patients operated without
CPB (referred to as off-pump group). Basic patient characteristics
and baseline inflammatory markers were compared between the
two groups (Table 1). We found the same S1P kinetics in both
groups with significant lowest levels observed post-surgery
(Figure 3). S1P levels dropped by 58% in the on-pump and
31% in the off-pump group (Figure 3). Regardless of baseline
levels being high or low, patients reached their individual nadir
post-surgery with lowest S1P levels of 0.37 nmol/mL in the on-
pump group and 0.46 nmol/mL in the off-pump group (Figure 3).
However, the difference between these two levels was not
significant. Taken together, the lowest S1P levels post-surgery
were independent of the use of CPB.

Changes of Serum-S1P Levels Are
Associated With S1P Sources and Carriers
To identify potential parameters that define the U-shaped course
of S1P levels during treatment, a multivariate regression analysis
was performed for three perioperative phases: intraoperative,
early recovery (POD 1) and late recovery (POD 4). We included
S1P sources, red blood cells (RBC) and platelets, S1P carriers,
October 2021 | Volume 12 | Article 761475
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serum albumin, high-density lipoprotein (HDL) and a marker
for endothelial cell injury, vWF : AG. Intraoperative loss of S1P
was associated with RBC and platelets depletion, whereas the
increase of S1P levels on POD 1 and POD 4 was dependent on
albumin, HDL and vWF : AG activity (Table 2). Next, we
Frontiers in Immunology | www.frontiersin.org 4
investigated whether postsurgical S1P levels were predictive for
patient outcome. Patients were divided into two groups: S1P
levels increasing to reach individual pre-surgery levels, and S1P
levels remaining low. Both groups were compared using the
sequential organ failure assessment (SOFA) score on POD1, fluid
TABLE 1 | Baseline patient’s characteristics.

Parameter All patients On-pump Off-pump P-value

Number of patients, n 46 31 15 N/A
Age, y 70 (62-75) 68 (57-74) 72 (67-75) ns
Male/Female, n/n 34/12 21/10 13/2 <0.05
S1P, nmol/mL 0.77 (0.61-0.99) 0.85 (0.66-1.03) 0.67 (0.54-0.76) <0.05
S1P source and vWF : AG
Erythrocytes, 106/µL 4.25 (3.79-4.53) 4.27 (3.99-4.52) 4.07 (3.48-4.67) ns
Platelets, 103/µL 234 (195-263) 237 (198-300) 200 (181-248) ns
vWF : AG, % 174 (137-201) 162 (126-195) 193 (155-253) <0.05
S1P carriers
HDL, mg/dL 43.0 (36.-57.0) 44.5 (33.5-59.0) 43.0 (38.5-51.5) ns
Albumin, g/L 34.0 (31.0-36.0) 34.0 (32.0-36.0) 33.0 (30.0-35.5) ns
Inflammatory marker
Leucocytes, 103/µL 5.8 (4.9-6.5) 5.9 (4.9-6.6) 5.6 (4.8-6.3) ns
IL-6, ng/L 4.3 (2.7-6.5) 4.4 (2.2-6.1) 4.3 (3.1-9.6) ns
CRP, mg/L# 5 (5-8) 5 (5-7) 5 (5-10) ns
PCT, ng/mL 0.04 (0.04-0.06) 0.04 (0.04-0.06) 0.04 (0.035-0.055) ns
October 2021 | Volume 12 | Article
Data are presented as median and interquartile range (IQR); CRP, C-reactive protein; vWF, AG, von Willebrand-Factor antigen; IL-6, Interleukin-6; PCT, Procalcitonin; N/A, not applicable;
ns, not significant; #Detection limit 5 mg/dL.
FIGURE 1 | Flow-chart of the included study participants.
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FIGURE 2 | Kinetic of S1P levels and other inflammatory markers in cardiac surgery patients from pre-surgery levels (baseline) up to day four after surgery. All
markers were measured in 46 patients admitted to hospital for cardiac surgery. Among all measured parameters only S1P decreased after surgical intervention. The
unity and scale have been adjusted for each marker and data are presented as median with interquartile range (IQR). The statistic is showing the ANOVA Kruskal-
Wallis test for trend analysis. ***p < 0.001. POD, postoperative day.
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7614755
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balance within the first 24 hours after surgery and length of ICU
stay. Patients with a full recovery of S1P levels presented with a
lower SOFA score (p<0.05), had a reduced volume uptake (not
significant) and stayed significantly shorter on ICU (p<0.05)
(Figure 4 and Table 3).

Serum-S1P Levels DropBefore the Start of CPB
To further define the time window in which S1P concentrations
drop during treatment, S1P levels were measured every 30 min in
6 patients during CPB. In all cases, a significant drop of S1P levels
was observed immediately before the start of CPB, which is in
coincidence with the application of heparin (Figure 5).
DISCUSSION

This report analyses S1P levels in cardiac surgery induced
inflammation. Our main findings are that S1P levels are disrupted
Frontiers in Immunology | www.frontiersin.org 6
byheart surgery, changes of S1P levels inversely correlatewith acute
phase markers for inflammation, and the influence of CPB on S1P
levels seems negligible compared to off-pump procedures. Cardiac
surgery is an extremely strong inflammatory stimulus induced by
tissue trauma, contact activation of the blood with non-endothelial
surfaces, coagulation activation, endotoxemia and ischaemia-
reperfusion injury (5, 27). This provokes an immediate acute-
phase response, which is characterized by alterations of cytokines
levels and acute-phase proteins (28, 29). Clinically, the resulting
systemic inflammatory response is associatedwith severe intra- and
postoperative complications as myocardial, respiratory and acute
kidney injury (AKI), neurological impairment, bleeding and in its
most severe form multiorgan failure (27). A recently published
systematic review, including data of more than 14,000 patients,
analysed which markers were useful in determining the magnitude
of surgery induced injury (30). For example, the authors found that
peak CRP was 36-times higher in patients after cardiac surgery
compared to pre-surgery and that high concentrations of IL-6 and
FIGURE 3 | Comparison of S1P levels in 46 cardiac surgery patients operated with cardiopulmonary bypass (on-pump) and without (off-pump). Individual serum-
S1P levels are plotted at four time points: pre-surgery, post-surgery with admission to intensive care unit, on day one (POD 1) and four (POD 4) after surgery. The
median and interquartile range (25th to 75th percentile) of measured serum-S1P are listed below. The trend for serum S1P was significant for both groups and lowest
S1P levels were reached post-surgery. Median post-surgery levels were not different when comparing on- versus off-pump patients. The statistic within the graph is
showing ANOVA Kruskal-Wallis test for trend analysis for the complete observational period. ***p < 0.001. POD, postoperative day; IQR, interquartile range.
TABLE 2 | Multivariate regression analysis with sphingosine-1-phosphate (S1P) as dependent variable for different perioperative phases.

Parameter Intraoperative P-value POD 1 P-value POD 4 P-value
Regression-coefficient (CI 95%)* Regression-coefficient (CI 95%)* Regression-coefficient (CI 95%)*

Erythrocytes, 106/µL +0.307 (0.009 - 0.284) <0.05 +0.073 (-0.149 - 0.212) ns -0.013 (-0.165 - 0.152) ns
Platelets, 103/µL +0.404 (0.001 - 0.003) <0.01 +0.121 (0.001 - 0.002) ns +0.271 (-0.001 - 0.002) ns
vWF : AG, % -0.134 (0.001 - 0.001) ns +0.195 (-0.001 - 0.001) ns -0.523 (0.003 - 0.001) <0.01
HDL, mg/dL +0.017 (-0.009 - 0.009) ns -0.068 (-0.011 - 0.008) ns -0.404 (-0.023 - 0.001) <0.05
Albumin, g/L +0.106 (-0.016 - 0.026) ns +0.345 (0.001 - 0.027) <0.05 +0.521 (0.006 - 0.064) <0.05
Model-R2# 0.46 N/A 0.24 N/A 0.50 N/A
October 2021 | Volume 12 | Article
Multivariate linear regression with S1P as dependent variable and S1P sources and carriers has been performed to predict S1P during the intraoperative phase, on day one (POD 1) and
four (POD 4) after surgery. *Standardized regression coefficient (standard beta) is shown together with confidence interval (95% CI). #R-square of the model is shown to demonstrate
goodness-of-fit. vWF, AG, von Willebrand-Factor antigen; HDL, high-density lipoprotein; N/A, not applicable; ns, not significant.
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CRP were closely associated with the degree of surgical injury (30).
PCT is another well-described marker, but rather suitable for
postoperative infectious complications after cardiac surgery (31).
Elevated levels of IL-6, CRP, leucocytes and PCT indicate a
substantial inflammatory reaction during and after surgery in our
cohort. Inflammation in cardiac surgery is often attributed to CPB
and there is a still on-going scientific debate on whether operative
strategies avoiding CPBmay be superior. In our study there was no
significant difference in the measured parameters of inflammatory
response in both patient groups with and without CPB.
Additionally, we did not observe a relevant difference in S1P
levels between the two groups and S1P levels are altered in all
patients regardless of the use of CPB. In contrast to the clinically
established inflammatory markers IL-6, CRP or leukocyte counts,
S1Pmaybetter indicate a disturbed immune response togetherwith
endothelial cell injury. Our data suggests that there is a reliable and
prompt S1P drop after the surgical stimulus. The time from the
surgical stimulus until the significant S1P drop is very short.
Therefore, we believe that, due to the important role of circulating
S1P in stabilizing endothelial integrity and immune response, S1P
may function as a potentialmarker of endothelial injury during and
after cardiac surgery, which might be predictive for recovery.

A hallmark of systemic inflammation is the damage to the
endothelial cell layer and recovery of endothelial cell function
Frontiers in Immunology | www.frontiersin.org 7
determines the outcome. This is most relevant in systemic
reactions induced by bacterial pathogens such as in sepsis (32).
Cardiac surgery induces a sepsis-like syndrome associated with a
high degree of endothelial cell dysfunction. Recent studies report
drastically increased postoperative levels of endothelial markers
in blood such as vascular endothelial cadherin and endocan,
which correlate with the severity of endothelial cell injury after
cardiac surgery (33, 34). Von-Willebrand factor regulates
adhesion of immune cells to injured endothelium and has been
previously studied in cardiac patients (35). In contrast to
components released by injured endothelial cells, S1P is a
signalling molecule regulating endothelial cell structure via
specific G-protein coupled receptors (36). The endothelium is
an important source of circulatory S1P and maintains cell
function in an auto-protective manner (37). Cardiac surgery
may interrupt this balance and injured endothelial cells may
produce less S1P, which further promotes endothelial
FIGURE 4 | Length of ICU stay in two patient groups. Patients in which
sphingosine-1-phosphate (S1P) levels recovered and patients in which S1P
levels did not recover to pre-surgery levels. The x-axis shows ICU stay in
hours, the y-axis the percentage of patients remaining on ICU for further
observation and treatment. Differences between the two groups were tested
by Log-rank-test for comparison of survival curves.
TABLE 3 | Comparison of outcome parameters.

Parameter Full recovery of S1P No recovery of S1P P-value

Number of patients, n 23 20 N/A
SOFA 3 (2-3) 4 (3-4) <0.05
ICU stay, h 24 (19-41) 41 (23-69) <0.05
Balance, 24h post-surgery 700 (50-1800) 850 (550-1775) ns
October 2021 | Volume 12 | Article
The study group was divided into two subgroups depending on whether serum S1P levels after surgery reached pre-surgery levels (full recovery of S1P) or not (no recovery of S1P). Data
are presented as median, interquartile range (IQR); Groups were compared using non-parametric Mann-Whitney-U test. N/A, not applicable; ns, not significant.
FIGURE 5 | Intraoperative kinetic of S1P levels. Blood was drawn and
analyzed every 30 minutes when cardiopulmonary bypass (CPB) had started,
post-surgery, when patients were admitted to the intensive care unit (ICU),
and 24h after surgery. Dots are individual serum-S1P concentrations and
bars represent median levels together with interquartile range (IQR). A non-
parametric paired t-test was performed to compare serum-S1P levels pre-
surgery with levels before CPB at skin incision, before and after administration
of intravenous unfractionated heparin (300-400 IE/kg) to reach the necessary
anticoagulatory effect for CPB. While serum-S1P levels were not different
before CPB starts, the most drastic drop was observed after administration of
heparin. ns, not significant, ***p < 0.001. CBP, Cardio pulmonary bypass;
ICU, intensive care unit; POD, postoperative day; ns, not significant.
761475
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dysfunction and barrier breakdown. An analogue mechanism has
been discussed by other researchers for chronic endothelial
dysfunction in atherosclerosis (38). Furthermore, circulating S1P
levels are not only determined by endothelial cells. Hematopoietic
cells, erythrocytes and platelets are a rich source for S1P as well and
all contribute to plasma-S1P levels (15). Cardiac surgery induces
haemolysis; bleeding complications are common and high platelet
turnover and microthrombi are frequent. This could be reason for
the observed acute changes in S1P concentration during surgery
whenhematopoietic S1P sources are compromised.CirculatingS1P
further depends on its carrier proteins HDL and albumin, which
contribute to S1P related effects (39). During recovery after surgical
trauma healing mechanisms, such as increased production of anti-
inflammatory proteins as HDL or albumin, may be involved in
restoring S1P homeostasis and explain our observation.

Another function of S1P is its protective role in
hyperinflammatory states. Experimental studies have been
performed in various models. For instance, in mice infected with
H1N1 influenza, administration of S1P receptor 1 agonists
attenuate the cytokine release by pulmonary endothelial cells (17).
Another well-studied role for S1P is the regulation of lymphocyte
egress from lymphatic organs into the blood (14). It is possible, due
to the lack of the immunoregulative function of S1P in the
perioperative phase following cardiac surgery, that patients are
vulnerable for infectious postoperative complications. Even though
it is a comparably small cohort with a short observational period of
only 4 days, we have found that patients with S1P levels not
recovering to preoperative levels stayed longer on the ICU and
had a higher SOFA score on POD1.

S1P levels dropped in every individual. The analysis of S1P
kinetics revealed themost relevant decrease before the onset ofCPB
and before equivalent off-pump-procedures, respectively. The
decrease in S1P coincided with invasive surgical measures as
sternotomy, luxation of the heart and cannulation for CPB and
the administration of unfractionated heparin in a high dose to
prepare for upcoming CPB or off-pump procedure. According to
the standard institutional protocol, on- and off-pump patients
receive an initial i.v. bolus of 300-400 IE/kg heparin and one
possibility is that S1P levels are influenced by heparin. Yatomi
et al.measured60% lowerS1P levels innon-coagulatedblood (191±
79 vs. 484 ± 82 pmol/mL) (40). Thus, it is possible that heparin is
causing the drop of S1P. The release of S1P by thrombin-activated
platelets into the circulation has previously been described (41, 42).
In trauma, tissue factor (TF) is exposed and initiates the coagulation
cascade. Binding of activated factor (F)VII toTF allows the binding
of FX and its conversion to FXa, which than stimulates thrombin
generation (43). Consequently, targeting FXa, via heparin, may
attenuate platelet activation and subsequently cause S1P levels to
drop. The role of platelet aggregation inhibitors in S1P release by
platelets has recently been investigated in pre-clinical studies. The
release of S1P induced by activation of thrombin receptor (PAR-1)
is inhibited by aspirin in-vitro and ex-vivo (44). Moreover, FXa
induces the expression of S1P producing kinases and subsequently
increases S1P formation (45). Taken together, FXa inhibitors, such
as heparin, may decrease circulating S1P levels, which has been
lately included in a US patent description (US20170296549A1).
Frontiers in Immunology | www.frontiersin.org 8
Mechanistically, this could be an effect of inhibited thrombin
activation of platelets, which is a main source for circulating S1P.
Reduced S1P levels in open heart surgery might be affected by
injured endothelial cells, reduced hematopoietic sources and
carriers or by iatrogenic inhibition of the coagulation system.
Interestingly, this is the first report showing that high dose
anticoagulation with heparin may influence S1P levels in patients
undergoing cardiac surgery. We cannot exclude that this
hypothetical pleiotropic effect of heparin might have a larger
effect on vascular- and immunomodulatory S1P than we
expected. A S1P/heparin interaction on the immune response has
been described and therefore cannot be excluded also under high-
dose heparin treatment during cardiac surgery (46).

Limitations of this study are that it was carried out at a single
center and involved a relatively small number of patients. The results
are strictly observational and therefore, the identity of underlying
mechanisms remains speculative. Nevertheless, due to the reliable
drop of S1P in all patients, we believe that our observations warrant
follow-up studies. For instance, confirmatory studies are needed to
evaluate a possible relationship of high dose heparin with the drop of
S1P levels. The observed drop of S1P is robust, however, we do not
know if the observed lower S1P levels will have a functional
significance on S1P signalling. Follow-up interventional studies
should address the potential of S1P or S1P mimics to benefit
patients undergoing cardiac surgery.
CONCLUSION

In conclusion, in this prospective observational study we report a
severe drop in circulatory S1P in patients undergoing cardiac
surgery independent of the use of CBP. S1P concentrations
might be negatively affected by endothelial injury, loss of S1P
sources or other intraoperative events such as anticoagulation by
heparin. It is an intriguing possibility to utilize measurements of
circulatory S1P to predict the severity of surgery-induced
inflammation, ICU length of stay and general clinical outcome.
Moreover, our observations encourage future interventional
studies to investigate the therapeutical potential of S1P or S1P
mimics in cardiac surgery.
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