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Abstract
Heritability is the most commonly used measure of genetic contribution to disease outcomes. Being the fraction of the vari-
ance of latent trait liability attributable to genetic factors, heritability of binary traits is a difficult technical concept that is 
sometimes misinterpreted as the more-easily understandable concept of attributable fraction. In this paper we use the liability 
threshold model to describe the analytical relationship between heritability and attributable fraction. Towards this end, we 
consider a hypothetical intervention that is aimed to reduce the genetic risk of the disease for a specified target group of the 
population. We show how the relation between the heritability and the attributable fraction depends on the disease prevalence, 
the intervention effect and the size of the target group. We use two real examples to illustrate the practical implications of 
our theoretical results.

Introduction

Measuring the genetic influence on human diseases is one 
of the most important topics in medicine and epidemiology. 
This is commonly done in terms of the heritability, routinely 
reported using studies of siblings and twins (Lichtenstein 
et al. 2000; Mucci et al. 2016). For continuous traits, herit-
ability is defined as the proportion of phenotypic variation 
that can be attributed to genetic variation. This definition 
can also be used for binary traits; however, for binary traits 
it is more common to define the heritability as the proportion 
of variance on the latent liability scale attributed to genetic 
variation, which is conceptually more difficult and often 
misinterpreted (Visscher et al. 2008; Witte et al. 2014). For 
example, in attempts to assess how much of a disease burden 
can be attributed to genetic factors, heritability is sometimes 
misinterpreted as an attributable fraction (AF) (Mucci et al. 
2016). The AF for a particular exposure is defined as the 
proportion of disease cases that would be prevented if the 
exposure was eliminated from the population (Levin 1953). 
This definition differs from the heritability in two important 
aspects. First, in contrast to the AF, the heritability does 
not measure the effect of an intervention. Second, while the 

AF refers to a specific and well-defined exposure, which 
(in principle) can be eliminated, the heritability captures, in 
a loose sense, the aggregated impact of variation over the 
whole genome on the disease.

Despite differences between the concepts, it is intuitively 
reasonable that the heritability conveys something mean-
ingful about the impact of genetic interventions. At one 
extreme, when the heritability is equal to 1, we would expect 
genetic interventions to have a large potential for reducing 
the disease prevalence. At the other extreme, when it is zero, 
genetic interventions will not have any impact on the disease 
prevalence. However, no formal analysis of the relationship 
between the overall heritability and the AF exists. Previous 
studies have either restricted the interest to the heritability 
attributed to a limited set of SNPs (Wang et al. 2018) or 
adressed the overall heritability but lacked a general for-
malization of this relationship (Ramakrishnan and Thacker 
2012). In this work, we derive a formal link between the 
overall heritability and the AF by using the liability thresh-
old model (Falconer 1965) and an extension of the AF which 
allows for continuous exposures (Morgenstern and Bursic 
1982; Taguri et al. 2012).

The outline of this paper is as follows. First, we review 
the theory behind the liability threshold model and use the 
model to derive the relation between the AF and the her-
itability. Next, we illustrate the practical implications of 
this relationship with two real examples: one concerns the 
prevention of cardiovascular events by medication, and the 
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other a comparison between two strategies for breast cancer 
prevention.

Theory

The liability threshold model

Falconer (1965) developed the liability threshold model to 
explain how a large number of environmental and genetic 
factors result in a dichotomous disease outbreak. The model 
assumes that the binary observed disease status Y can be 
described by a continuous latent (i.e. unobserved) liability 
L, which captures all genetic and environmental risk fac-
tors that influence the disease risk. Let G and E be scalar 
measures that summarize these genetic and environmental 
risk factors, respectively; we hereafter refer to G and E as 
the genetic and environmental ‘risks’. The liability model 
assumes that

Moreover, it assumes that the disease occurs when the sub-
ject’s liability L exceeds a threshold � , so that the disease 
prevalence p(Y = 1) is equal to p(L > 𝛽).

The epidemiological literature distinguishes between 
the point prevalence (i.e. the proportion of the population 
that has the disease at a given point in time) and the life-
time prevalence (i.e. the proportion of the population that 
develops the disease at some point during life). Here, we are 
interested in ever experiencing the disease and we are thus 
interested in the lifetime prevalence.

Before proceeding, we emphasize an important feature of 
the liability threshold model. Because the model is additive, 
it is, for any given value E < ∞ , possible to find values of G 
for which the liability falls below the threshold � . In particu-
lar, this happens when G = −∞ . The model thus assumes 
that there exists an ‘optimal’ genetic composition that will 
prevent the disease from occurring, regardless of what 
environment the subject is exposed to. For multifactorial 
diseases, this assumption may be reasonable as an approxi-
mation to reality, at least when the environment is not too 
extreme. We note, though, that even for multifactorial dis-
eases one can easily conceive of extreme environments that 
would cause the disease, regardless of the subject’s genetic 
composition (e.g. living inside a nuclear reactor will always 
cause cancer).

In line with the literature (Falconer and Mackay 1996), 
we assume that G and E are independent and normally dis-
tributed with mean zero and variances �2

G
 and �2

E
 , respec-

tively. By assuming that G and E are linearly related to L 
as in (1), it follows that the liability is normally distributed 
with mean zero and variance �2

G
+ �2

E
 . Moreover, the joint 

(1)L = G + E.

distribution of the liability L and the genetic risk G is bivari-
ate normal:

The heritability as a parameter in the liability 
threshold model

The heritability ( h2 ) is defined as the ratio of genetic varia-
tion and phenotypic variation, or variation in liability,

Hence, the correlation between the liability and the genetic 
risk is the square root of the heritability,

Thus, the joint distribution of the genetic risk and the 
liability is a function of the heritability. In the next sec-
tion, we show how this can be used to link the AF with the 
heritability.

The attributable fraction

The AF is a commonly used measure in epidemiology for 
quantifying the impact of an exposure on an outcome (Levin 
1953). The AF is defined as

where p is the proportion of subjects that will ever get the 
disease in the factual situation, and p∗ is the counterfactual 
proportion that will ever get the disease under an interven-
tion that eliminates the exposure from the population.

The AF measures the (net) proportion of disease cases 
prevented by the intervention. For instance, suppose that the 
factual prevalence is 5%, and that the intervention reduces 
the prevalence to 1%. The proportion of prevented disease 
cases is then equal to (0.05 − 0.01)∕0.05 = 80%.

In our context, the exposure of interest is the genetic risk 
G in the liability model. This is supposed to capture the 
aggregated impact of variation over the whole genome on 
the disease, which cannot be ‘eliminated’ in any meaningful 
sense. We can, however, think of hypothetical interventions 
that aim at manipulating the genetic risk in other ways, e.g. 

(2)
(
G

L

)
∼ N
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0

0

)
,
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G
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E
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G
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G
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E

.

(4)
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(5)AF =
p − p∗

p
,
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by changing its distribution or shifting it by a fixed constant. 
Thus, we use the standard definition of the AF in (5), but 
allow for p∗ to represent the counterfactual disease prevalence 
under such ‘generalized’ interventions. This generalization 
of the AF is sometimes referred to as the generalized impact 
fraction (Morgenstern and Bursic 1982; Taguri et al. 2012).

In practice, interventions may be targeted towards sub-
groups of the population due to, for instance, considerations 
of cost-effectiveness. For example, even though preventive 
medication against high blood pressure and cholesterol 
have been shown to reduce the risk of cardiovascular events 
(Yusuf et al. 2016), it might not be possible to implement 
this intervention on the whole population, since those at low 
risk will not have a sufficiently high benefit to motivate bear-
ing the cost of the medication. Instead, it is more efficient to 
target the intervention to those at the highest genetic risk of 
a cardiovascular event (Tada et al. 2016).

We allow for targeted interventions that only apply to 
subjects with particularly high genetic risks, e.g. those who 
have a genetic risk above a certain quantile in the genetic 
risk distribution. We thus define the target group as those 
subjects for whom G > b𝜎G , where b is a fixed constant that 
corresponds to a quantile in the standard normal distribution. 
For instance, b = 1.64 and b = 1.96 correspond to 0.95 and 
0.975 quantiles, respectively, and setting b to −∞ implies 
that we include the whole population in the target group. 
In practice, a high genetic risk group could be identified by 
using familial risk or a genetic risk score (Yoon et al. 2002; 
Belsky et al. 2013; Khera et al. 2016; Tada et al. 2016).

We consider interventions that reduce the genetic risk G with 
an amount k�G , where k is a fixed positive constant. Defining L∗ 
as the liability under the intervention we thus have that

If the intervention is targeted to a subgroup of the popu-
lation, the counterfactual disease prevalence p∗ in (5) can 
be divided into two components. For subjects who belong 
to the target group, the genetic risk is reduced to G − k�G , 
whereas for subjects outside the target group the genetic 
risk is unchanged. The counterfactual (joint) probability of 
developing the disease and being in the target group is thus 
p(L∗ > 𝛽,G > b𝜎G) = p(L > 𝛽 + k𝜎G,G > b𝜎G) , where

L∗ = G − k�G + E.

(6)

p(L > 𝛽 + k𝜎G,G > b𝜎G)

= p

⎛⎜⎜⎜⎝
L�

𝜎2
G
+ 𝜎2

E

>
𝛽�

𝜎2
G
+ 𝜎2

E

+
k𝜎G�
𝜎2
G
+ 𝜎2

E

,
G

𝜎G
> b

⎞⎟⎟⎟⎠

= p

⎛
⎜⎜⎜⎝

L�
𝜎2
G
+ 𝜎2

E

>
𝛽�

𝜎2
G
+ 𝜎2

E

+ kh,
G

𝜎G
> b

⎞
⎟⎟⎟⎠
.

Since the intervention is only given to subjects with genetic 
risk G above the threshold b�G , the difference between the 
factual (observed) prevalence p and counterfactual (under 
the intervention) prevalence p arises only because of shifted 
liability levels within this target group. Thus, without loss of 
generalization we can express the numerator in (5) as

Furthermore, we have that

where �(⋅) denotes the standard (i.e. mean 0, variance 1) 
normal distribution function. The bivariate standard nor-
mal distribution function with correlation coefficient h is 
denoted as �(⋅, ⋅;h) . We can then express the difference in 
prevalence as

The expression in (9) shows how the disease prevalence is 
modified by the intervention, k, the size of the target group, 
b, and the square root of the heritability, h. We refer to 
Appendix A for a detailed derivation of (9).

From (9), the AF can be written as

In practice, we may set the constant k depending on what 
reduction in disease prevalence we imagine a given interven-
tion would result in for a fixed heritability and size of the 
target group. For example, suppose that the intervention is 
given to the whole population ( b = −∞ ), so that the expres-
sion in (9) simplifies to �{�−1(p)} −�{�−1(p) − kh} . 

(7)

p − p∗ = p(L > 𝛽,G > b𝜎G) − p(L − k𝜎G > 𝛽,G > b𝜎G)
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(8)

p = p(L > 𝛽)

= p
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(9)p − p∗ = �{�−1(p),−b;h} −�{�−1(p) − kh,−b;h}.

(10)

AF(p, b, k, h) =
�{�−1(p),−b;h} −�{�−1(p) − kh,−b;h}

p
.
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Suppose further that the disease prevalence is 5% before the 
intervention and 2.5% after the intervention. The reduction � 
is then the difference between the 0.95 and 0.975 quantiles of 
the standard normal distribution, i.e. � = 1.96 − 1.64 = 0.32 . 
For a particular heritability, say h2 = 0.64 , this implies that 
k =

0.32

0.8
= 0.4 . Thus, a 2.5 percentage point reduction in 

disease prevalence for a disease with a heritability of 64% 
corresponds to k = 0.4 . Moreover, setting k to ∞ reduces G 
to −∞ , thus optimizing the genetic composition so that the 
disease is guaranteed to be prevented.

Properties of the attributable fraction

The expression in (10) depends on four parameters: the 
intervention effect, k, the size of the target group, b, 
the heritability h2 , and the disease prevalence, p. When 
k increases, the second term in the numerator increases 
as well. Thus, the AF increases monotonically with k, 
which is intuitively reasonable. At the one extreme k = 0 
(no intervention), the two terms in the numerator become 
equal, so that the AF becomes equal to 0. At the other 
extreme k = ∞ (the genetic composition is optimized for 
those in the target group) the second term in the numerator 
equals 0, so that the AF simplifies to

It is not immediately obvious from the expression in (10) 
how the AF depends on b, but it can be shown (see Appen-
dix B) that the AF decreases monotonically with b. This 
is intuitively reasonable; the smaller the target group, the 
smaller is the impact of the intervention. At the one extreme 
b = ∞ (no one is targeted by the intervention), both terms 
in the numerator of (10) equal 0, so that the AF equals 0 as 
well. At the other extreme b = −∞ (the whole population is 
included in the target group), both terms in the numerator 
of (10) simplify to univariate distribution functions, so that 
the AF simplifies to

When both k = ∞ and b = −∞ , it can be seen from either 
(11) or (12) that the AF equals 1. This makes intuitive sense; 
if the genetic composition is optimized for everybody in 
the population, then 100% of all disease cases would be 
prevented.

(11)AF(p, b, k = ∞, h2) =
�{�−1(p),−b;h}

p
.

(12)

AF(p, b = −∞, k, h2)

=
�{�−1(p)} −�{�−1(p) − kh}

p

=
p −�{�−1(p) − kh}

p
.

One would perhaps expect that the AF increases mono-
tonically with h2 ; i.e. the more heritable the disease, the 
larger is the impact of genetic interventions. However, the 
AF is not (necessarily) a monotone function of h2 . Figure 1 
shows the AF as a function of h2 for k = 1, p = 0.5 and with 
the target group of the intervention ranging between 1 and 
30% of those at the highest genetic risk. For small target 
groups, the AF increases up to h2 between 0.6 and 0.8, 
and then starts to decrease. However, we see that for large 
target groups (25% or larger), the relationship between AF 
and h2 is monotone. In general, if the intervention is given 
to the whole population and b = −∞ , we observe from 
the expression in (12) that the AF does indeed increase 
monotonically with h2.

We note that the hypothetical scenario in Fig. 1 is unre-
alistic, in that the disease prevalence is unusually high.

The relationship between the AF and the disease preva-
lence is rather intricate, as the prevalence appears in both 
numerator and denominator of the expression in (10). 
When p = 1 (everybody gets the disease), both terms in 
the numerator of (10) simplify to the univariate distri-
bution function �(−b) , so that the AF equals 0. When p 
approaches 0, it can be shown that the AF approaches 1 
(see Appendix B). We have made an extensive grid search 
over k, b, h2 and p. Based on this grid search, we conjec-
ture that the AF decreases monotonically with p; however, 
we have not been able to prove this analytically.

0.0
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0.00 0.25 0.50 0.75 1.00
Heritability (h2)

A
F
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0.01
0.05
0.15
0.2
0.25
0.3

Fig. 1   The AF as a function of h2 for k = 1, p = 0.5 and target group 
of between 1 and 30% of those at the highest genetic risk
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Examples

In the previous section, we have derived the theoretical 
relationship between the heritability and the AF, by means 
of a hypothetical intervention that reduces the genetic risk 
of a disease. In this section, we illustrate the implica-
tions of this relationship through practical examples. In 
particular, we show how we can use the relationship to 
investigate the population impact of various intervention 
strategies.

Example 1: blood pressure and cholesterol‑lowering 
medication

High blood pressure and cholesterol levels are well-
known risk factors for cardiovascular events such as 
acute myocardial infarction (AMI) and stroke (Mozaf-
farian et al. 2015; Khera et al. 2016; Yusuf et al. 2016). 
These risk factors both have strong genetic components 
(Weissglas-Volkov and Pajukanta 2010; van Rijn et al. 
2007) and can be lowered by preventive medical treat-
ment with statins (cholesterol lowering) and angiotensin 
II receptor antagonists (blood pressure lowering) (Yusuf 
et al. 2016).

In a Swedish study, the heritability of AMI was esti-
mated to be 36% and the prevalence of AMI in this cohort 
was approximately 6% (Zdravkovic et al. 2007). In a Dan-
ish study, the heritability for stroke was estimated to be 
17% and the estimated prevalence of stroke in this cohort 
was around 4% (Bak et al. 2002).

We will now use these examples to investigate how the 
differences in heritability and prevalence between AMI 
and stroke impact the AF. We compare how the population 
impact differs between the diseases depending on if the 
intervention is given to those at 1% or 5% highest genetic 
risk of AMI and stroke, i.e. b = 2.33 or b = 1.65, respec-
tively. The target groups could possibly be identified by 
a genetic risk score developed for cardiovascular disease 
(Thanassoulis et al. 2012).

If the intervention is given to 5% at the highest genetic 
risk, we suppose that this intervention can reduce the prev-
alence by 1.1 percentage points (i.e. from 6% to 4.9%) for 
AMI and 0.4 percentage points (i.e. from 4% to 3.6%) for 
stroke. Such a genetic risk reduction corresponds to an 
intervention effect of k = 1 for both diseases.

Figures 2 and 3 illustrate the AF as a function of herit-
ability and prevalence. The prevalences are 2, 4, 6, 8 and 
10% and the intervention effect is fixed at k = 1 . In Fig. 2, 
the intervention is targeted at the 1% at highest genetic 
risk and in Fig. 3 it is given to the 5% highest genetic risk.

The examples of AMI and stroke are marked in Figs. 2 
and 3. If the intervention is given to 1% of the population, 
the AF is 4.5% for AMI and 2.9% for stroke. When the 

AMIStroke
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Heritability (h2)

A
F

Prevalence
2 %
4 %
6 %
8 %
10 %

Fig. 2   The AF as a function of heritability for intervention given to 
the 1% at the highest genetic risk. The intervention effect is assumed 
to be k = 1

AMI
Stroke

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Heritability (h2)

A
F

Fig. 3   The AF as a function of heritability for intervention given to 
the 5% at the highest genetic risk. The intervention effect is assumed 
to be k = 1
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intervention is given to 5% of the population, the AF is 
17.9% for AMI and 10.9% for stroke. From these two exam-
ples we observe how an intervention with larger coverage 
may drastically increase the population impact of the inter-
vention. We note, however, that the benefit of increasing 
the target group eventually levels off, as the intervention 
also covers subjects with small genetic risk who do not 
benefit from the intervention. In general, we also observe 
that the smaller the prevalence, the larger is the AF for 
a fixed heritability, target group and intervention effect. 
These, and other features of the relationships between the 
heritability, intervention effect, target group size and dis-
ease prevalence can be investigated using our Shiny app 
‘afheritability’ (Dahlqwist et al. 2018).

Example 2: prevention of breast cancer

Breast cancer is one of the most common cancers in women, 
with a lifetime prevalence of 8.1% and a heritability of 31%, 
estimated from Swedish twin data (Möller et al. 2016). Pre-
vention strategies for breast cancer include screening pro-
grams and specialized treatments for those women at the 
highest genetic risk of breast cancer (Moyer and U.S. Pre-
ventive Services Task Force 2014). For example, women 
who are carriers of the BRCA1/2 mutations are often offered 
surgical removal of all breast tissue susceptible to cancer, 
bilateral prophylactic mastectomy (BPM) (Rebbeck et al. 
2004). Another prevention strategy is treatment with tamox-
ifen (Moyer and US Preventive Services Task Force 2013, 
2014). However, none of these interventions are used on a 
large scale since tamoxifen have severe side effects and may 
increase the risk of other adverse health outcomes (Nichols 
et al. 2015), and BPM is an invasive surgical procedure that 
may lead to additional complications (Moyer and US Pre-
ventive Services Task Force 2013). In this example we are 
interested in the difference in population impact of these 
two interventions for a fixed heritability and prevalence of 
breast cancer.

Studies have shown that BPM almost eliminates the risk 
of breast cancer (Rebbeck et al. 2004). We thus assume 
that the intervention effect of the BPM intervention almost 
eliminates breast cancer within the target group, e.g. k = 10 . 
Moreover, preventive treatment with tamoxifen has been 
shown to almost halve the cumulative rate of invasive breast 
cancer (Fisher et al. 2005). Thus, based on these studies we 
assume that preventive tamoxifen treatment can reduce the 
lifetime prevalence within the target group by around 50%, 
which approximately corresponds to k = 1.

The target groups for these interventions can be chosen 
based on a genetic risk score for breast cancer (Shieh et al. 

2016). We assume that BPM will only be given to women 
at the highest 1% genetic risk of breast cancer, i.e. b = 2.33 . 
Tamoxifen treatment is not as invasive as the BPM inter-
vention. However, due to the adverse effects of tamoxifen 
(Fisher et al. 1994; van Leeuwen et al. 1994), it is only rec-
ommended to women with a high genetic risk of breast can-
cer (Moyer and US Preventive Services Task Force 2013). 
Therefore we assume that that this intervention can be given 
to, at most, women at the highest 5% genetic risk of breast 
cancer, i.e. b = 1.64 . We compare the AF for tamoxifen 
given to those at the 1% versus 5% highest genetic risk.

Figure 4 illustrates the AF as a function of the interven-
tion effect k, for heritability 31% and target group sizes equal 
to 1% and 5%. We observe that the AF is 6.7% for the BPM 
intervention given to the 1% at the highest genetic risk, 3.1% 
for the tamoxifen intervention given to the 1% at the highest 
genetic risk and 13% for the tamoxifen intervention given to 
the 5% at the highest genetic risk. Thus, even though BPM 
almost eliminates breast cancer within the target group, it 
has a smaller impact than the less efficient tamoxifen inter-
vention given to 5%, but larger impact than tamoxife inter-
vention given to 1%. This example illustrates that a large 
effect of a prevention strategy may not have a large popula-
tion impact if the intervention is limited to a small part of 
those at risk.

Tamoxifen (5%)

Tamoxifen (1%)

BPM (1%)

0.00

0.05

0.10

0.15

0.20

0 3 6 9
Intervention effect size (k)

A
F

Targeted
1 %
5 %

Fig. 4   The AF for breast cancer with h2 = 31% and p = 8.1% . Com-
parison of BPM given to a target group of 1% with k = 10 and tamox-
ifen given to target group of 1% versus 5% with k = 1
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Discussion

Heritability is a central concept in genetic epidemiology. 
Yet, because it is defined in terms of proportion of vari-
ance of latent disease liability, it is difficult to interpret the 
population implications of a particular value of the herit-
ability (Witte et al. 2014). Attempts to do so sometimes 
interprets heritability as an attributable fraction (AF) 
(Mucci et al. 2016). In this article, we have shown how 
the relationship between the heritability and the AF can 
be formalized and how these results can be used to under-
stand the population implications of a particular value of 
the heritability.

The relationship between the heritability and the AF is 
rather intricate, since it depends on several parameters in a 
non-linear way. Both the disease prevalence and the effect 
of the genetic intervention modify the impact of the herit-
ability on the AF. In reality, interventions may not always 
be targeted to the whole population. We have accounted 
for this by adding the possibility to consider situations 
where the intervention is only targeted at those at the high-
est genetic risk. Intuitively, one would expect that the AF 
increases monotonically with the heritability. However, we 
have shown by examples that this is not necessarily the case. 
In particular, we have shown that, if the prevalence is high 
and the target group is small, then the AF may increase with 
the heritability up to a certain point, after which it will start 
to decrease.

Two examples have been used to illustrate how our results 
can be used to understand the relationship between the herit-
ability and the AF for different scenarios. The first example 
is an intervention with blood pressure and cholesterol-low-
ering medication to prevent AMI and stroke. In this example 
we have considered the target group, b, and the intervention 
effect, k, to be fixed and we have compared the AF separately 
for AMI and stroke. For the same intervention, the AF is 
larger for AMI compared to stroke due to the larger heritabil-
ity of AMI. In the second example, we have compared two 
interventions to prevent breast cancer, bilateral prophylactic 
mastectomy and tamoxifen with a fixed heritability, h2 , and 
prevalence, p. Bilateral prophylactic mastectomy (BPM) has 
a large intervention effect, but can only be given to a limited 
target group. Compared to BPM, tamoxifen has a smaller 
intervention effect but can be given to a larger target group. 
In this example, we observed how the AF is larger for the 
tamoxifen intervention compared to the BPM intervention 
despite its lower intervention effect since the target group 
is larger.

We are not the first to use the AF to measure the effect of 
genes. However, virtually all applications that we are aware 
of define the exposure as a single SNP/gene (Claus et al. 

1996; Witte et al. 2014; Khoury et al. 2005) or a limited 
set of SNPs (Wang et al. 2018), thus measuring the effect 
of that single SNP and not the aggregated impact of the 
whole genome. A notable exception is Ramakrishnan and 
Thacker (2012), who used the AF for twin data and defined 
the exposure for a given twin as the disease status in the 
co-twin. The authors claimed that, by using this exposure 
definition, their attributable fraction would measure the pro-
portion of disease cases that are ‘due to heritability’. How-
ever, they did not formally motivate this claim, and it is not 
obvious whether the term ‘due to heritability’ is empirically 
meaningful.

To derive the relation between the heritability and the 
AF, we have used the liability threshold model, which 
relies on several important assumptions. Specifically, it 
assumes that the genetic and environmental risks for the 
disease are normally distributed, the effect of genes and 
environment add up to the liability (i.e. that there is no 
additive statistical interaction between the risk factors) 
and the genetic and environmental risks are independent. 
Regarding the first assumption, it is reasonable to assume 
that the genetic and environmental risks are normally 
distributed, since we are considering complex traits that 
depend on the accumulated small contributions from many 
different genetic and environmental factors. The second 
assumption of mainly additive effects from the genetic and 
environmental factors has been debated to a great extent 
(Hill et al. 2008). However, there is not much evidence of 
statistical interaction effects between genes and environ-
ment (Hill et al. 2008; Hunter 2005). The third assumption 
of no gene–environment correlation is violated if genes 
affect the environment or vice versa. Gene–environment 
correlation might occur due to various reasons (Jaffee and 
Price 2008) and should be carefully considered in each 
particular application.

In this article, we have conceptualized ‘genetic inter-
ventions’ as all interventions that modify the genetic risk. 
These can be pure genetic interventions, such as gene ther-
apy, or interventions that target the mechanisms by which 
the genes exert their effect, such as bilateral prophylac-
tic mastectomy. Thus, by ‘genetic’ we do not necessarily 
mean that the genes are modified per se, but rather that 
the intervention modifies the circumstances that allow the 
genetic variants to manifest.

Throughout, we have defined the target group as those 
at the highest genetic risk. As suggested by one of the 
reviewers, target groups may in practice also be defined 
in terms of environmental risk for disease. In Appendix C 
we derive the relation between the AF and the heritabil-
ity, when the target groups are defined as those subjects 
for which the total (genetic and environmental) liability 
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exceeds a certain threshold. We show that, in fact, this 
alternative definition of the target group leads to simpler 
calculations, which only involves univariate normal dis-
tribution functions.
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Appendix A: Proof of (9)

We have that

p − p∗ = p(L > 𝛽) − p(L∗ > 𝛽)

= {p(L > 𝛽,G > b𝜎G) + p(L > 𝛽,G ≤ b𝜎G)}

− {p(L∗ > 𝛽,G > b𝜎G) + p(L∗ > 𝛽,G ≤ b𝜎G)}

= p(L > 𝛽,G > b𝜎G) − p(L∗ > 𝛽,G > b𝜎G)
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where the second last equality follows from (8), and the last 
equality follows from (2) and (4).

Appendix B: Proof of relations 
between the AF and k, b, h2 and p

Let X and Y be bivariate standard normal with correlation h. 
We then have the following:

•	 The AF is decreasing in b. Proof From (10) we have that 

 where the third equality follows from the conditional 
distribution of X, given Y, and k being positive.

•	 limp→0 AF = 1 . Proof: Define q = �−1(p) . We have that 
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Appendix C: Relationship 
when the intervention is based on overall 
liability

To accommodate both genetic and environmental factors, we 
may target the intervention to subjects with L > b
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where the second last equality follows from (3) and (8), and 
the last equality follows from (2). Thus, AF can be written as

We observe that, for this alternative definition of the tar-
get group, the AF becomes a relatively simple function of 
(p, b, k, h), since it only involves univariate normal distribu-
tion functions. Below, we investigate how the AF depends 
on (p, b, k, h).

We first note that

so in this case, AF does not depend on (p, b, k, h).
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 For the second term, we have that 

 This expression is negative if and only if 

Which is true, since − 𝜙(q)
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= −
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•	 p < 𝛷(−b) ⇒ AF = 1 −
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p
 , which decreases 

monotonically with p, and similar proof as above.
•	 limp→0 AF = 1 . Proof: 

 where the third equality follows from L’Hospital’s rule.
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