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Simple Summary: In this study, we report that the exon location of the original EGFR-sensitizing
mutation could drive resistance mechanisms underlying tumor progression in advanced EGFR-
positive NSCLC patients under targeted therapies. In our study, plasma detection of the p.T790M
EGFR resistance mutation, upon disease progression, was more frequent in tumors with an EGFR
exon 19 deletion (p = 0.0028). Furthermore, oncogenic mutations of KRAS, arising upon disease
progression in 5.6% of the cases, were always detected in patients with tumors harboring EGFR exon
18 or 21-sensitizing mutations (p < 0.001).

Abstract: Tumor molecular profiling upon disease progression enables investigations of the tumor
evolution. Next-generation sequencing (NGS) of liquid biopsies constitutes a noninvasive readily
available source of tumor molecular information. In this study, 124 plasma samples from advanced
EGFR-positive NSCLC patients, treated with a first-line EGFR tyrosine kinase inhibitor (EGFR-TKI)
were collected upon disease progression. The circulating cell-free DNA (cfDNA) was sequenced
using the Oncomine Pan-Cancer Cell-Free Assay™. Excluding EGFR mutations, the most frequently
mutated gene was TP53 (57.3%), followed by APC (11.3%), FGFR3 (7.3%), and KRAS (5.6%). Different
molecular alterations were observed upon disease progression depending on the location of the
original EGFR-sensitizing mutation. Specifically, the detection of the p.T790M mutation was signifi-
cantly associated with the presence of exon 19 mutations in EGFR (Fisher p-value: 0.028). All KRAS
activating mutations (n = 8) were detected in tumors with EGFR mutations in exons 18 and 21 (Fisher
p-value < 0.001). Similarly, mutations in NRAS and HRAS were more frequently detected in samples
from tumors harboring mutations in exons 18 or 21 (Fisher p-value: 0.050 and Fisher p-value: 0.099,
respectively). In conclusion, our data suggest that the mechanisms underlying EGFR-TKI resistance
could be dependent on the exon location of the original EGFR-sensitizing mutation.
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1. Introduction

Lung cancer is currently a serious public health problem. In the United States, the
incidence of lung cancer is responsible for approximately one in seven cases of cancer
in both sexes, but one in four deaths, being by far the leading cause of cancer death [1].
According to pathology reports, lung cancer can be classified into two main groups: non-
small-cell lung cancer (NSCLC) and small-cell lung cancer, accounting for 85% and 15%
of the cases, respectively. Among NSCLCs, EGFR-positive tumors define a subtype that
may benefit from targeted therapies. Overall, EGFR mutations are mainly detected in
young patients, females, and Asians. The age-standardized incidence rate of EGFR-positive
NSCLC has been reported to be five per 100,000 person-years [2,3].

Despite EGFR inhibitors having dramatically improved the survival outcomes and
quality of life of EGFR-positive NSCLC patients, drug-resistance mechanisms invariably
emerge after treatment, leading to tumor progression within 2 years [4]. Currently, there is
intense ongoing research focused on new treatment strategies for EGFR-mutated NSCLC
patients. As a result, several third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs)
are in the late stage of clinical development [5–7], and fourth-generation EGFR inhibitors
are being evaluated in preclinical stages and phase I trials [8]. Similarly, the efficacy of
the combinations of an EGFR-TKI with chemotherapy or antiangiogenic drugs has been
evaluated in several trials [9,10]. Other drug combinations such as the third-generation
EGFR-TKI lazertinib plus amivantamab, a human antibody targeting EGFR and MET, are
under investigation. Furthermore, encouraging results have been reported with more than
one-third of EGFR-mutant NSCLC patients that progressed on osimertinib showing durable
responses [11].

A wide range of survival outcomes is observed in EGFR-positive NSCLC. Hence,
some EGFR-mutant NSCLC patients exhibit a particularly good prognosis with a time to
progression exceeding 30 months, while others are diagnosed as having tumor progression
within 6 months of EGFR-TKI treatment initiation [12]. Heterogeneity caused by different
clonal populations may underlie different clinical responses. Indeed, a high clonal diversity
has been observed in early-stage EGFR-positive NSCLC patients [13–15]. In this regard, it
was reported that, in advanced EGFR-positive NSCLC, tumors harboring concurrent TP53
or RB1 mutations showed a higher risk of histologic transformation and inferior sensitivity
to EGFR-TKI [16,17]. Tumor biopsies in lung cancer upon disease progression are often not
feasible or they may not reflect intratumoral heterogeneity and other relevant mutations
that may arise in secondary lesions [18–20]. In such a scenario, liquid biopsy emerges as an
attractive approach for tumor molecular profiling upon disease progression.

In this study, we performed a thorough explorative analysis of EGFR-positive NSCLC
through NGS profiling of the plasma sample collected upon disease progression of 124
patients in order to characterize the molecular mechanisms via which tumors may progress
and to identify the molecular mechanisms underlying different prognoses.

2. Materials and Methods
2.1. Patients and Samples

A total of 124 patients were recruited by 35 hospitals from February 2016 to September
2021. Written consent was obtained for all enrolled patients. This study was approved
by the Ethical Committee of Hospital Puerta de Hierro, Madrid, Spain (internal code: PI
02/16), and conducted in accordance with the precepts of the Code of Ethics of the World
Medical Association (Declaration of Helsinki). All patients included in this study were
diagnosed with stage IV EGFR-positive NSCLC (as per the criteria of the American Joint
Committee on Cancer, seventh edition). EGFR testing in the FFPE tissue sample was carried
out in the pathology department of each participating hospital. Patients were at least
18 years old with a life expectancy of over 12 weeks. All patients were treated with a
first-line EGFR-TKI. The choice of TKI therapy was left to the discretion of the physician. A
plasma sample was collected in an 8.5 mL PPT™ tube (Becton Dickinson, Franklin Lakes,
NJ, USA) upon disease progression (n = 124). Treatment response was assessed as per
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Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 criteria. The average
time between the diagnosis disease progression and blood drawn was 5.4 days.

2.2. Laboratory Procedures

Blood samples were centrifuged at 1600× g for 10 min then immediately at 6000× g
for 10 min; both centrifugations were performed at room temperature. Hemolyzed samples
were excluded. Circulating cell-free DNA (cfDNA) was extracted from the resulting plasma
using cfDNA QIAmp Circulating Nucleic Acid kit (Qiagen, Hiden, Germany) following
the manufacturer’s protocol. cfDNA was quantified using Qubit 2.0 Fluorometer with
a Qubit 1× dsDNA HS Assay Kit (Thermo Fisher, Palo Alto, CA, USA). Libraries were
prepared using the Oncomine™ Pan-Cancer Cell-Free Assay kit (Thermo Fisher, Palo Alto,
CA, USA), according to the manufacturer’s instructions (the list of genes covered by this
panel is available in Supplementary Data S1). The minimum input of cfDNA from each
sample required for library preparation was 10 ng, and the maximum volume was 10.4 µL.
If less volume of cfDNA was used, RNase-free water was added up to a total volume of
10.4 µL. For library purification, AMPureXP magnetic beads (Beckman Coulter, Inc., Brea,
CA, USA) were used. Finally, libraries were diluted to 50 pM using the quantification values
obtained from an Ion Library TaqMan® Quantitation Kit (Thermo Fisher, Palo Alto, CA,
USA) in a StepOnePlus™ qPCR machine (Thermo Fisher, Palo Alto, CA, USA). Libraries
were prepared in batches of eight and were stored at −20 ◦C up to a maximum of 2 weeks
until pool preparation.

A total of 16 samples were sequenced in every NGS run using two Ion 550™ Chips,
each of them loaded with eight pooled samples. Templating and Ion 550™ Chip loading
were carried out with an Ion Chef™ System (Thermo Fisher, Palo Alto, CA, USA), and
then chips were sequenced on an Ion GeneStudio™ S5 Sequencer (Thermo Fisher, Palo
Alto, CA, USA). Torrent Suite Software v5.12.2 was used to perform raw sequencing data
analysis. The CoverageAnalysis v5.12.2 plugin was used for sequencing coverage anal-
ysis. Raw reads were aligned to the human reference genome hg19. Variant calling was
carried out on the Ion Reporter platform v.5.18 using Oncomine TagSeq Pan-Cancer Liquid
Biopsy—w2.5—Single Sample (workflow versions from w2.1 to w2.5 were used). Variant
filtering was performed using an internal pipeline. The pipeline uses the raw data in the
non-filtered-oncomine.tsv, which contains variants that have passed the OncomineVari-
ants (v.5.12) filter and variants that have not. Specific conditions were established for
single-nucleotide variants (SNVs), insertions or deletions (indels), multiple-nucleotide
polymorphisms (MNP), fusions, and copy number variant (CNV) calls. Detailed informa-
tion about the pipeline is available in Supplementary Figure S1. All candidate mutations
were manually reviewed using the Integrative Genomics Viewer (IGV) v.2.3.40, (Broad
Institute, Cambridge, MA, USA). The clinical significance of somatic variants was deter-
mined according to the Standards and Guidelines for the Interpretation and Reporting
of Sequence Variants in Cancer [21]. The pathogenicity of TP53 and APC variants was
assessed according to TP53-specific ACMG/AMP guidelines [22].

Genomic variants identified by NGS were further confirmed by digital PCR (dPCR)
(the mutant allele frequency concordance between NGS and dPCR is shown in Supplemen-
tary Figure S2). A complete list of validated variants is available in Supplementary Data
S2. In addition, variants identified as potential resistance mechanisms were retrospectively
tracked using dPCR (or NGS in the case of CNVs) in all cases in which a baseline sample
(before treatment initiation) was available (Supplementary Data S3). dPCR was carried out
using predesigned or customized TaqMan® dPCR assays in a QuantStudio® 3D Digital
PCR (Applied Biosystems®, South San Francisco, CA, USA). An 18 µL final reaction mix
was obtained with 8.55 µL of template cfDNA, 9 µL of 20× QuantStudio® Master Mix, and
0.45 µL 40× TaqMan assay. Then, 14.5 µL of the final reaction volume was loaded to a
QuantStudio® 3D digital PCR 20K chip. Positive and negative controls were included in
every run. Thermal cycler conditions were defined as a first denaturalization step at 96 ◦C
for 10 min, followed by 40 cycles at 56 ◦C for 2 min and 98 ◦C for 30 s, an elongation step at
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72 ◦C for 10 min, before finally maintaining the samples at 22 ◦C for at least 30 min. Then,
chip fluorescence was read twice using two independent QuantStudio® 3D Digital PCR
instruments. The analysis was performed with QuantStudio® 3D AnalysisSuite™ Cloud;
the default call assignment for each read was manually adjusted when needed. The limits
of detection and quantitation of the dPCR TaqMan® assays were estimated according to
the recommendations of The International Council for Harmonization of Technical Require-
ments for Pharmaceuticals for Human Use; ICH Q2 (R1) guidelines (validation of analytical
procedures: text and methodology), as published elsewhere [23].

2.3. Statistical Analysis

Categorical variables are summarized as frequencies, and potential associations were
evaluated using the chi-square test or Fisher’s test as appropriate, whereas continuous
variables are shown as the mean and standard deviation (non-normally distributed vari-
ables are displayed as the median, along with 25th and 75th percentiles), and potential
associations were tested using Student’s t-test or the Mann–Whitney U test.

Overall survival (OS) was defined as the time from diagnosis of stage IV NSCLC to
death from any cause or the censored date of the last follow-up for patients who were
alive when the data were extracted. Progression-free survival (PFS) was defined as the
time between the start of EGFR-TKI treatment and disease progression, as assessed by
RECIST criteria, and death from any cause or the censored date of the last follow-up,
whichever occurred first. Survival was evaluated using the Kaplan–Meier method with
Cox proportional hazards model assumption. The log-rank test was used to assess statistical
differences between Kaplan–Meier survival curves. Hazard ratios (HRs) were estimated
from the Cox model using a univariate approach. The statistical analysis was performed
using R software (v.4.1.2) and Stata version 16.0 (StataCorp 2019, Stata Statistical Software
Release 16; StataCorp LLC, College Station, TX, USA).

3. Results
3.1. Study Cohort

Between February 2016 and September 2021, 124 blood samples from advanced EGFR-
positive NSCLC patients were collected upon disease progression to a first-line EGFR-TKI.
The clinical characteristics of the study population are presented in Table 1. Patients were
mostly women (77; 62.1%) and never-smokers (71; 57.3%). The mean age at diagnosis
was 65.8 years (range 38–89). A total of 116 (93.6%) cases were adenocarcinomas, and the
majority were stage IVB (64; 51.6%). Most patients had an Eastern Cooperative Oncology
Group Performance Status (ECOG-PS) of 0 or 1 (72; 58.1%). All patients were treated with
a first-line EGFR-TKI; 62 received afatinib (50%), 26 received erlotinib (21%), 33 received
gefitinib (26.6%), and three were treated with osimertinib (2.4%).

According to the pathologist´s report, 68 (54.8%) tumors tested positive for deletions in
exon 19, 43 (34.7%) tumors harbored the point mutation p.L858R in exon 21, and six (4.8%)
tumors harbored insertions in exon 20. Point mutations at codon 719 (p.G719X), in exon 18,
were found in three (2.4%) cases, and the p.L861Q mutation, in exon 21, was also detected
in three (2.4%) cases. Lastly, one tumor harbored two concomitant EGFR-sensitizing
mutations, namely, the p.S768I mutation, in exon 20, and the deletion p.E746_A750del, in
exon 19.

Survival data were available for 91 patients. The median follow-up for this popu-
lation was 46.7 (37.3 to 49.8) months, and the median OS was 23.6 (17.7 to 33) months.
Kaplan–Meier curve for PFS, according to the original sensitizing mutations, is depicted in
Supplementary Figure S3.
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Table 1. Descriptive analysis of the study cohort.

Clinicopathologic Characteristics N = 124

Age, mean (SD), years 65.8 (11.1)

Sex, No. (%) with data

Female 77 (62.1)
Male 47 (37.9)

Smoking, No. (%) with data

Never-smokers 71 (57.3)
Active smokers 9 (7.2)
Former smokers 44 (35.5)

ECOG-PS a, No. (%) with data

0 35 (28.2)
1 37 (29.8)
2 5 (4.0)

Stage, No. (%) with data

IVA 60 (48.4)
IVB 64 (51.6)

Histology, No. (%) with data

Adenocarcinoma 116 (93.6)
Adenosquamous 2 (1.6)

Large cell 4 (3.2)
Squamous 2 (1.6)

Metastases at IV stage diagnosis b, No. (%) with data

Local 88 (71)
Bone 61 (49.2)
CNS 18 (14.5)
Liver 17 (13.7)

Progression site c, No. (%) with data

Bone 21 (16.9)
CNS 13 (10.5)
Liver 13 (10.5)

EGFR mutation, No. (%) with data

Del19 68 (54.8)
G719X 3 (2.4)
Ins20 6 (4.8)
L858R 43 (34.7)
L861Q 3 (2.4)

>1 mut. 1 (0.8)
Treatment, No. (%) with data

Afatinib 62 (50)
Erlotinib 26 (21)
Gefitinib 33 (26.6)

Osimertinib 3 (2.4)
Second line treatment d, No. (%) with data

Osimertinib 63 (50.8)
Others 25 (20.2)
None 8 (6.4)

Exitus e

Yes 59 (47.6)
No 32 (25.6)

a 47 patients without information; b 5 patients without information; c 52 patients without information; d 28 patients
without information; e 33 patients without information. Abbreviations: CNS: central nervous system; ECOG-PS:
Eastern Cooperative Oncology Group Performance Status.
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3.2. Molecular Landscape upon Disease Progression

In total, 365 somatic variants were detected across 32 genes (Figure 1). The most
frequent types of variants detected were SNPs (73.9%), followed by indels (24.8%) and
CNVs (1.3%). A database containing all detected mutations is available in Supplementary
Data S4.
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Figure 1. OncoPrint plot showing the distribution of genomic alterations detected in the plasma
samples collected upon disease progression. Overview of genomic alterations (legend) in particular
genes (rows) for each sample (columns). Missense mutations, non-frameshift deletions or insertions,
frameshift deletions or insertions, nonsense mutations, splice site mutations, and CNVs are shown as
green rectangles, blue rectangles, red rectangles, black crosses, orange rectangles, and a black dots,
respectively. At the bottom of the plot, the following features are presented: first-line EGFR-TKI, type
of original EGFR-sensitizing mutation, and detection of the p.T790M resistance mutation at disease
progression. The maximum value of MAF from all detected variants is also shown. Co-occurring
mutations were not associated with smoking history and did not have an impact on overall survival
(OS). CNV: copy number variant; InsDel: insertion or deletion; MAF: mutated allele frequency.

The mean number of detected mutations per sample was 2.9 (range 1–16) with a
median mutant allele frequency (MAF) of 5.2% (range 0.1–77.7%) (Supplementary Table
S1). Excluding EGFR mutations, the most frequently mutated gene was TP53, which was
mutated in 57.3% of the cases, followed by APC (11.3%), FGFR3 (7.3%), and KRAS (5.6%)
(Supplementary Table S2). Patients in whom a pathogenic mutation (class 5 or class 4) in
TP53 or APC was detected upon disease progression did not show inferior OS compared to
patients who did not.

As depicted in Figure 1, a widespread presence of co-occurring genetic alterations
was observed. Specifically, 67.7% of the samples had concomitant mutations alongside
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the original EGFR-sensitizing mutation which was detected in the plasma sample of
89 patients (71.8%).

Plasma detection of the original EGFR-sensitizing mutation was more challenging in
samples from patients with tumor progression exclusively at the brain level, compared
with patients diagnosed as having disease progression in other locations (EGFR detection
rate of 61.5% vs. 76.3%, respectively). On the contrary, the original EGFR mutation was
detected in all samples from patients with disease progression at the hepatic level (13/13)
(p = 0.015). The EGFR p.T790M resistance mutation was detected in 43 patients.

Oncogenic mutations in other genes were also observed. Specifically, the gain-of-
function mutation p.P124L in MAP2K1 was observed in two cases. Furthermore, the
p.E545K mutation in PIK3CA was detected in one patient. This mutation was absent at
baseline, as well as at 3 months from treatment initiation, further supporting its role as a
resistance mutation (Table 2). Similarly, the p.V600E mutation in BRAF was detected at
disease progression in one case and tested negative in samples collected previously (Table 2;
Supplementary Data S3).

Table 2. dPCR Validation and retrospective tracking of oncogenic mutations detected upon dis-
ease progression.

Sample Gene
Coding

Transcript
Change

Protein
Change

Functional
Classification PFS b OS b B ≈3 ≈6 P

400003 KRAS c.35G>T p.G12V Missense 5.8 NA - - - •
1000040 KRAS c.182A>G p.Q61R Missense 9.7 NA - - - •
8500002 KRAS c.34G>A p.G12S Missense 12.3 NA - - - •
03-002 a MET CNV CNV CNV 2.8 3 • •
11-006 KRAS c.34G>T p.G12C Missense 11.7 15.5 • • • •
11-008 PIK3CA c.1633G>A p.E545K Missense 7.7 15 • • - •
13-014 BRAF c.1799T>A p.V600E Missense 15.8 34.2 • • • •

13-015 a EGFR CNV CNV CNV 9.5 18.5 • •
15-012 a EGFR CNV CNV CNV 3.9 5.9 • •
19-001 a EGFR CNV CNV CNV 21.3 25.5 • •
21-005 a ERBB2 CNV CNV CNV 7.5 25.9 • •
26-004 KRAS c.436G>A p.A146T Missense 2.8 14.3 • - - •
33-001 KRAS c.44G>T p.G15V Missense 11.9 30.4 • • • •
36-005 KRAS c.183A>C p.Q61H Missense 7.6 9.7 • • • •
36-005 KRAS c.35G>A p.G12D Missense 7.6 9.7 • • • •

a Samples from this patient were evaluated by NGS. b Calculated in months. Red dots represent that the variant
was absent in the sample, green dots indicate detection of the mutation in the sample, and yellow dots are depicted
when the variant could not be validated by dPCR due to the lack of sample. In this case, only the NGS data
are available. Three KRAS variants (p.G15V, p.Q61H, and p.Q61R) were not confirmed by dPCR because of a
lack of sample, whereas the remaining KRAS mutations were validated by dPCR. Unfortunately, there were no
previous samples for the patients whose tumors harbored p.G12V, p.Q61R, and G12S mutations. Abbreviations: B:
baseline sample (before the start of treatment); ≈3: sample extracted during treatment (after 3 months of treatment
approximately); ≈6: sample extracted during treatment (after 6 months of treatment approximately); P: sample
extracted at the moment of disease progression; PFS: progression-free survival; OS; overall survival.

Eight oncogenic variants in KRAS, namely, p.G12C, p.G12V, p.G12S, p.G12D, p.G15V,
p.Q61R, p.Q61H, and p.A146T were detected in seven samples (5.6%) (Table 3). Of them,
the p.G12C, p.G15V, p.Q61H, and p.G12D mutations were imputed as acquired resistance
mechanisms as they were not detected in the previous samples from the corresponding
cases. Conversely, the KRAS mutation p.A146T was found at baseline and corresponded to
a patient showing the worst PFS (2.8 months) among all KRAS-positive cases (Table 2).
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Table 3. Clinicopathological features of KRAS mutated cases.

400003 1000040 8500002 11-006 26-004 33-001 36-005

KRAS mutation by
NGS (coding/protein) c.35G>T/p.G12V c.182A>G/p.Q61R c.34G>A/p.G12S c.34G>T/p.G12C c.436G>A/p.A146T c.44G>T/p.G15V c.183A>C/p.Q61H

c.35G>A/p.G12D

MAF KRAS
mutation (%) 4.15 0.18 0.62 18.11 0.19 0.57 3.67/0.64

EGFR mutation by
NGS (coding/protein) Not detected c.2573T>G/p.L858R c.2573T>G/p.L858R c.2582T>A/p.L861Q Not detected Not detected c.2573T>G/p.L858R

MAF EGFR
mutation (%) - 0.30 9.77 2.15 - - 25.63

p.T790M by NGS Not detected Not detected Detected Not detected Not detected Not detected Not detected

EGFR mutation in
tumor at stage
IV diagnosis

p.G719X p.L858R p.L858R p.L861Q p.G719X p.L858R p.L858R

Sex Male Female Male Female Female Female Female

Age (years) 74 76 74 68 58 79 52

Smoking Former smoker Former smoker Former smoker Smoker Never-smoker Never-smoker Never-smoker

Histology Adenocar. Adenocar. Adenocar. Adenocar. Adenocar. Adenocar. Adenocar.

ECOG-PS NA NA NA 0 1 1 1

Metastasis location at
stage IV diagnosis Thoracic and bone Bone Thoracic Thoracic Bone and CNS Thoracic CNS

Stage IVB IVB IVA IVA IVB IVA IVB

First-line TKI Afatinib Gefitinib Afatinib Afatinib Afatinib Erlotinib Afatinib

PFS (months) 5.8 9.7 12.3 11.7 2.8 11.9 7.6

Progression site NA NA NA CNS Liver NA NA

Second-line treatment None Gefitinib Osimertinib None None Chemoth. Osimertinib

Exitus NA NA NA Yes Yes No Yes

OS (months) NA NA NA 15.5 14.3 30.4 9.7

Adenocar.: adenocarcinoma; Chemoth.: chemotherapy; CNS: central nervous system; ECOG-PS: Eastern Cooperative Oncology Group Performance Status; MAF: mutant allele frequency;
NA: not available; NGS: next-generation sequencing; OS: overall survival; PFS: progression-free survival.
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Lastly, CNVs in EGFR (n = 3), MET (n = 1), and ERBB2 (n = 1) were detected in five
cases. These CNVs were absent in the pretreatment samples in three cases but were detected
at baseline in two cases with MET and EGFR amplification. Patients in whom CNVs were
detected at baseline showed the shortest PFS (2.8 and 3.9 months), suggesting primary
resistance through amplification of MET or EGFR, respectively (Figure 2 and Table S2).
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3.3. Exon Location of the Original Sensitizing Mutation Determines Distinct Molecular Profiles
upon Disease Progression

Detection of the p.T790M mutation was more frequent in tumors harboring an EGFR
mutation in exon 19 compared with tumors harboring an EGFR mutation in exon 21
(p = 0.028). Among p.T790M-negative cases, two cases showed clinically actionable mu-
tations upon disease progression, which included a MET amplification and the p.G12C
mutation in KRAS. The druggable p.V600E mutation in BRAF was detected in one case,
which harbored an exon 19 deletion and tested positive for the p.T790M mutation.

We further tested whether other specific genetic co-alterations tended to be EGFR
exon-dependent. Comparison of the frequency of genetic co-alterations present in samples
from tumors harboring an exon 19 mutation with those with a mutation in exon 21 revealed
significant enrichment for KRAS mutations in tumors harboring EGFR-sensitizing muta-
tions in exons 18 and 21 (p < 0.001) (Figure 3). Noteworthy, three of the KRAS mutated cases
(n = 7) harbored an uncommon EGFR mutation: the p.G719X mutation in two cases and
the p.L861Q mutation in one case. The associations between uncommon EGFR-sensitizing
mutations and KRAS mutations was also significant (p = 0.002).

A similar pattern was observed for NRAS (n = 4) (Supplementary Table S3) and HRAS
(n = 2) (Supplementary Table S4); mutations in these genes were more frequently detected
in samples from tumors harboring mutations in exons 18 or 21 (p = 0.050 and p = 0.099,
respectively) (Figure 3).

3.4. Prognostic Value of Circulating Tumor DNA

The prognostic value of circulating tumor DNA (ctDNA) levels was evaluated using
different methodological approaches. To this aim, we calculated the mean, maximum,
and sum of MAF from the set of all detected variants for each sample, and we established
different MAF thresholds (ranging from 1% to 10%). In addition, the prognostic value of
the MAF of the original EGFR-sensitizing mutation was tested. As presented in Table 4 and
Figure 4A, the amount of ctDNA was of prognostic significance regardless of the approach
used. Overall, patients with high ctDNA at disease progression had significantly worse
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OS than those patients in which the opposite situation occurred (Table 4 and Figure 4A).
Kaplan–Meier curves for the <5%MAF cutoff are shown in Figure 4B–E. Using a cutoff of
sum MAF < 5%, the median OS was 16 months (95% CI: 14 to 21.2) in patients with high
ctDNA levels (MAF ≥ 5%) compared with 43.7 months (95% CI: 23.6 to NR) for patients
with ctDNA levels below that cutoff.
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Figure 3. KRAS, NRAS, and HRAS mutations detected by NGS according to exon location of the
original EGFR-sensitizing mutation. The EGFR gene is represented, and the region including exons
18–21 is magnified in order to show the distribution of KRAS, NRAS, and HRAS variants detected
in the plasma sample upon disease progression (represented by circles, rectangles, and squares,
respectively), according to exon location of the original EGFR sensitizing mutation.
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circles; max: blue squares; max driver: purple triangles; sum: pink upside-down triangles). The
horizontal dashed line delimits the confidence intervals. Large red rectangles highlight the MAF
cutoff represented in the Kaplan–Meier curves. (B–E) Kaplan–Meier curves for OS according to
MAF cutoff (5%) measured using different methodological approaches. Median OS for each group;
log-rank p-values and HRs are shown at the left bottom side and right upper side, respectively. Mean
MAF was calculated as the mean of the MAF from the set of all variants detected for each sample.
Max MAF was defined as the maximum MAF among the set of variants detected for each sample.
Driver MAF was defined as the MAF of the EGFR-sensitizing mutation. This analysis was carried out
using 89 samples which had detectable EGFR variants. Sum MAF was calculated as the sum of MAF
from the set of variants detected for each sample. CI: confidence interval; CNV: copy number variant;
HR: hazard ratio; MAF: mutant allele frequency; NA: not available; Ref.: reference category.

Table 4. HR and corresponding 95% CI according to MAF cutoff assessed using four differ-
ent approaches.

MAF
Cutoff

Mean MAF a Max MAF b Driver MAF c Sum MAF d

HR
(95%CI) p-Value HR

(95%CI) p-Value HR
(95%CI) p-Value HR

(95%CI) p-Value

1% 0.40
(0.23–0.71) 0.002 0.44

(0.25–0.81) 0.008 0.39
(0.23–0.68) 0.001 0.71

(0.38–1.34) 0.295

2% 0.40
(0.23–0.67) 0.001 0.39

(0.23–0.66) 0.001 0.44
(0.26–0.74) 0.002 0.47

(0.26–0.82) 0.009

3% 0.48
(0.29–0.81) 0.006 0.38

(0.23–0.65) <0.001 0.45
(0.27–0.75) 0.003 0.39

(0.22–0.67) 0.001

4% 0.53
(0.31–0.91) 0.022 0.37

(0.22–0.63) <0.001 0.43
(0.26–0.73) 0.002 0.40

(0.23–0.68) 0.001

5% 0.40
(0.23–0.69) 0.001 0.46

(0.28–0.78) 0.004 0.50
(0.30–0.84) 0.009 0.38

(0.22–0.65) <0.001

6% 0.45
(0.25–0.79) 0.006 0.48

(0.29–0.82) 0.007 0.50
(0.30–0.85) 0.010 0.43

(0.26–0.73) 0.002

7% 0.41
(0.22–0.74) 0.003 0.43

(0.25–0.72) 0.002 0.44
(0.26–0.75) 0.003 0.45

(0.27–0.76) 0.003

8% 0.44
(0.24–0.81) 0.008 0.46

(0.27–0.78) 0.004 0.47
(0.28–0.81) 0.007 0.49

(0.29–0.82) 0.006

9% 0.44
(0.24–0.81) 0.008 0.40

(0.23–0.70) 0.001 0.42
(0.24–0.72) 0.002 0.43

(0.26–0.73) 0.002

10% 0.41
(0.22–0.77) 0.005 0.42

(0.25–0.73) 0.002 0.44
(0.25–0.76) 0.003 0.49

(0.29–0.82) 0.007

a Mean MAF was calculated as the mean of the MAF set of variants detected for each sample. b Max MAF was
defined as the maximum MAF among the set of variants detected for each sample. c Driver MAF was defined
as the maximum MAF among EGFR-sensitizing variants detected for each sample. This analysis was carried
out using 89 samples which had detectable EGFR variants. d Sum MAF was calculated as the summation of the
MAF set of variants detected for each sample. HRs and p-values were calculated using univariate Cox model
analysis. All data were estimated for overall survival. CI: confidence interval; HR: hazard ratio; MAF: mutant
allele frequency.

4. Discussion

Several different mechanisms of acquired resistance to EGFR inhibitors have been
described so far [24–26]. The wide variety of resistance mutations highlights the impor-
tance of tumor heterogeneity in shaping tumor resistance to targeted therapies. To our
knowledge, here, we report for the first time that EGFR-TKI resistance through acquired
KRAS mutation could be dependent on the exon location or type of mutation of the original
EGFR-sensitizing mutation, suggesting that tumor resistance could be driven by the posi-
tion in the genome of the original EGFR mutation. This hypothesis is plausible considering
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that it is well established that EGFR-mutant NSCLC patients have different sensitivity
to targeted therapies according to the exon in which the original sensitizing mutation is
detected [27]. This circumstance was also observed in our cohort (Supplementary Figure
S3). In other words, EGFR-positive NSCLC tumors can be classified into different subtypes
with different survival outcomes defined by the location of the EGFR-sensitizing mutation.
In this way, unlike EGFR exon 19 deletions and point mutations in exon 21, most NSCLC
tumors harboring EGFR exon 20 insertion mutations do not benefit from EGFR-TKIs with
response rates reported to be below 5% and short intervals of disease control [28]. Indeed,
important efforts have been made in order to develop effective therapies for this particular
subset of patients in recent years [29].

Overall, TKI resistance can be classified into EGFR-dependent and EGFR-independent
mechanisms. The p.T790M mutation is the most commonly observed resistance mecha-
nism in NSCLC patients treated with first- and second-generation EGFR-TKIs [30–32]. In
our study, the p.T790M mutation was significantly more frequently detected in tumors
harboring a mutation in exon 19. This finding is consistent with previous reports [12,33].
Furthermore, in our cohort, amplifications in EGFR, MET, and ERBB2 were detected in
five cases. MET gene amplification has been identified as a resistance mechanism for
afatinib, gefitinb, erlotinib, and osimertinib [34–37]. Indeed, dual inhibition of EGFR
and MET represents a promising treatment strategy [11]. Similarly, ERBB2 amplifications
have been observed in tumors with acquired resistance to erlotinib, gefitinib, and osimer-
tinib [38,39]. Oncogenic mutations in MAP2K1 and PIK3CA genes were also found in three
cases. It is well established that activation of downstream EGFR signaling pathways such
as MAPK/ERK or PIK3CA/AKT signaling pathways play an important role in EGFR-TKI
resistance [40,41]. Similarly, acquired mutations in BRAF have been shown to underline
EGFR-TKI resistance [42,43]. In our cohort, the p.V600E mutation in BRAF was detected
alongside the p.T790M resistance mutation in one patient whose tumor harbored a deletion
in exon 19. Similarly, a case report by Chao-Chi Ho et al. reported the acquisition of
the mutation BRAF p.V600E in a patient with p.T790M at the time of progression while
being treated with osimertinib [42]. In our study, ctDNA profiling was carried out with
a relatively small NGS panel. The Oncomine™ Pan-Cancer Cell-Free Assay kit (Thermo
Fisher, Palo Alto, CA, USA) covers hotspots in 52 genes. Therefore, these results should be
interpreted with caution and they must be validated with larger cohorts.

The fact that KRAS mutations were more frequently detected in tumors harboring
mutations in exon 18 and 21 or uncommon mutations may have important implications for
the development of clinical trials evaluating the efficacy of dual or consecutive EGFR and
KRAS blockage. It has previously been documented that the druggable mutation KRAS
p.G12C is found in approximately 1% of EGFR-positive NSCLC patients progressing on a
first-line treatment with an EGFR-TKI, and it tended to arise in tumors harboring EGFR
uncommon mutations [44], supporting our findings.

Lastly, the amount of ctDNA at disease progression significantly correlated with OS.
There is large evidence indicating that ctDNA levels significantly correlate with tumor
bulk and, therefore, can be used to monitor disease [12,45,46]. Moreover, ctDNA levels
are of prognostic significance [12]. Indeed it has been proposed to include ctDNA in the
tumor staging system [47]. Nevertheless, it is not well established how ctDNA should be
measured, especially when tumors do not harbor druggable mutations. As an exploratory
approach, here, we evaluated the prognostic value using different methods (median of
MAF from all mutations detected, maximum MAF of all detected mutation, MAF of the
original EGFR-sensitizing mutation, and summation MAF of all detected mutations), and
similar results were obtained.

5. Conclusions

Different molecular heterogeneous alterations were observed upon disease progres-
sion, highlighting the importance of heterogeneity driving tumor resistance. Our data
suggest that the mechanisms underlying resistance could be dependent on the exon loca-
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tion of the original EGFR-sensitizing mutation. Further studies are warranted to confirm
this observation.
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Mutated Non-Small Cell Lung Cancer in Māori and Pacifica in New Zealand. PLoS ONE 2021, 16, e0251357. [CrossRef] [PubMed]

4. Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.;
Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med.
2018, 378, 113–125. [CrossRef] [PubMed]

5. Yang, J.C.H.; Camidge, D.R.; Yang, C.T.; Zhou, J.; Guo, R.; Chiu, C.H.; Chang, G.C.; Shiah, H.S.; Chen, Y.; Wang, C.C.; et al. Safety,
Efficacy, and Pharmacokinetics of Almonertinib (HS-10296) in Pretreated Patients with EGFR-Mutated Advanced NSCLC: A
Multicenter, Open-Label, Phase 1 Trial. J. Thorac. Oncol. 2020, 15, 1907–1918. [CrossRef]

6. Ahn, M.J.; Han, J.Y.; Lee, K.H.; Kim, S.W.; Kim, D.W.; Lee, Y.G.; Cho, E.K.; Kim, J.H.; Lee, G.W.; Lee, J.S.; et al. Lazertinib in
Patients with EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer: Results from the Dose Escalation and Dose
Expansion Parts of a First-in-Human, Open-Label, Multicentre, Phase 1-2 Study. Lancet Oncol. 2019, 20, 1681–1690. [CrossRef]

7. Zhou, Q.; Wu, L.; Feng, L.; An, T.; Cheng, Y.; Zhou, J.; Li, J.; Feng, J.F.; Zhang, L.; Han, B.; et al. Safety and Efficacy of Abivertinib
(AC0010), a Third-Generation EGFR Tyrosine Kinase Inhibitor, in Chinese Patients with EGFR-T790M Positive Non-Small Cell
Lung Cancer (NCSLC). J. Clin. Oncol. 2019, 37, 9091. [CrossRef]

8. Du, X.; Yang, B.; An, Q.; Assaraf, Y.G.; Cao, X.; Xia, J. Acquired Resistance to Third-Generation EGFR-TKIs and Emerging
next-Generation EGFR Inhibitors. Innovation 2021, 2, 100103. [CrossRef]

9. Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Chougule, A.; Mahajan, A.; Janu, A.; Purandare, N.; Kumar, R.; More, S.; et al.
Gefitinib Versus Gefitinib Plus Pemetrexed and Carboplatin Chemotherapy in EGFR-Mutated Lung Cancer. J. Clin. Oncol. 2020,
38, 124–136. [CrossRef]

10. Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Ponce Aix, S.; Paz-Ares, L.; Chiu, C.H.; Park, K.; Novello, S.; Nadal, E.; et al.
Ramucirumab plus Erlotinib in Patients with Untreated, EGFR-Mutated, Advanced Non-Small-Cell Lung Cancer (RELAY): A
Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 1655–1669. [CrossRef]

11. Bauml, J.; Cho, B.C.; Park, K.; Lee, K.H.; CHO, E.K.; Kim, D.-W.; Kim, S.-W.; Haura, E.B.; Sabari, J.K.; Sanborn, R.E.; et al.
Amivantamab in Combination with Lazertinib for the Treatment of Osimertinib-Relapsed, Chemotherapy-Naïve EGFR Mutant
(EGFRm) Non-Small Cell Lung Cancer (NSCLC) and Potential Biomarkers for Response. J. Clin. Oncol. 2021, 39, 9006. [CrossRef]

12. Provencio, M.; Serna-Blasco, R.; Franco, F.; Calvo, V.; Royuela, A.; Auglytė, M.; Sánchez-Hernández, A.; de Julián Campayo, M.;
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