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Abstract

Background: Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely
affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of
CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem
cells (BM-MSCs).

Methods: Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular
administration with 2.5 × 106 BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours
after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy.
BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in
vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene
expression profile.

Results: CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless
of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from
CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs
exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential
and an increase in cellular senescence in a dose dependent manner.

Conclusion: Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting
the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate
of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9
gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow
dysfunction.
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Background
Chronic obstructive pulmonary disease (COPD) is a
multicomponent respiratory condition, often associated
with significant extrapulmonary abnormalities, the so-
called “systemic effects of COPD”. These extrapulmonary
effects which include among others, systemic inflamma-
tion, weight loss and skeletal muscle dysfunction are clin-
ically relevant. One additional extrapulmonary effect of
COPD is bone marrow dysfunction [1]. Bone marrow is
the human’s main reservoir of progenitor cells capable to
be mobilized into the circulation in response to tissue
damage. Progenitor cells present in the bone marrow are
essential in tissue maintenance and restoration of the nor-
mal function by replacing terminally differentiated cells,
lost as a consequence of physiological cell turnover or tis-
sue damage [2]. COPD has been associated with reduced
numbers of bone marrow derived circulating progenitor
cells [3–8]. Disease severity, lower exercise capacity and
airflow obstruction were also associated to a greater
reduction in circulating progenitors [3, 5].
Within the bone marrow “niche” different subtypes of

progenitor cells such as hematopoietic progenitor cells
(HSCs) and bone marrow mesenchymal stem cells (BM-
MSCs) synergize [9]. BM-MSCs protect HSCs integrity,
providing an important microenviromental support and
controlling the balance between HSC self-renewal, dif-
ferentiation and proliferation. BM-MSCs have the ability
to migrate to sites of ischemic, inflammatory or mechan-
ical injury and can affect tissue microenvironment via
the secretion of soluble factors [10]. The mechanisms by
which BM-MSCs home to tissue damage are not fully
understood, but it is believed that chemokine receptors
and their ligands play a crucial role [11]. Importantly,
once recruited to the site of tissue damage, BM-MSCs
contribute to the regeneration of mesenchymal tissues
by differentiating into a variety of cell types, including
osteoblasts, chondrocytes, myocytes, adipocytes, and
many other cells types [12]. Studies of BM-MSCs have
provided evidence of safety and efficacy in animal and
human lung explant models of acute and fibrotic lung
injuries as well as in asthma, bronchopulmonary dyspla-
sia, COPD, sepsis, and other lung diseases [13, 14].
There is no clear evidence of the potential role of these
cells on the regeneration of lung tissue in these diseases.
However, growing evidence suggests that paracrine and
immunomodulatory effects released by the BM-MSCs
are likely the responsible factors of the beneficial effects
of MSC therapy [13, 14].
Cigarette smoke (CS) is the primary cause of COPD in

developed countries [15]. The molecular processes that
link CS and extrapulmonary effects of COPD are still
uncertain, but persistent inflammation is assumed to
trigger the onset of COPD. Interestingly, it has been
shown that the amount of cigarettes smoked inversely

correlates with the number of bone marrow derived
progenitor cells, the number of which increase rapidly
following smoking cessation [7, 16].
We hypothesize that in COPD, CS exposure compro-

mises BM-MSCs functional capabilities severely affecting
their proliferation, homing and repair mechanisms. Our
study was designed to demonstrate in an experimental
model of CS exposure whether CS produces BM-MSC
dysfunction. This study was performed by investigating
functional properties of BM-MSCs after in vivo lung
administration and by studying in vitro their prolifera-
tion, migration, senescence, differentiation potential and
chemokine gene expression profile. Bone marrow dys-
function caused by constant CS exposure and failure of
dysfunctional bone marrow progenitor cells to cope with
external injuries or cell apoptosis may be key to an inef-
ficient lung tissue healing and to the development of
irreversible COPD.

Methods
In vivo characterization of mesenchymal stem cells
BM-MSCs were isolated from both femurs of 6 naive or
6 CS-exposed Dunkin Hartley male guinea pigs (500 g)
as previously described [17]. Briefly, bone marrow was
flushed from femurs and cultured with DMEM-LG
medium supplemented with 10% FBS, 1% Penicillin-
Streptomycin, 1% Amphotericin B and 1% L-Glutamine
(200nM, Sigma-Aldrich, St. Louis, MO). 6 h after cell
plating, the medium was replaced to discard non-
adherent cells. Remaining adherent cells were cultured
until characteristic fusiform colonies were observed and
expanded until 80% confluent. Cells were stained with
the guinea-pig specific pan-leukocyte marker CD45
(MCA 1130, Serotec, Kidlington, UK) and analyzed by
flow cytometry as previously described [4].

In vivo administration of MSCs
Cell labeling was performed 24 h prior to administra-
tion. Cultured BM-MSCs were trypsinized, resuspended
and incubated with the cytoplasmatic fluorescent cell
tracker PKH67 (Sigma Aldrich) for 7 min in the dark.
Fifty-seven Dunkin Hartley male guinea pigs were ran-
domly distributed in 4 groups: Group 1; exposed to CS
and Group 2; sham-exposed to CS for subsequent intra-
tracheal administration and Group 3; exposed to CS and
Group 4; sham-exposed to CS for subsequent vascular
administration (Fig. 1). Animals from CS groups were
exposed to smoke generated by 6 non-filtered cigarettes
(3R4F, Kentucky University Research), 5 days/week during
4 weeks using a nose-only system (Protowerx Design Inc;
Langley, British Columbia, Canada). 24 h after the last
cigarette, all animals were anesthetized with 3% isofluor-
ane for intratracheal instillation or with ketamine and
xylacine for cardiac puncture administration of 5 × 106
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cells/kg BM-MSCs resuspended in 250 μl of PBS. 24 h
after cell administration, all animals were sacrificed under
urethane anesthesia and lung tissue was fixed in formalin
under column pressure of 30 cm, included in OCT com-
pound and stored at -80 °C. All procedures involving ani-
mal research were approved by the Ethics Committee of
the University of Barcelona and were conducted following
institutional guidelines that comply with international
laws. In all cases, administration was well tolerated with-
out mortality.

In vitro characterization of mesenchymal stem cells
Adipogenic differentiation
Adherent cells derived from bone marrow were cultured
in supplemented DMEM-LG medium until confluent.
3 days later, medium was replaced with Lonza Adipogenic
differentiation medium, following the manufacturer’s
instructions (rMSC Differentiation BulletKit®, Lonza).
After 3 weeks, cultures were stained with Oil Red to verify
the presence of lipidic vacuoles [18].

Osteogenic differentiation
Adherent cells derived from bone marrow were seeded
in fibronectin coated culture plates and cultured until
70% confluent in supplemented DMEM-LG medium.
Thereafter, medium was replaced by supplemented
DMEM-LG containing β-glycerophosphate (10 mM), L-

ascorbic acid (50 μg/mL) and dexamethasone (10nM) to
induce osteogenic differentiation. After 3 weeks, cultures
were stained with Alizarin Red and Von Kossa stain for
calcium deposits [18].

Preparation of cigarette smoke extract (CSE)
Unfiltered mainstream smoke from 4 research grade ciga-
rettes (3R4F, Kentucky University Research, Lexington,
KY) was bubbled using a smoking apparatus into 50 ml of
serum-free DMEM-LG and stored at -80 °C after sterile
filtration through a 0.22 μm pore size filter.

Cell growth kinetics and viability
Growth rate of BM-MSCs from sham or CS-exposed
animals was assessed after 4, 8 and 12 days of culture. Ex-
pansion of cell subpopulations was calculated by dividing
the final number of cells by the number of cells seeded at
day 0 and expressed as percentage. For experiments with
CSE cell growth was assessed after 4 days of culture and
expressed as fold change. Cell viability was measured with
a MTT-kit (Vybrant MTT Cell proliferation assay kit, Life
Technologies) following the manufacturer’s instructions.

Scratch wound healing assay
BM-MSCs from CS- or sham-exposed animals were cul-
tured in 6-well plates with supplemented DMEM-LG
medium. When confluent, a P200 tip was used to mark

Fig. 1 Schematic diagram of experimental design. Guinea pigs (starting ~ 500 g) were randomly distributed in 4 groups: Group 1; exposed
and Group 2; sham-exposed to CS for subsequent BM-MSC intratracheal administration and Group 3; exposed and Group 4; sham-exposed to CS for
BM-MSC vascular administration. Animals from CS groups were exposed to smoke generated by 6 non-filtered cigarettes for 4 weeks, 5 days/week
using a nose-only system
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a vertical line down the middle of each well. During the
next 24 h, pictures of each well were taken and the per-
centage of scratch occlusion was measured using Image-
Pro software (Media Cybernetics, Inc., Rockville, MD).
For CSE-exposure in vitro experiments, BM-MSCs were
cultured until confluent in a 24-well plate. As above, a
P200 tip was used to make a straight scratch in the cell-
layer of each well. Medium was immediately replaced by
supplemented DMEM-LG medium with increasing con-
centrations of CSE (1/30, 1/20, 1/10 dilutions in growth
medium) or vehicle and incubated for 30 h.

Cellular senescence
103 cells/well were seeded in a 48-well plate, and left to
adhere overnight before medium was replaced and cells
were incubated for 4 days with different concentrations of
CSE (1/30, 1/20 and 1/10 dilutions) or vehicle. Then, cells
were fixed and stained using Senescence Histochemical
Staining Kit (Sigma-Aldrich) which measures the number

of senescent cells based on a histochemical stain for β-
galactosidase activity. Nuclei were counterstained with
DAPI (Molecular Probes, Thermo Fisher Scientific,
Waltham, MA). The percentage of senescent cells was
assessed with ImageJ - Fiji software.

RNA Isolation and Real Time PCR
For analysis of in vivo gene expression, lungs from sham
and CS-exposed animals were extracted and stored in
RNAlater (Ambion, Thermo Fisher Scientific, Waltham,
MA). In a second set of experiments BM of guinea pigs
exposed to CS for 6 months was obtained by flushing
femurs and equally kept in RNAlater. For RNA isolation,
tissue was homogenized (OmniTH international) and
RNA was extracted using a column-based Clean-Up Kit
following the manufacturer’s instructions (RNeasy Micro
Kit, Qiagen, Hilden, Germany). For analysis of in vitro
gene expression in response to CSE, 10 × 104 cells per

A B

C D

Fig. 2 Validation of MSC properties. a BM-MSCs were harvested and cultured from guinea pigs’ bone marrow from healthy (sham-exposed) or
CS-exposed individuals. b Cell characterization was determined by plastic adhesion, colony forming capacity, and morphology. c Purity was checked
by flow cytometric analysis of CD45 expression in BM-MSCs and compared with whole blood. Fluorescence intensity of the no-antibody (left
panel), the secondary antibody control (middle panel) and fluorescence intensity in the presence of the CD45 specific antibody (right panel)
was measured. The lower panel shows gene expression analysis of positive (CD105, CD90, CD73) and negative (CD11b, CD31, CD34) MSC markers
and ß-Actin. M: molecular weight; LS: lung tissue lysate. d Adipogenic and oesteogenic differentiation. Cells were incubated for 3 weeks in either
induction or normal growth medium before von-Kossa and Alizarin red staining for calcium deposits or oil red to identify lipidic vacuoles
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well were seeded in 6-well plates. After 24 h, culture
medium was replaced with supplemented DMEM-LG
medium with increasing concentrations of CSE or

vehicle and cultured for additional 24 h until RNA ex-
traction (TRIsure, Bioline GmbH, Luckenwalde,
Germany). cDNA synthesis was performed with 1 μg of

A

B

Fig. 3 Identification and counting of tracked cells in lung sections under fluorescence microscope. a Lung tissue sections from sham or CS exposed
animals 24 h after BS-MSC administration via intratracheal or intravascular route. Tissues were stained with DAPI (blue) for localization of nuclei.
BM-MSCs were labelled with PKH67 (green) for cell tracking purposes. Identification and counting of tracked cells in the lung sections was
assessed under a fluorescence microscope. Mean values from 20 photographed microscopic fields per animal were calculated. b Box plots of
infiltrated BM-MSC in total lung and in the alveolar septa, P value was assessed by Mann–Whitney U-test
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RNA with the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA,
USA). Gene expression was measured by quantitative RT-
PCR using DNA SYBR green I dye (SensiMixTM SYBR
Hi-Rox, Bioline). The results were normalized to GAPDH
or ß-Actin expression levels and relative gene expression
was analyzed by the 2-ΔΔct-method [19].

Statistical analysis
Results are expressed as mean ± SD or median and inter-
quartile range, depending on the parametric or non-
parametric distribution. Comparisons between groups
were performed using an analysis of variance (ANOVA)
or the Kruskal-Wallis test, when appropriate. Post hoc
comparisons were done using Mann–Whitney U-test.
Significant differences were considered at p < 0.05 level.
All analyses were performed using SigmaPlot v.11.0 soft-
ware (Systat Software Inc., Chicago, IL).

Results
Bone Marrow MSC isolation
Cells obtained from guinea pigs’ bone marrow (Fig. 2a)
showed typical BM-MSCs characteristics including plastic
adhesion, colony forming capacity, spindle-shaped and flat
morphology (Fig. 2b). BM-MSCs were CD45, CD11b and
CD31 negative and positive for CD105, CD90, CD73 mes-
enchymal markers (Fig. 2c). When cultured in appropriate
culture conditions BM-MSCs showed adipogenic and
osteogenic potential (Fig. 2d).

CS-exposed animals showed greater BM-MSC lung
infiltration regardless of administration route
Lung sections from animals treated with exogenous ad-
ministration of BM-MSCs were analyzed to determine
their fate in vivo during the first 24 h post-administration.
Regardless of administration route (intratracheal instilla-
tion or cardiac puncture), CS-exposed animals showed
greater BM-MSC lung infiltration compared to sham-
exposed animals (Fig. 3a-b) (p < 0.001) and Table 1.
Moreover, we found that despite route of administra-
tion, these cells preferentially locate at the alveolar
septum when compared to the number of cells found
in the pulmonary arteries (p < 0.01) (Fig. 3b) and
Table 1.

BM-MSCs isolated from CS-exposed animals have lower
infiltration capability in vivo
As above, CS-exposed animals showed greater CS-
derived BM-MSC lung infiltration compared to lungs
of sham-exposed animals regardless of administration
route (Fig. 3) and Table 1. However, BM-MSCs iso-
lated from CS-exposed animals had a reduced cap-
acity to engraft into the recipient’s lung when
compared to BM-MSCs isolated from sham-exposed
GP. Yet again, these cells preferentially located at the
alveolar septum, regardless the way of administration
route (p < 0.05). Very few CS exposed or sham-
exposed BM-MSCs administered by either route were
localized in the adventitia of pulmonary vessels of sham or
CS animals (Fig. 4a-b) and Table 1.

Table 1 Values of infiltrated labelled BM-MSCs in different lung structures administrated via intratracheal or intravascular route

Experimental groups P value
Kruskall-WallisShA/HMSC ShA/CSMSC CSA/HMSC CSA/CSMSC

Intratracheal Administration

MSC in total lung 1.450 1.688 3.700 3.05 <0.001

1.294–1.996 1.525–1.725 3.25–3.975 2.569–3.256

MSC in Alveolar septa 0.300 0.388 0.988 0.650 0.031

0.175–0.569 0.375–0.500 0.600–1.375 0.350–0.825

MSC in pulmonary arteries 0.000 0.037 0.000 0.00 0.641

0.000–0.038 0.000–0.075 0.000–0.044 0.000–0.000

Intravascular Administration

MSC in total lung 1.813 1.337 3.264 2.612 <0.001

1.450–2.450 1.125–1.663 2.792–4.105 2.362–3.003

MSC in Alveolar Septa 1.038 0.200 1.175 0.463 <0.001

0.725–1.200 1.125–0.225 1.063–1.475 0.362–0.700

MSC in pulmonary arteries 0.025 0.075 0.125 0.087 0.362

0.000–0.050 0.063–0.088 0.031–0.181 0.025–0.138
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CS exposure induces functional damage of BM-MSCs in
vitro
To assess whether CS exposure had an effect on the
functional characteristics of BM-MSCs, we determined
both the proliferative, viability and migration capacities
in vitro of BM-MSCs isolated from sham or CS-exposed
animals. Results indicated that BM-MSCs from sham
animals had a greater proliferation rate as compared to

BM-MSCs from CS-exposed animals (p < 0.05) (Fig. 5a)
and though did not reach statistical significance, sham-
BM-MSCs showed higher migration capacity within the
first 24 h, compared to CS exposed BM-MSC (Fig. 5b).
BM-MSCs isolated from sham animals were exposed in
vitro to increasing concentrations of CSE (1/30, 1/20, 1/
10). Under these conditions, we determined their prolif-
eration, viability, migration, senescence, apoptosis and

Fig. 4 Box plots of infiltrated labelled cells in different lung structures. Cells were counted in total lung, alveolar septa and blood vessels after
intratracheal (a) or vascular (b) administration of BM-MSC obtained from healthy or CS exposed animals, P values were obtained using the
Mann–Whitney U-test
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osteogenic differentiation. Exogenous administration of
CSE significantly reduced BM-MSCs proliferation com-
pared to non-treated cells in a concentration dependent
manner (Fig. 6a) (p < 0.001). This was most apparent for
high concentrations of CSE (1/10). Cell viability was
assessed after 24 h using MTT assay but no significant dif-
ferences were observed between the groups (Additional
file 1: Figure S1).
CSE exposure significantly reduced BM-MSCs migration

potential in a dose-dependent manner (Fig. 6b) (p < 0.001).
Quantification of the percentage of covered area over time
showed that CSE-treated BM-MSCs had reduced closure
kinetics during recovery from a scratch compared to non-
treated cells (p < 0.001). The percentage of cells positive
for SA-β-gal activity rose significantly at the highest con-
centration of CSE tested (1/10) (Fig. 6c). Caspase-3 levels
were also measured in BM-MSCs treated with increasing
concentrations of CSE (1/30, 1/20, 1/10). The differences

observed in caspase-3 gene expression did not reach statis-
tical significance (Additional file 1: Figure S1). Osteogenic
differentiation was visibly diminished in BM-MSCs treated
with CSE (Fig. 6d).

BM tissue from CS-exposed animals showed a reduction
of CXCL9 expression compared to sham-exposed animals
To evaluate the effect of CS exposure on BM tissue, ex-
pression of 4 genes encoding chemoattractive chemokines
(CXCR4, CXCL9, CXCL10, CXCL12) were analyzed. BM
from animals exposed to CS showed a significant reduc-
tion of CXCL9 expression levels when compared to sham-
exposed animals (p < 0.05) (Fig. 7). Levels of CXCL10,
CXCL12 and CXCR4 were unchanged (Fig. 7).

Discussion
The results of the present study show in an experimental
animal model, that short-term exposure to CS induces
BM-MSCs dysfunction. Such dysfunction was observed in
vivo, affecting the cell homing and proliferation cap-
abilities of BM-MSCs in lungs exposed to CS and in
vitro altering the rate of proliferation, senescence, dif-
ferentiation and migration capacity.
One of the most relevant properties of BM-MSCs is

their potential to be mobilized in response to tissue injury
[2]. In this study, we evaluated how lung damage induced
by CS exposure affects the recruitment capabilities of
exogenously administrated BM-MSCs. Our results show
that in this model, one month of CS exposure was suffi-
cient to induce lung cellular damage and subsequent BM-
MSCs mobilization. BM-MSCs administration was per-
formed by two different routes, intratracheal instillation
(IT) and by intravascular administration. Intravascular ad-
ministration of BM-MSCs is commonly used in preclinical
studies, due to ease of administration and broad dissemin-
ation [20]. However, IT instillation of BM-MSCs has been
recently shown to attenuate lung damage [21, 22] and
thus, no definite conclusion has been reached regarding
the optimal administration route of BM-MSCs [23]. In
our study, no significant differences were found between
the two BM-MSCs administration routes used. Our re-
sults showed that regardless the administration route,
higher numbers of BM-MSCs were recruited into CS-
exposed animals compared to lungs of sham-exposed ani-
mals. Additionally, BM-MSCs homed into specific areas
in the lung. They were primary found in the alveolar space
and infiltrated into the alveolar septa. The airway epithe-
lium of the lung is the major interface with the external
environment. These results indicate that alveolar septa are
an especially susceptible lung area readily exposed to CS.
In line with our results, Rangasamy et al, showed a signifi-
cant increase of cellular apoptosis at the alveolar septa, in
CS-exposed mice lungs compared to sham-exposed mice
lungs [24].

Fig. 5 Cell growth kinetics of BM-MSCs. a Growth rate of BM-MSC
obtained from healthy (open dot) or CS exposed (black dot) animals.
Cell number was assessed after 4, 8 and 12 days of culture dividing
the final number of cells by the number of cells plated at day 0. b
Wound healing assay of BM-MSC obtained from healthy (open dot)
or CS exposed (black dot) animals. Representative pictures were
taken at 0, 12 and 24 h and the percentage of occlusion was
calculated. All experiments were done in technical and biological
triplicates. P value was assessed by Two way ANOVA Repeated
Measures. *denotes P < 0.05
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Exceptionally, very few BM-MSCs were detected
within the adventitia of blood vessels even after intravas-
cular administration of cells. This appears to suggest
that longer CS exposure might be required to cause fur-
ther vascular structural damage and promote BM-MSC
mobilization into the vasculature. Liver and heart sec-
tions were also examined in order to identify the pres-
ence of labeled BM-MSCs. The number of cells counted
in these tissues was low, only detected when cells were
administrated intravascularly and consistently lower than
the number of cells present in the lungs.
Although BM-MSCs isolated from CS-exposed animals

presented homing capabilities as seen in BM-MSCs de-
rived from sham-exposed animals, CS-exposed BM-MSCs
showed a marked reduced capacity to engraft into the re-
cipient’s lung when compared to BM-MSCs isolated from

sham-exposed animals. Importantly, these results indicate
that CS exposure compromised BM-MSC recruitment
capacity. BM-MSCs obtained from CS-exposed animals
showed lower proliferation and migration rate than BM-
MSCs isolated from sham-exposed animals. Accordingly,
Zhou et al, in a mice model of cigarette exposure pre-
sented in vivo and in vitro evidence that the number of re-
cruited BM-MSCs in female uterus was significantly
reduced in mice exposed to CS compared to sham-
exposed mice [25].
In vitro, our results showed that BM-MSCs from non-

exposed animals subjected to increasing concentrations
of CSE had a significant reduction of both proliferative
and migratory potential in a dose dependent manner.
Accumulation of senescent BM-MSCs due to an increase
concentration of CSE was detected by greater SA-β-gal

A B

C D

Fig. 6 In vitro effects of CSE in cultured BM-MSC a BM-MSCs were incubated with increasing concentrations of CSE for 4 days. Bar graph shows the
fold expansion of the cells in different conditions. In the lower panel are representative photomicrographs of the different
conditions. Scale bar: 250 μm. b Wound healing assay: BM-MSCs were incubated with increasing concentrations of CSE after a scratch was performed
in the confluent monolayer. Pictures were taken after 0, 6, 12, 24 and 30 h. The line graph shows wound closure kinetics and the bar graph shows
the area under the curve (AUC) of the time curves under different conditions. c Cellular senescence assay in BM-MSCs after 24 h of stimulation with
different concentrations of CSE. The bar graph shows the relative gene expression of SA-β-Gal expression. Scale bar: 150 μm. d Differentiation of
BM-MSCs in presence or absence of CSE: Cells were incubated for 3 weeks in either induction or normal growth medium in the presence or absence
of 5% CSE. Alizarin red stain. Scale bar 250 μm. P value was assessed by one-way ANOVA and post-hoc Holm-Sidak method. * p < 0.05 vs control;
† p < 0.05 vs 1/30; ‡ p < 0.05 vs 1/20
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activity. Osteogenic differentiation of BM-MSCs was also
affected by CSE administration. In agreement with these
results, previous studies have shown a reduced osteo-
blastic activity of BM-MSCs and an enhanced apoptosis
when they were incubated with nicotine [26–30]. It has
been shown that BM-MSCs express the alpha7 nicotinic
receptor subunit and respond to nicotine in a dose-
dependent manner [31, 32]. The impaired BM-MSCs
proliferation, migration and recruitment capabilities ob-
served in our CS animal model might be at least partly
explained by these increased cellular aging and reduced
BM-MSCs differentiation potential. It is commonly
known that many factors in vivo can influence the assay
result. In our series, cellular migration measured by the
wound healing assay differs when assessed in vitro or
vivo. Although both assays showed a distinct decrease of
migration capacity in BM-MSCs from CS-exposed
animals compared to sham-exposed BM-MSCs, it did
not reach statistical significance in vivo. We hypothesize
that the lack of significance in vivo assay is likely due to
the interaction of many other factors such as tissue
microenvironment and mechanical forces, secretion of
cytokines, hormones and growth factors which might
have increased the variability of the assay and influenced
the end result. Moreover, patients with COPD present
other co-morbidities such as alveoli damage which could
restrict cellular regeneration capabilities.

The exact mechanisms by which BM-MSCs are se-
lectively recruited in response to tissue damage are not
known. To investigate the influence of CS in such re-
cruitment mechanisms, we analyzed the expression of
different chemokines and chemokine receptors in the
bone marrow of CS-exposed guinea pigs. Key molecules
involved in directing migration of cells are CXCR4 and
its accompanying ligand CXCL12 [33, 34]. It is known
that CXCL12 is a major chemotactic factor that pro-
motes hematopoietic cell homing [35, 36]. It has been
shown to enhance the migration of HSCs into ischemic
myocardium and overexpression of CXCR4 in cultured
BM-MSCs resulted in higher recruitment to acutely
infarcted myocardium in rats [37]. However, controver-
sial studies have also been reported. In an acute kidney
injury mouse model, overexpression of CXCR4 in BM-
MSCs did not result in an increase of BM-MSCs in the
injured kidney and blockage of CXCR4 did not affect
the intramyocardial migration of murine BM-MSCs to
ischemic areas in mice [37]. Additionally, there was no
correlation between serum CXCR4 levels and the num-
ber of circulating BM-MSCs [38]. In our experiments
we could not find any changes regarding the expression
of CXCR4 and CXCL12 in the BM of CS-exposed
animals compared to sham-exposed animals. Therefore,
we hypothesize that whilst CXCL12/CXCR4 signaling
axis is involved in HSCs homing might not be mandatory

Fig. 7 Gene expression of chemokines in BM homogenates of CS-exposed guinea pigs. The box plots show the median and the interquartile
range of the relative gene expression of 6 animals. Reactions were run in triplicates Relative gene expression was analyzed by 2-ΔΔct-method.
Significant differences were assessed using the Mann–Whitney U-test * p < 0.05 vs control
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for BM-MSCs migration and its role requires further
investigation. Expression levels of other chemokines or
growth factors including CXCL10, TGF-β or VEGF were
not changed.
The mechanism of homing is a multistep process that

includes migration of cells into the blood stream, trans-
endothelial migration through the vascular walls and in-
vasion into the target tissue [39]. The mechanism by
which BM-MSCs is directed to the tissue and migrate
across the endothelium, is not yet fully understood but it
is likely that damaged tissue expresses specific receptors
or ligands to facilitate traffic, adhesion and infiltration of
BM-MSCs to the site of injury. C-X-C motif chemokine
ligand 9 (CXCL9) is expressed by circulating BM-MSCs
and it is known to play an important role in their migra-
tion through endothelium [40, 41].
In our study, CXCL9 expression levels were reduced in

BM of CS-exposed animals compared to sham-exposed
animals. Chamberlain et al, showed that higher levels of
CXCL9 significantly enhanced BM-MSCs adhesion, crawl-
ing and transendothelial migration across murine aortic
endothelial cells [41]. Thus, lower engraftment of CS
exposed BM-MSCs into the GP lungs compared to BM-
MSCs isolated from sham-exposed animals might be
explained by lower CXCL9 expression. In our model,
CXCL9 rather than CXCL12/CXCR4 signaling pathway
seems to be involved in the homing of BM-MSCs.
However, due to availability reasons, the material used

to measure CXCL9 expression was bone marrow from
guinea pigs exposed to CS for 6 months rather than
1 month as previous experiments. Further short and
long-term CS exposure studies are required to under-
stand the insights of BM-MSCs mobilization in response
to tissue injury and in particular the role of CXCL9 sig-
naling pathway. The possibility to modulate the release
of some key chemokines and subsequent BM-MSCs
mobilization may be crucial in enhancing endogenous
tissue regeneration.

Limitations
In this study, it can not be confirmed that reduced pro-
liferation rate seen in vitro at 4–12 days of culture,
underpins the lower recruitment potential observed
after 24 h of BM-MSCs administration in vivo. Thus,
whilst reduced migration clearly plays a role, long term
cellular viability and proliferation experiments are
required to conclude. Additionally, changes on the
expression of endothelial adhesion markers following
CS exposure might be at least partly accountable for the
impaired BM-MSCs recruitment potential. Unfortu-
nately, those markers could not be measured due to the
lack availability of guinea pig-specific antibodies for
adhesion markers.

Conclusion
In conclusion, defective lung repair in some diseases
such as COPD might result, from an inadequate bone
marrow contribution due to a lower mobilization or
functional impairment of BM-derived circulating stem
cells. This might provide a biological basis for the patho-
genesis in COPD, in which BM-MSCs are dysfunctional
and cannot provide adequate lung repair.

Additional file

Additional file 1: Figure S1. Caspase 3 expression in BM-MSCs after
stimulation with vehicle or different concentrations of CSE: BM-MSCs
were incubated 24h with increasing concentrations of CSE. The graph
shows the mean and the standard deviation of the relative gene expres-
sion (left graph). MTT-kit cell viability assay (Vybrant MTT cell proliferation
assay kit) in. BM-MSCs after stimulation with vehicle or after different con-
centrations of CSE (right graph). All experiments were done in technical
and biological triplicates. A P value of higher than 0.05 was considered
not statistically significant (P > 0.05). (DOCX 131 kb)
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