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Radiation enteritis (Re) is one of the most common complications of radiation

therapy for abdominal tumors. The efficacy of cancer treatment by radiation is

often limited by the side effects of Re. Re can be acute or chronic. Treatment of

acute Re is essentially symptomatic. However, chronic Re usually requires

surgical procedures. The underlying mechanisms of Re are complex and have

not yet been elucidated. The purpose of this review is to provide an overview of

the pathogenesis of Re. We reviewed the role of intestinal epithelial cells,

intestinal stem cells (ISCs), vascular endothelial cells (ECs), intestinal microflora,

and other mediators of Re, noting that a better understanding of the

pathogenesis of Re may lead to better treatment modalities.
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Introduction

The intestine is particularly sensitive to ionizing radiation (IR).Vomiting, diarrhea,

abdominal pain, bleeding, obstruction, perforation, and nutrient absorption disorder are

common radiation toxicities in the intestine, which may lead to the decline of the

patients’ quality of life and even death (1). Several therapy-related factors such as single-

fraction dose, total dose, irradiated volume of the intestine, and the use of concurrent

chemotherapy or biotherapy will influence the incidence and severity of intestinal

radiation toxicity (2, 3). Moreover, patient-related factors like previous abdominal

surgery, inflammatory bowel disease, diabetes, and vascular disorders may also affect

the occurrence of Re (3). To solve the complications caused by radiotherapy, many

strategies have been developed to relieve symptoms, including limiting intestinal

irradiation dose and using a lower fractionated dose. However, these compromises

may reduce the anti-tumor effect (3, 4). An in-depth study of the mechanism of Re is very

important for finding new and effective strategies to prevent and treat Re. This review
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mainly summarized the current research mechanism and

intervention measures related to intestinal injury caused by

radiation therapy.
Structure and function of the
intestinal barrier

The function of the intestinal barrier is for the absorption of

nutrients through the mucosa and the prevention of injury from

other toxic substances (5). The mucous layer is the first physical

line of defense of the intestinal barrier, preventing bacteria and

viruses from directly contacting epithelial cells (6). The main

component of the mucous layer is highly glycosylated mucus,

forming a gelatinous sieve structure outside the intestinal

epithelium. Mucin 2 (MUC2) secreted by goblet cells is the

most abundant mucine in the mucous layer, and the expression

of MUC2 is closely related to the occurrence of enteritis, but the

specific mechanism is still unclear (7, 8). The tight junctions

(TJs) between the intestinal epithelial cells (IECs) constitute the

second barrier of the intestinal barrier (9, 10), which are the

determinant of the intestinal barrier function (5). The TJs’

structure is composed of transmembrane proteins such as

claudin, occludin, tricellulin, and junction adhesion molecules

(11, 12). TJs connect IECs to form a continuous polarized single-

layer structure, separating the lumen from the lamina propria
Frontiers in Oncology 02
(13, 14). The lamina propria forms the last layer of the intestinal

barrier, which is composed of immune cells, endothelial cells

(ECs), myofibroblasts, matrix components, etc. In addition, the

intestinal microbiota is also involved in the formation of the

intestinal barrier (15). It should be noted that the intestinal

barrier is not a static structure; it is always in dynamic

equilibrium (Figure 1).

At present, studies on the mechanism of Re focus on the

following aspects: the destruction of the intestinal epithelium,

intestinal stem cell (ISC) injury, intestinal microvascular

changes, and intestinal microflora disruption, among others.
Intestinal epithelium injury

Radiotherapy can lead to an increase in intestinal epithelium

barrier and permeability, which is closely related to the

destruction of the TJs’ structure by IR. Morini et al. found that

the expression of occludin, claudin, ZO-1, and ZO-2 was related

to Re. They believed that when Re occurred, ZO-1, claudin-1,

and occludin in TJs would recombine or break, resulting in the

destruction of the intestinal barrier (16).

The adherent junctions (AJs) located below TJs are

multiprotein complexes that indirectly regulate the TJs’

maturation and integrity. Gupta et al. (17) found that the AJs’

structure between IECs of mice disintegrated, expanded, and
FIGURE 1

The mechanism of radiation enteritis.
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ruptured after exposure to IR. The amino acid-based oral

rehydration solution (AA-ORS), including threonine, valine,

serine, tyrosine, and aspartic acid, reduced dilation within AJs

and reversed radiation-induced functional and structural

disruption of the intestinal barrier (17).

Autophagy plays an important role in maintaining intestinal

barrier homeostasis and regulates the apoptosis and necrosis of

IECs (18). It has been proven that intracellular mitochondria

produce a large number of intracellular reactive oxygen species

(ROS), and when autophagy is insufficient, ROS levels will

increase (19). ROS can cause structural damage and

dysfunction in DNA. Ionizing radiation, on the other hand,

inhibits autophagy, leading to damage to the intestinal

barrier (20).

Resveratrol is a polyphenol synthesized in grape leaves and

grape skins (21). Qin et al. (22) reported that the apoptosis level

of IECs in the resveratrol-pretreated group was significantly

lower than that in the irradiation group alone 24 h after exposure

to ionizing radiation. Resveratrol can promote autophagy by

activating the SIRT1 pathway to protect IECs and prevent the

occurrence of Re (22).
Intestinal stem cell injury

IECs can renew themselves rapidly every 4–5 days (23). The

ability to renew itself in the long-term can only be maintained by

intestinal stem cells (ISCs) in the crypt (24). ISCs mainly form

two differentiated epithelial lineages: (1) the enterocyte lineage,

and (2) the secretory lineage. The enterocyte lineage is mainly

responsible for absorbing nutrients. The secretory lineage

consists of Paneth cells, which regulate the maintenance and

differentiation of Lgr5+ ISCs; the mucus-secreting goblet cells;

enteroendocrine cell (EEC); and tuft cells (Figure 1).

The main cause of Re is ISC death, which leads to the loss of

key cells and destruction of crypt structures (25, 26).

Thiazolidine hydrochloride (TCZC01) is a novel compound

synthesized by Zingerone. This paper concludes that

pretreatment with TZC01 can significantly improve intestinal

crypt apoptosis, increase the number of Lgr5+ ISCs, and even

reduce intestinal cell apoptosis, thus protecting the intestinal

barrier from IR damage. However, the mechanism of TZC01 is

not explained in this paper (27).

The ISCs’ niche is not a constant, but a complex and

dynamic environment. The stem cell zone is surrounded by

enteric neurons, endothelial cells (ECs), smooth muscle cells

(SMCs), intraepithelial lymphocytes, macrophages, and

fibroblasts/myofibroblasts together with the extracellular

matrix (ECM). Wnt, Notch, bone morphogenetic protein

(BMP), and Hedgehog are the major signaling pathways

involved in the maintenance of the ISCs’ niche (28).
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Wnt/b-catenin pathway

The Wnt/b-catenin pathway plays an important regulatory

role in intestinal tissue homeostasis (29). The stability of the

environment within the intestinal tissue is coordinated and

contro l led by the se l f -renewal , regenerat ion, and

reprogramming of stem cells (30). The typical Wnt signaling

pathway is mediated by b-catenin, and b-catenin increases

rapidly when Wnt ligands bind. After b-catenin enters the

nucleus, it acts as a transcription co-activator of transcription

factor 4 (TCF4), leading to the transcription and expression of a

series of genes (31). A previous study showed that the Wnt/b-
catenin signaling pathway played an important role in the self-

renewal and proliferation of ISCs after radiation injury (32).

However, we still do not know how theWnt signal is transmitted

to the target cell as the intercellular signal.

As reported by Li et al., epicatechin can salvage the ISCs’

activity and activate the Wnt/b-catenin pathway to induce crypt

regeneration (33).

Podophyllotoxin combined with rutin (G-003M) is

considered to reduce intestinal damage caused by radiation,

and the main mechanism may enhance b-catenin nuclear

translocation-promoted Lgr5 (+) ISC renewal through the

Wnt/b-catenin signaling pathway (34).

Pretreatment with heat-killed Salmonella typhimurium

(HKST) upregulated the nuclear localization of ß-catenin

through the Wnt/b-catenin pathway. Moreover, pretreatment

with HKST greatly increased the value of intestinal cells,

significantly improved the structure and function of crypts,

and reduced intestinal damage caused by ionizing radiation to

prevent radiation enteritis (35).
Notch pathway

The Notch pathway is one of the key signaling pathways that

maintain the balance of intestinal epithelial cell proliferation and

differentiation. The Notch signaling pathway relies on cell-to-

cell signaling, in which a cell provides a Notch ligand to adjacent

cells expressing the Notch receptor (36). However, it usually

results in the opposite fate of neighboring cells (lateral

inhibition) (37). When the Notch receptor and ligand binding

are activated, the Notch intracellular domain (NCID) is

hydrolyzed and released into the nucleus and changes the gene

expression in coordination with transcription factors, especially

recombination signal binding protein J (RBP-J) (19).

Ghrelin is a hormone mainly produced by gastrointestinal

endocrine cells (38). Recently, Kwak et al. (39) found that ghrelin

could retain the proliferative function of IECs after irradiation

by activating the Notch pathway in vitro. Further in vivo

experiments confirmed that ghrelin could alleviate acute
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intestinal injury caused by radiation. The authors speculated that

ghrelin is a potential strategy for the treatment of Re by

activating the Notch pathway to retain the proliferative ability

of IECs and repair intestinal barrier injury.

Park et al. (25) found that Valproic acid (VPA) was an

effective intestinal protective agent. The results showed that IR

reduced the activity of intestinal organoid by 70%, while

pretreatment with VPA only reduced the activity of intestinal

organoid by 30%. Further studies demonstrated that VPA

significantly upregulated NOTCH1 mRNA level, activated the

Notch pathway to reduce IR damage to LGR5+ cells, and

improved crypt regeneration.
Bone morphogenetic protein
signaling pathway

The BMP is the most important part of the transforming

growth factor b (TGFb) superfamily (40). BMP binds to the

complex on the cell membrane (composed of serine/threonine

kinase) and activates the intracellular heteromeric Smad

complex, thereby regulating gene expression (41–43). On the

other hand, the BMP signaling pathway has been shown to

negatively regulate the self-renewal of Lgr5+ ISCs by inhibiting

Wnt signaling (42, 44, 45). The BMP signaling pathway is

negatively regulated by Gremlin, which is secreted by

trophoblast cells (46, 47).

Martıń-Alonso et al. (48)found that radiation-induced

intestinal epithelial injury could not be repaired without the

membrane-bound matrix metalloproteinase-17 (MMP17)

expressed by smooth muscle cells. MMP17, an antagonist of

the BMP signaling pathway, promotes the proliferation of ISCs.
Hedgehog signaling pathway

The Hedgehog (Hh) signaling pathway is a paracrine in the

strict sense. In humans, three Hh ligands are expressed: Sonic

Hedgehog (Shh), Indian Hedgehog (Ihh), and Desert Hedgehog

(Dhh). Ihh is one of the important ligands of the Hedgehog

pathway and maintains the stability of the ISCs’ niche (49). Ihh

is secreted by IECs and acts on mesenchymal cells. Mesenchymal

cells produce signaling factors that negatively regulate the

proliferation of ISCs. Moreover, the BMP pathway plays a

synergistic role in this process (50).
Intestinal vascular endothelial cell injury

Endothelial cell damage mediated by IR is also a

pathophysiology of Re. Radiation intestinal epithelial injury is
Frontiers in Oncology 04
the main cause of acute radiation enteropathy, while chronic

radiation enteropathy is caused by vascular endothelial injury.

Vascular endothelial cells are sensitive to IR (51). Irradiation of

the vascular system can rupture blood vessels and induce a pro-

inflammatory response (52). After endothelial injury,

subendothelial extracellular matrix (ECM) components are

exposed to platelets, which initiate the hemostatic mechanism

by forming the thrombus (53). Due to the excessive secretion of

the von Willebrand factor (vWF) by damaged endothelial cells,

the coagulation cascade is over-activated, resulting in vascular

occlusion (54). This can then lead to hyperemia or hemorrhage

at the site of injury due to increased vascular permeability. This

is why the irradiated gut has a poor blood supply (55). The

progression of Re can be improved by reducing IR damage to the

vascular endothelium (56).

Shao et al. (57) reported that ferulic acid (FA) can reduce the

oxidative damage of radiation to endothelial cells. The

thrombomodulin (THBD) pathway may be an important

mechanism of FA against radiation injury. Endothelial acid

sphingomyelinase can catalyze ceramide production, which

leads to endothelial cell apoptosis. Rotolo et al. (58) reported

that IR can lead to the activation of the endothelial acid

sphingomyelinase, thus initiating cell apoptosis. The 2A2 is an

anti-ceramide IgM, which can prevent endothelial cell apoptosis

in the lamina propria of the small intestine. In addition, the 2A2

can promote the recovery of ISCs.

Endothelial thrombomodulin (TM) is a multi-domain

transmembrane receptor protein with anti-inflammatory,

cytoprotective, antifibrinolytic, antioxidant, and anticoagulant

functions (59). The high expression of TGF-bmeans endothelial

damage, permeability destruction, and endothelial dysfunction

(60, 61). TM suppresses the TGF-b signaling pathway by

inhibiting extracellular signal-regulated kinase (ERK)

activation (62). Pathak et al. (63) proved that TM treatment

significantly ameliorated Re.

Yan et al. (64) reported that ionizing radiation can lead to

reduced intestinal blood supply, resulting in intestinal ischemia

and induced Re. BH4 can improve intestinal blood perfusion,

which is mainly achieved through the Gh1/BH4/eNOS pathway.

After intestinal exposure to ionizing radiation, guanosine

triphosphate (GTP) cyclic hydrolase 1 (Gch1) will decrease,

and BH4 is regulated by Gch1 and will decrease with the

decrease of Gch1. Endothelial nitric oxide synthase (eNOS)

must be completely saturated with BH4 to synthesize nitric

oxide (NO). NO can relax vascular smooth muscle and maintain

blood perfusion. Exogenous BH4 supplementation significantly

improved the function of intestinal endothelial cells and

intestinal blood perfusion, and alleviated pathological injury,

thus preventing radiation enteritis. They further studied that

ligustilide (LIG) can also prevent Re through the Gch1/BH4/

eNOS pathway (65). The mechanism of action of LIG is to
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ameliorate the decrease of Gch1 protein level, thereby increasing

BH4 and NO content. Compared with the control group, the

LIG group significantly increased the length of intestinal villi. In

addition, pretreatment with LIG improved weight loss and

diarrhea caused by radiation. These results can reflect that LIG

pretreatment has a positive effect on the prevention of Re.
Intestinal microflora

The human intestinal microflora contains 1014 species of

resident microorganisms that live in the human intestinal tract

with bacteria, viruses, fungi, and protozoa (66). Some studies

have shown that intestinal microflora helps break down other

indigestible polysaccharides in our diet, regulates the storage of

calories extracted from our diet in fat cells, metabolizes foreign

substances including carcinogens, regulates intestinal epithelial

cell turnover, and educates the immune system how to respond

to external stimuli (67). Metabolites produced by microbial

communities play an important role in maintaining

homeostasis and internal environment stability (68). The

destruction of intestinal microflora is closely related to Re (69).

Touchefeu et al. believed that there are significant changes in

intestinal microflora in patients receiving radiotherapy, with the

most common being a decrease in the Clostridium cluster XIVa,

Bifidobacterium, Faecalibacterium prausnitzii, and an increase

in Enterobacteriaceae. These modifications may lead to

mucositis, bacteremia, and diarrhea (70). Johnson et al. (71)

believed that pseudo-intestinal obstruction and bacterial

overgrowth may occur after abdominal radiotherapy. Impaired

motor function is one of the causes of gastrointestinal

colonization of Gram-negative bacilli. The results of Crawford

and Gordon’ showed that compared with ordinary mice, germ-

free mice received a lethal dose of total body irradiation, the

survival rate was significantly higher, and the survival time was

significantly longer (67).

Urolithin A (UroA) is a metabolite of intestinal microflora.

Zhang et al. (72) found that UroA at 2 mg/kg significantly

improved the survival and regeneration of intestinal structure

and intestinal epithelium in rats exposed to ionizing radiation. In

addition, UroA can regulate the structure of intestinal

microbiome. IR can further increase the abundance of

Escherichia shigella, Proteobacteria, Alphaproteobacteria, and

Erysipelotrichaceae. The proliferation of these microflora leads

to the destruction of the structure and function of the intestinal

barrier and promotes intestinal inflammation, but UroA can

reverse this result and prevent the occurrence of Re.
Frontiers in Oncology 05
Conclusion

Cancer therapy continues to improve, but radiation therapy

remains an important part of cancer treatment, and Re is an

inevitable side effect of radiotherapy. Interventions for Re often

determine the efficacy of radiation therapy in patients. The

occurrence of Re is usually not determined by unilateral

factors, and the complex interaction between intestinal

epithelium, ISCs, capillary endothelium, and luminal bacteria

is considered to be the basis of Re pathogenesis. Resveratrol,

TZC01, HKST, etc. could reduce Re in animal experiments,

which needs to be confirmed by clinical trials.
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