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The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of
activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in
a TCR-independent manner via cytokines. The underlying molecular mechanisms are not
entirely understood. To define the activation of MAIT cells on the molecular level, we
applied a multi-omics approach with untargeted transcriptomics, proteomics and
metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells
showed a distinct transcriptional reprogramming, including altered pathways,
transcription factors and effector molecules. We validated the consequences of this
reprogramming on the phenotype by proteomics and metabolomics. Thus, and to
distinguish between TCR-dependent and -independent activation, MAIT cells were
stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to
full activation of MAIT cells, comparable to activation by E. coli. Using an integrated
network-based approach, we identified key drivers of the distinct modes of activation,
including cytokines and transcription factors, as well as negative feedback regulators like
TWIST1 or LAG3. Taken together, we present novel insights into the biological function of
MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in
pathological conditions.

Keywords: MAIT cells, multi-omics analysis, TCR-dependent, TCR-independent, activation, key driver analysis
INTRODUCTION

In the last decade, innate-like T cells (ITC) gained emerging recognition as important players in the
early immune response to infections. ITCs constitute 10-20% of human T cells, with mucosal-
associated invariant T (MAIT) cells being one of the most abundant ITCs in humans (1). MAIT
cells have been linked to the pathogenesis of several diseases, e.g., inflammatory bowel diseases (2),
type 1 diabetes (3), rheumatoid arthritis (4) or inflammatory liver diseases (5, 6), where they acquire
an activated phenotype. Importantly, drugs and drug-like molecules can modulate MAIT cell
org May 2021 | Volume 12 | Article 6169671
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activation (7), rendering them attractive targets for therapeutic
approaches, requiring a deep and detailed understanding of
mechanisms involved in the activation of MAIT cells.

Under healthy conditions, MAIT cells accumulate at mucosal
barrier sites, e.g., in the gut lamina propria (8) or the liver (9) and are
considered to have a critical immune surveillance function, which
requires them to distinguish between commensal and pathogenic
bacteria. During infection, MAIT cells have been shown to respond
rapidly, even without prior antigen exposure through antigen-T cell
receptor(TCR)-dependent and -independent mechanisms,
mediated mainly by the innate cytokines IL-12 and IL-18 (10).
Through their semi-invariant TCR Va7.2-Ja33 (8), MAIT cells
recognize small molecules like metabolites from the bacterial
riboflavin pathway, which are presented by the MHCI-like
molecule MR1 (11). A robust activation, however, occurs only by
a combination of both TCR-dependent and -independent
mechanism (12, 13) that in vitro can be achieved by activating
MAIT cells with, e.g., E. coli-pulsed antigen-presenting cells (14).

Activation of MAIT cells is accompanied by the release of
cytotoxic effector molecules like granzyme A, B, K or perforin,
and the proinflammatory cytokines IFN-g, TNF and IL-17 (15).
Release of several additional inflammatory mediators has been
postulated (4, 16), but molecular mechanisms and underlying
pathway alterations during MAIT cell activation are only at the
beginning of understanding. With the use of high-resolution
omics data, deep profiling of immune cells has added a global
view on molecular mechanisms underlying immune cell biology
and function (17, 18), giving novel insights that can be utilized
for therapeutic approaches. For MAIT cells, transcriptomic (1, 5)
and proteomic (16) strategies have been applied to some extent,
already defining the effector function in the resting state (1, 5, 16)
on the molecular level. Recently, transcriptional profiling has
revealed that MAIT cell function highly depend on the mode of
activation (19). While TCR-dependent activation results in a
quick and strong response, TCR-independent activation showed
a delayed and limited response. However, molecular profiling of
a combination of both stimuli that are also present under
inflammatory conditions is lacking.

Here, we present a multi-omics approach using global
transcriptomic, proteomic and metabolomic profiling to define
MAIT cell activation. We used an ex vivo model of MAIT cell
activation to investigate TCR-dependent and -independent
activation and analyzed pathway alterations, as well as the
transcription factor and effector molecule profile. Moreover, by
using an integrated network-based analysis, we identified key
drivers of MAIT cell activation.
MATERIALS AND METHODS

Cell Culture
Healthy adult blood was obtained from the blood bank of the
University Leipzig, approved by the local ethics committee
(Ref. #079-15-09032015). Peripheral blood mononuclear cells
were isolated from male human donors at age 20-50 by Ficoll-
Paque™ density-gradient (GE Healthcare, UK) centrifugation.
Frontiers in Immunology | www.frontiersin.org 2
CD161+ TCR Va7.2+ MAIT cells and CD14+ monocytes were
obtained by positive magnetic separation using respective
microbeads (Miltenyi Biotec, Germany). For RNA-Seq
experiments, monocytes were loaded with fixed E. coli at a
MOI of 10 for 3h, followed by intense washing in PBS to
remove E. coli. MAIT cells and E. coli-loaded monocytes were
incubated at a ratio of 1:1 for 16h. In some experiments, MAIT
cells were stimulated with 50ng/ml IL-12 and 50ng/ml IL-18
(both from MBL International, MA, USA), 10µg/ml plate-bound
anti-CD3 and 1µg/ml soluble anti-CD28 (both from Biolegend,
CA, USA) or a combination of both for 16h. For TWIST1
inhibition experiments, the small molecule inhibitor harmine
(Sigma-Aldrich, Germany) was used at a concentration of 20 or
40µM, DMSO served as solvent control.

Preparation of Bacteria
The E. coli stain K12 MG1655 was purchased from DSMZ,
Germany. Bacteria were grown to stationary phase in LB
medium at 37°C. Bacteria were washed in PBS, fixed in 1%
formaldehyde for 5 min, followed by 3 washes in PBS. Fixed
bacteria were resuspended in RPMI for further use.

Flow Cytometry and Cell Sorting
For immunophenotyping, cells were stained in PBS
supplemented with 0.5% BSA and 2mM EDTA for 15min at
4°C with following fluorochrome-conjugated antibodies: anti-
CD69-FITC or anti-CD3-FITC, anti-TCR Va7.2-PE, anti-
CD161-APC (all from Miltenyi Biotec, Germany), anti-CD223
(LAG3)-FITC, anti-CD154(CD40L)-FITC (Biolegend, USA).
Dead cells were excluded using propidium iodide (Miltenyi
Biotec, Germany). MAIT cells were identified based on their
TCR Va7.2 and CD161 expression. Cell surface expression was
analyzed on a FACS Calibur (BD Bioscience). Cell sorting was
carried out using FACS ARIA II (BD Bioscience). Data were
analyzed using FlowJo™ Software Version 10.5.3 (Becton,
Dickinson and Company).

RNA Sequencing (RNA-Seq)
For RNA sequencing, stimulated MAIT cells and as control
unstimulated MAIT cells of five different donors were FACS-
sorted based on their TCR Va7.2 and CD161 expression,
yielding a purity of >98%. Cells were lysed in 1 mL TRIzol
(Thermo Fisher), RNA was isolated using miRNeasy Mini Kit
(Qiagen) and Maxtract High Density tubes (Qiagen), residual
DNA was removed using Ambion TURBO DNA-free Kit
(Thermo Fisher) and RNA cleaned up by ethanol-
precipitation. RNA concentration was determined by Qubit 2.0
instrument using the Quant-iT RNA kit (Thermo Fisher
Scientific). The RNA integrity for each sample was controlled
with the RNA 6000 Nano Assay and the Agilent 2100
Bioanalyzer (Agilent Technologies). All samples included in
the experiment had RIN >8, and 100ng total RNA was used
for rRNA depletion. Ribosomal RNAs were removed from total
RNA using the Ribo-Zero Gold H/M/R Magnetic Kit (Illumina).
A strand-specific library for transcriptome sequencing was
prepared using the ScripSeqv2 Kit (Illumina), which was
checked by Agilent 2100 Bioanalyzer system with a High
May 2021 | Volume 12 | Article 616967
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Sensitivity DNA Kit (Agilent). Library concentration was
determined by Qubit 2.0 instrument using the Quant-iT
dsDNA High Sensitivity kit (Thermo Fisher Scientific). 10 ng
from each library was pooled. Library pool was size-selected in a
range of 150-700 bp using preparative agarose gel in
combination with MinElute Gel Extraction Kit (Qiagen).
Paired-end sequencing with 160 Mio read pairs per sample
was performed at a length of 100 bases on HiSeq2000 (Illumina).

Evaluation of Transcriptomic Data and
Statistical Analysis
Generation of Read Counts
The workflowmanagement system uap (20) was used to transform
the paired-end sequencing reads into a quantitative presence/
absence table. The RNA-Seq workflow, which is included in the
software, was customized to the requirements of this analysis: Fastq
files were merged followed by a quality control with FastQC (21)
and a quality filter using the FASTQ Quality Filter of the FASTX-
toolkit (22). Trim Galore (23) was employed for adapter trimming.
The reads were mapped to the human genome (GRCh38) with
HISAT2 (24). The samtools suite of programs (25) was used filter
the alignments for proper pairing and for sorting them by name for
subsequent processing with htseq_count (26) to generate counts of
reads that overlap annotated genes. As a reference the GENCODE
gene annotation (27) (Release 34) was used.

Differential Expression Analysis
To test for differential expression in the count data, the DESeq2 R
package (28) (release 1.22.1) provided at Bioconductor, was used.
The quality of the count data was assessed by exploring the sample-
to-sample distances (data not shown) and a principal component
analysis (PCA) of the samples. DESeq2 relies on Generalized Linear
Models, Empirical Bayes Shrinkage of the log fold change and a
Wald test on the model coefficients to assess differential expression.
The variables used for modeling were defined in the design as
treatment, and contrast fits were then computed for the two
different treatment groups vs the unstimulated control group. To
account for multiple testing, p-values where adjusted according to
Benjamini-Hochberg (29). Genes were defined as differentially
expressed if their adjusted p-value (p.adj) was ≤0.01.

Pathway Enrichment Analysis
Pathway alterations were investigated using differentially expressed
genes (p.adj ≤0.01) in the Ingenuity Pathway Analysis (IPA) tool
(Qiagen) (30, 31). Pathway enrichment was conducted using the
immune cell database, and pathways with a Benjamini-Hochberg
corrected p-value (p.adj) ≤0.05 were considered significantly
enriched. Pathways with an IPA z-scores were evaluated.

Biological Network Inference
Weighted gene correlation networks were retrieved from the
count data using the R package WGCNA (32, 33) (release 1.6.8).
Lowly expressed genes, i.e., sum of reads per gene below 10
across all samples, were removed from the data set. Information
regarding the treatment groups and time points was binarized. A
soft-threshold b=10 was selected according to the soft-
Frontiers in Immunology | www.frontiersin.org 3
thresholding procedure in the WGCNA package. A signed
network was constructed with minimal module size of 30 and
a mergeCutHeight of 0.25. The correlation between resulting
modules and the clinical traits was computed as the correlation
between the module Eigengenes and the trait information and
evaluated with a Student asymptotic p-value. Modules that
jointly correlated to either a-CD3/a-CD28- or E. coli-treatment
group and had correlation values above 0.4 (and resp. p-values
below 0.04) were merged. Genes were annotated using
Bionconductors’ biomaRt R package (34, 35) [with GENCODE
gene annotation (Release 34)] and differential expression
information were mapped. Gene significance (GS) and module
membership (MM) were computed, and for the top 20 genes,
according to those values, the adjacency information was
extracted from the topological overlap matrix. Respectively
annotated node and edge files were generated and visualized in
Cytoscape 3.7.1 (36). RNA-Seq data are available at the Gene
Expression Omnibus (GEO) accession number GSE158439. Data
obtained for identified transcription factors and cytokines are
summarized in Supplementary Tables 1 and 2, respectively.

Cell Lysis, Protein Digestion, LC-MS/MS
for Proteomics
For protein extraction, cells were washed 3 times in PBS and
lysed in 8MUrea Buffer. Protein concentrations were determined
using Pierce 660nm Protein Assay (Thermo Fischer Scientific,
Germany). For global protein analysis, an untargeted proteomics
approach was applied. Starting from 10 µg protein per sample,
the volume was adjusted to the same volumes with 100mM
Triethylammonium bicarbonate buffer (TEAB, Sigma Aldrich,
Germany). Proteins were reduced with 0.1 µmol tris(2-
carboxyethyl)phosphine (Sigma Aldrich, Germany) for 1 h at
55°C, followed by alkylation with 0.2 µmol iodoacetamide
(Merck, Germany) for 30 min at room temperature in the
dark. Afterwards, protein solutions were acidified, and
acetonitrile (Merck, Germany) was added to reach more than
50% (v/v) organic content to facilitate protein binding to
SpeedBeads™ magnetic carboxylate modified particles (SP3
beads, Sigma Aldrich, Germany), which allow for protein
clean-up, digestion and peptide clean-up in one tube. The
samples were processed on the beads as described before
(37, 38) with minor adjustments. In brief, for each sample 2 µl
of bead solution, containing 20 µg beads was used. Proteins were
loaded on the beads, followed by washing with 70 % (v/v) ethanol
(Merck, Germany) in water and then with 100 % (v/v)
acetonitrile (ACN, Carl Roth, Germany). Next, proteins were
digested with trypsin (enzyme:protein ratio 1:40, Promega, USA)
in 100 mM TEAB in the same tube. Digestion was stopped by
addition of 100 % (v/v) acetonitrile to reach ≥ 95 % (v/v) organic
content, facilitating peptide binding to the beads. Peptide clean-
up was performed using 100 % (v/v) acetonitrile. Finally,
peptides were eluted in two steps, first with 87 % (v/v) ACN in
ammonium formate (pH 10) (Agilent Technologies, USA), then
with 2 % (v/v) dimethyl sulfoxide (Sigma Aldrich, Germany),
thus resulting in two fractions per sample that were evaporated
to dryness and reconstituted in 0.1% (v/v) formic acid (FA).
May 2021 | Volume 12 | Article 616967
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Both fractions were analyzed on a UPLC system (Ultimate
3000, Dionex, USA), coupled to a Q Exactive HF (Thermo
Scientific, USA) as described previously (39). First, peptides
were collected on a trapping column (Acclaim PepMap 100
C18, 3 µm, nanoViper, 75 µm × 5 cm, Thermo Fisher, Germany)
at flow rate 5 µl/min using a solution of 2 % (v/v) ACN and
0.05 % (v/v) trifluoroacetic acid (TFA) in water. Subsequently,
peptide separation on a reversed-phase column (Acclaim
PepMap 100 C18, 3 µm, nanoViper, 75 µm × 25 cm, Thermo
Fisher, Germany) was applied using a non-linear gradient of 150
min starting at inorganic conditions (0.1 % FA in water) and
increasing proportion of organic solution (80 % ACN, 0.1 % FA
in water). A chip-based ESI source (Nanomate, Advion, USA)
was used for ionization at 1.7 kV and was coupled to the Q
Exactive HF. The MS1 scans were acquired at a resolution of
120K in a range of 350–1550 m/z. AGC target was set to 3×106

with a maximal injection time (IT) of 100 ms. The top 10 most
abundant peptides were isolated for MS2 acquisition with an
isolation window of 1.4 m/z. Peptides were fragmented at a
normalized collision energy (NCE) of 28 and the fragment ion
spectra were acquired at a resolution of 15K using AGC target of
2×105 and maximal IT of 100 ms. All spectra were acquired using
XCalibur (Version 3.0).

Evaluation of Proteomic Data and
Statistical Analysis
MS raw data were processed with MaxQuant Version 1.6.2.10
with the integrated search engine Andromeda using the
MAXLFQ algorithm (40). If not stated otherwise, default
parameters were used. Peptides were identified using a
database search against the Homo sapiens UniprotKB reference
proteome (2018-11, reviewed and unreviewed entries).
Carbamidomethylation of cysteine was set as fixed
modification, whereas oxidation of methionine and acetylation
of protein N-termini were set as variable modifications. Peptide
and fragment mass tolerance were set to 10 ppm (MS1), and 20
ppm (MS2). Minimum peptide length was set to 7. Peptide
spectrum matches were evaluated using the target-decoy method
with false discovery rate (FDR) ≤0.01. A minimum of two
peptides with at least one unique peptide were required for
protein inference again applying FDR ≤0.01. Match between
runs was activated. Proteins were quantified based on unique and
razor peptides, resulting in protein abundances for 51711
peptides and hence 4653 protein groups. MaxQuant quality
control was carried out by PTXQC package37 in the R
environment (data not shown). Protein contaminants and
reverse hits were excluded using Perseus 1.6.2.3.

Protein intensities were processed, and results were visualized
in R-3.5.0 using following packages: limma (41), plyr (42),
reshape2 (43), xlsx (44), DEP (45), ggsci (46), circliz (47),
calibrate (48), ggplot2 (49), ComplexHeatmap (50), dendsort
(51), dendextend (52), pheatmap (53), readxl (54), qpcR (55),
splitstackshape (56), tidyr (57), and Tmisc (58). Thus, the data
were log2-transformed, filtered for proteins that were quantified
in three replicates under at least one condition, followed by
variance-stabilization. Imputation was performed using the DEP
Frontiers in Immunology | www.frontiersin.org 4
package (45) (fun = “MinProb”, q = 0.01) in the case of proteins
that were not quantified in any of the replicates under the
particular condition. Subsequently, fold changes (FCs) and p-
values using Student’s t-test were calculated relative to the
unstimulated control. Proteins with a p-value ≤0.05 were
considered significantly altered.

Ingenuity Pathway Analysis, using significantly altered
proteins (p-value ≤0.05), was conducted analogous to RNA-
Seq data analysis.

For WGCNA, the log2-transformed, filtered, variance-
stabilized and imputed data were used as described before (59)
with minor differences. The networks were constructed across all
the measured samples with the R package WGCNA (32),
creating a signed network. The soft-threshold for WGCNA was
set to b=9, and the Topology Overlap Matrix (TOM) was created
using a mergeCutHeight of 0.25 and a minimum module size of
50. The analysis identified 9 modules of co-abundant proteins,
assigned to different colors, and correlations of module
Eigengenes with traits were examined using Pearson
correlation and Student asymptotic p-values. Also the
identification of trait-specific key drivers was performed based
on the WGCNA results as described before (59). For this
purpose, module- and trait-specific protein significances (PS)
and module memberships (MM) were calculated for each
analyte, and key drivers were assumed to be proteins with
absolute PS ≥ 0.5 and absolute MM ≥ 0.5. Proteomics data are
available in Supplementary Table 3.

Cell Lysis, Extraction of Metabolites,
LC-MS/MS for Metabolomics
For the extraction of intracellular metabolites, the medium was
completely removed, and cells were quenched 3 times with 1 ml
ice-cold 0.9 % sodium chloride. After removing the quenching
solution, cells were resuspended in 100 µl ice-cold ACN followed
by 100 µl ice-cold Milli-Q water. After vortexing for 1 min, cells
were centrifuged (14000 rpm, 4°C, 10 min). Supernatants were
transferred to new tubes. Intracellular metabolites were extracted
again with 500 µl Methanol : ACN:Milli-Q water (2:3:1). After
centrifugation (14000 rpm, 4°C, 10 min), both supernatants were
combined, evaporated to dryness and stored at -80°C until
measurement. Prior to analysis, all samples were resuspended
in 25 µl 0.1% FA and 5% ACN in water.

For LC-MS/MS measurement, 10 µl of each resuspended
extract was injected onto a HPLC system coupled online with
a 6540 UHD Accurate-Mass Q-TOF (Agilent Technologies).
Metabolites were separated on a Waters Acquity UPLC® HSS
T3 column (2.1 x 100 mm, 1.8 µm) equipped with a Waters
Acquity UPLC®BEH C18 pre-column (2.1 x 50 mm, 1.7 µm).
The autosampler and column oven were kept at 5°C and 45°C
respectively. Separation was achieved with a binary solvent
system (A: 0.1% FA in water and B: 0.1% FA in 50:50% ACN :
MeOH), which was run with the following gradient: 0-5 min: 5%
B; 5-19 min: 5-95% B; 19-21 min: 100% B; 21-21.5 min 100-5%
B; 21.5-24 min: 5% B. Metabolites were eluted at a constant flow
rate of 0.3 ml/min. Eluted metabolites were measured with the
QTOF operated in centroid mode. Full scan data was generated
May 2021 | Volume 12 | Article 616967
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with a scan range of 60-1600 m/z in positive ionization mode.
Out of the survey scan, the 5 most abundant precursor ions with
charge state = 1 were subjected to fragmentation. The dynamic
exclusion time was set to 30 s.

Evaluation of Metabolomic Data and
Statistical Analysis
MS raw files (.d files) of all 20 samples, 4 pooled samples and 2
blank runs were imported into Progenesis QI (Non-Linear
Dynamics) software. Data were analyzed in a generic workflow.
The adduct ions involved [M+H], [M+H-H2O], [M+H-2 H2O]
and [M+H+ACN]. First, chromatogram alignment was
performed. The most suitable reference chromatogram was
chosen automatically. The following software-guided peak
picking tool resulted in a data matrix including the retention
time, mass-to-charge ratio and corresponding normalized peak
area. The matrix, referred to as feature list, was the basis for the
subsequent automated database search. The ChemSpider plug-in
was used as identification method with HMDB and KEGG as
database resources.

After exporting the final results, the feature list was validated
based on the 4 pooled samples, which were included in the
measurement. Solely features with less than 30% variation in
these samples remained for further analysis. Blank subtraction
was done afterwards. Additionally, only features with more than
40% valid values within the 20 samples were considered for
quantification resulting in 389 features. Metabolomics data are
available in the Supplementary Table 4.

Metabolite intensities were processed, and results were
visualized in R-3.5.0 using following packages: limma (41), plyr
(42), reshape2 (43), xlsx (44), DEP (45), ggsci (46), circliz (47),
calibrate (48), ggplot2 (49), ComplexHeatmap (50), dendsort
(51), dendextend (52), pheatmap (53), readxl (54), qpcR (55),
splitstackshape (56), tidyr (57), and Tmisc (58). According to the
proteomic data, the metabolomics data were log2-transformed,
filtered for metabolites that were quantified in three replicates
under at least one condition, followed by variance-stabilization.
Imputation was also performed using the DEP package (45)
(fun = “MinProb”, q = 0.01) in the case of metabolites that
were not quantified in any of the replicates under the
particular condition. Subsequently, fold changes (FCs) and
p-values using Student’s t-test were calculated relative to the
unstimulated control. Metabolites with a p-value ≤0.05 were
considered as significantly altered. The metabolome data are
available at the Metabolomics Workbench repository
(DOI:10.21228/M8T69T).

Quantitative Real-Time PCR
For quantitative real-time PCR (qPCR), RNA isolation and
reverse transcription was done as described previously (60).
Briefly, RNA was isolated using the RNeasy Mini kit with
DNase I digestion (both Qiagen, Germany). 500ng RNA was
used to synthesize cDNA using the High-Capacity cDNA
Reverse Transcriptase Kit (Applied Biosystems, USA). The
qPCR was performed using TaqMan™ Fast Advanced Master
Mix (Applied Biosystems, USA) on a qPCR ABI 7500 FAST
Frontiers in Immunology | www.frontiersin.org 5
Real-Time PCR System (Applied Biosystems, USA) using
TaqMan™ primer sets for human TWIST1, MTHFD2 and
SDHA (Applied Biosystems, USA). Gene expression was
measured by the DDct-Method relative to the unstimulated
control and with SDHA as references. Levels of significance
were determined by Student’s t-test in GraphPad Prism 9.

Measurement of Cytokine Production
Cytokine release was determined using the LEGENDplex™

human CD8/NK Panel from cell culture supernatants of
isolated MAIT cells following the manufacturer’s instructions.
Cytokine release was analyzed on a FACS Calibur (BD
Bioscience). Median fluorescence intensities (MFI) were
interpolated using an asymmetric sigmoid 5PL standard curve
in GraphPad Prism resulting in absolute concentrations in
pg/ml. Levels of significance were determined by Student’s
t-test in GraphPad Prism 9.
RESULTS

Transcriptome Profiling of Activated
Human MAIT Cells
Robust activation of MAIT cells during infection has been
shown to depend on both antigen-dependent and -independent
signals (10, 61). The induced molecular profile highly depends
on the mode of activation (19). E. coli-induced activation was
shown to induce such a robust activation in a TCR-dependent and
-independent manner (14, 19). To characterize the transcriptome
of a robust human MAIT cell activation, we activated the MAIT
cells for 16 h using E. coli-pulsed monocytes. For comparison to a
pure TCR-induced activation, MAIT cells were activated using
anti-CD3/anti-CD28 antibodies. MAIT cells were sorted based on
their TCR Va7.2 and CD161 expression after 16h of stimulation
(Figure 1A) and processed for paired-end RNA-Seq. The surface
expression of the early activationmarker CD69 was determined by
flow cytometry. As described previously (14), stimulation ofMAIT
cells by fixed E. coli led to a consistent and strong activation as
revealed by CD69 expression comparable to stimulation by anti-
CD3/anti-CD28 antibodies (Figure 1B).

In total, we found 36,484 annotated genes expressed. The
variance in the expression data can be mainly explained by
the treatment (1st principal component (PC) with 53%) and the
mode of activation (2nd PC with 22%), indicating a clear
separation of the differently treated samples (Figure 2A). The
analysis of differentially expressed (DE) genes between
stimulated cells and unstimulated controls revealed 8,058 DE
genes between a-CD3/a-CD28 activated cells and unstimulated
controls, and 7,626 between E. coli-stimulated cells and
unstimulated controls, respectively. A total of 5,477 genes was
DE in both contrasts, with 99% (5,397) regulated in the same
direction (Figure 2B). The 2,581 selectively regulated DE genes
for a-CD3/a-CD28-activated cells include 1,948 protein-coding
genes and 127 lincRNAs. Among the 2,149 selectively regulated
DE genes for E. coli-stimulated cells were 1,660 protein-coding
and 104 lincRNAs. Hierarchical clustering of differentially
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expressed genes revealed a specific pattern for each type of
activation (Figure 2C).

Next, we analyzed the subset of DE genes that code for
proteins (E. coli-stimulated: 6,056; a-CD3/a-CD28 activated:
6,344) for significantly enriched pathways during activation
using Ingenuity Pathway Analysis (IPA). The analysis yielded
in total 184 enriched pathways with an IPA z-score, reflecting an
up- or down-regulation of the corresponding pathway
(Supplementary Figure 1). Upon activation with fixed E. coli,
or a-CD3/a-CD28 antibodies, MAIT cells significantly
upregulated pathways related to immune functions like various
interleukin (IL) signalling pathways, JAK/STAT Signalling, Role
of NFAT, Granzyme B Signalling, and metabolomic pathways,
i.e., Cholesterol Bioysynthesis I and Fatty Acid Activation
(Figure 2D). As expected, the Th1 Pathway, Th17 Activation
Pathways and Granzyme B Signalling were upregulated by both
activations, with a stronger response in MAIT cells activated by
E. coli, than by the TCR-stimulus alone (Figure 2D).

Transcriptional Regulation of MAIT
Cell Activation
After activation, the fate of T cells is mainly determined by
transcription factors (TFs). Hence, to illuminate the underlying
transcriptional mechanisms of MAIT cell activation, we screened
the expression profiles of activated MAIT cells for TFs based on
the 1,639 known and likely TFs published by Lambert et al. (62).
We found 1113 TFs within the dataset (Figure 3A ,
Supplementary Table 1), with a total of 369 TFs being DE in
both contrasts and 99% (364) regulated in the same direction.
While 205 TFs were DE in a-CD3/a-CD28-activated MAIT cells,
117 were found DE only in E. coli-activated MAIT cells
(Figure 3A). The TFs that were previously described for MAIT
cells, i.e., RORC, ZBTB16/PLZF, TBX21/T-bet (63), EOMES,
PRDM1/BLIMP-1 (19) and GATA3 (64) were expressed in our
data as well. However, depending on the mode of activation,
expression of those TFs varied (Figure 3B). While EOMES and
GATA3 were significantly down-regulated in E. coli-activated
MAIT cells, only GATA3 was down-regulated in TCR-
stimulated MAIT cells (Figure 3B). TBX21/T-bet, ZBTB16/
PLZF, PRDM1/BLIMP-1 and RORC were upregulated in TCR-
stimulated MAIT cells, while in E. coli-activated MAIT cells only
TBX21/T-bet and PRDM1/BLIMP-1 were significantly
upregulated. Taken together, our results confirm that changes
in the transcription factor profile after 16 h depend on the way of
activation in human MAIT cells.

Effector Molecule Profile During MAIT
Cell Activation
In bacterial and viral infections, MAIT cells have been shown to
produce cytotoxic effector molecules and pro-inflammatory
cytokines as well as chemokines after activation, depending on
their mode of activation (19). Since these effector molecules are
highly regulated on the transcriptional level, we investigated their
transcription pattern within the transcriptome of activated
MAIT cells. Based on 133 cytokine and chemokine genes
published by Pro et al. (65), we found 76 genes expressed in
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our data set (Figure 3C). We ranked these cytokines and
chemokines based on high, medium and low expression
(Supplementary Figure 2), indicating relevant expression
levels of all differentially expressed genes. Activation by E. coli
led to a different cytokine pattern than a-CD3/a-CD28
stimulation (Figure 3C and Supplementary Table 2).

The classical MAIT cell cytokines IFNg, IL-17A and IL-17F
were highly upregulated in both treatments with a stronger
response in MAIT cells activated by E. coli compared to
stimulation with anti-CD3/anti-CD28 antibodies (Figure 3D),
suggesting that activation by E. coli triggers additional pathways
than TCR activation alone. TNF, in contrast, was stronger
upregulated by TCR stimulation alone (Figure 3D).

To define the cytotoxic effector molecule repertoire of MAIT
cells, we screened the RNA-Seq dataset for granzymes and found
all 5 human granzymes GZMA, GZMB, GZMK, GZMM and
Frontiers in Immunology | www.frontiersin.org 7
GZMH expressed in both a-CD3/a-CD28- and E. coli-activated
MAIT cells. Again, the two ways of activation induced a specific
pattern. GZMA and GZMM were both expressed in a-CD3/a-
CD28- and E. coli-activated MAIT cells, without significant
differences. GZMB and GZMH were significantly up-regulated
in both treatments, while GZMK was down-regulated in both
treatments, but only significantly during a-CD3/a-CD28
activation (Figure 3D). FASL, Perforin and LAMP1/CD107a
were significantly up-regulated in both treatments (Figure 3D),
with gene expression of LAMP1/CD107a stronger induced in
E. coli-activated MAIT cells.

In conclusion, our data suggest that MAIT cells respond to
E. coli-induced activation with a specific RNA expression profile of
effector molecules that differs from the profile induced by TCR-
dependent activation, thus again confirming the dependency of the
MAIT effector function on the mode of activation.
A B

DC

FIGURE 2 | Transcriptomic profiling of activated human MAIT cells (A) Principal component analysis of activated MAIT transcriptomes. Each symbol represents one
donor (n=5). (B) Overlap of totally expressed and differentially expressed genes (p.adj ≤ 0.01) in MAIT cells stimulated either with E. coli-pulsed monocytes or anti-
CD3/a-CD28 antibodies or left untreated (ctrl). (C) Hierarchical clustering and heatmap of differentially expressed genes. (D) Enriched core pathways of DE genes
(p.adj ≤ 0.01) during MAIT cell activation determined by IPA (p.adj ≤ 0.05, z-scores).
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Identification of Key Genes Involved in the
Distinct Modes of Activation
Next, we aimed to identify relevant molecules defining the
distinct expression signatures in the two ways of activation.
Hence, we performed a Weighted Gene Correlation Network
Analysis (WGCNA) (38), offering a differential-expression-
independent analysis suitable to identify novel key drivers of
biological treatments (32, 38, 59, 66, 67). Considering all the
36,484 quantified transcripts from the two treatment groups and
Frontiers in Immunology | www.frontiersin.org 8
the control group, we obtained 25 modules, containing genes
with similar expression pattern, named by colors (Figure 4A,
Supplementary Figure 3A). By correlating these modules to the
two treatments and the unstimulated control, we identified 15
modules with significant correlations (Figure 4A). Since we were
particularly interested in the differences between both modes of
activation, E. coli and a-CD3/a-CD28, we merged all significant
modules with a correlation > 0.4 for the respective treatment
(Supplementary Figure 3B). As a result, we obtained two
A B

D

C

FIGURE 3 | Transcription factor and cytokine mRNA profile of activated MAIT cells. (A) Heatmap of 1115 expressed transcription factors in the transcriptome of
a-CD3/a-CD28 or E.coli-activated MAIT cells. (B) Log2(FC) mRNA expression of selected transcription factors (mean +SD, n = 5). Levels of significance are given as
FDR-adjusted p-values with ****≤0.0001,***≤0.001, **≤0.01 and *≤0.05. (C) Heatmap of 75 expressed cytokines and chemokines in the transcriptome of a-CD3/a-
CD28 or E.coli-activated MAIT cells. (D) Log2(FC) mRNA expression of selected cytokines and cytotoxic molecules in activated MAIT cells (mean +SD, n = 5). Levels
of significance are given as p.adj with ****≤0.0001, ***≤0.001, **≤0.01 and *≤0.05; n.s., not significant.
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modules with 5,857 and 1,263 genes, respectively, named by the
corresponding treatment, a-CD3/a-CD28 and E. coli, respectively
(Supplementary Figure 3C). Pathway enrichment analysis of all
genes within these modules showed a clear enrichment of Th1-
and Th17-related pathways and cytokine-signalling-induced
pathways for the E. coli-specific module (Supplemetary
Figure 3D). In contrast, pathways related to Sirtuin Signalling
and Mitochondrial Dysfunction were enriched in the a-CD3/a-
CD28 specific module (Supplementary Figure 3D). We further
identified the 50 key genes showing the highest intramodular
connectivity (module membership, MM) and gene treatment
significance (GS) (Figures 4B, C, Supplementary Figure 3E).
Among the key drivers of a-CD3/a-CD28 activation cytokines
were substantially increased, including LIF and CSF2 among
others (Figure 4B). Expression of these key genes showed weaker
expression levels in E. coli-activated MAIT cells. However, most
of them were also significantly induced in E. coli-activated MAIT
cells, reflecting the TCR-dependent regulation present in both
ways of activation.

In contrast, E. coli activation led to a different pattern of key genes
with a sharp upregulation of, e.g., CD36G, IL26, IL6, CCL19, or PRF1/
Frontiers in Immunology | www.frontiersin.org 9
Perforin, which were not induced by a-CD3/a-CD28 activation. This
demonstrates additionally TCR-independentmechanisms induced by
E. coli-mediated activation. Interestingly, most of the key genes,
including cytokines, showed high connectivity to the transcriptional
regulator TWIST1 (Figure 4C). TWIST1 was not induced in a-CD3/
a-CD28 activated cells, suggesting an important role in E. coli-
mediated activation of MAIT cells.

The MAIT Proteome During TCR-
Dependent and -Independent Activation
The transcriptomic data presented herein suggest a distinct
molecular signature depending on the mode of activation,
which was also described by Lamichhane et al. (19). However,
it is still unclear if these differences on the transcriptomic level
are also relevant for the phenotype that can be analyzed by
investigating the proteome. Thus, and to further discriminate
between TCR-dependent and -independent activation, we used a
global proteomics approach and stimulated MAIT cells in vitro
with anti-CD3/CD28 antibodies and IL-12/IL-18, respectively or
a combination of both. Using high-resolution liquid
chromatography-tandem mass spectrometry (LC-MS/MS), we
A B

C

FIGURE 4 | Weighted Gene Correlation Network Analysis of the transcriptome of activated MAIT cells. (A) Module trait correlation plot showing 25 by color-labeled
modules, containing co-expressed genes, that were correlated to the three treatments. Correlation coefficients were added as numbers and corresponding p-values
as asterisks with ***≤0.001, **≤0.01 and *≤0.05. The top 50 genes with highest intramodular connectivity and gene significance, reflecting putative key drivers (hub
genes) for (B) a-CD2/a-CD28 and (C) E. coli-activated MAIT cells, were determined. Log2(FC) of a-CD3/a-CD28 or E.coli-activated MAIT cells compared to
unstimulated controls are displayed with significantly regulated genes (p.adj ≤0.01) in bold. Genes in grey were only quantified in activated samples, thus Log2(FC) is
not available.
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identified 4,203 protein groups within samples from 4 donors.
Overall, we quantified 3,002 proteins in 3 of 4 replicates.

Interestingly, the principal component analysis revealed only
an insufficient separation of IL-12/IL-18 or a-CD3/a-CD28-
stimulated MAIT cells, but a strong separation of the
combined treatment, compared to unstimulated cells
(Figure 5A). 2,570 proteins were jointly expressed in all 3
ways of activation, while a minor number of proteins (20–46)
were selectively expressed after the different treatments
Frontiers in Immunology | www.frontiersin.org 10
(Figure 5B). Analysis of significantly altered proteins revealed
that more proteins were regulated in a-CD3/a-CD28 (TCR-
dependently)- than IL-12/IL-18- (TCR-independently)
activated cells (Figure 5C). Most changes in protein
abundance occurred when cells were treated with a
combination of TCR stimulus and cytokines (Figure 5D).
Analysis of enriched pathways by IPA again showed the
strongest changes in MAIT cells, stimulated with a
combination of cytokines and TCR-stimulus compared to
A B

D E

C

FIGURE 5 | Proteomic profiling of MAIT cell activation. (A) Principle component analysis of the proteome of MAIT cells stimulated with IL-12/IL-18, a-CD3/a-CD28
or a combination of both. Each point represents a single donor (n=4). Overlap of (B) all detected proteins and (C) differentially abundant proteins in stimulated MAIT
cells. (D) Volcano plots highlighting differentially abundant proteins in stimulated MAIT cells (p-value ≤ 0.05). (E) Heatmap of selected, significantly enriched pathways
with a z-score reflecting up- or downregulation, determined by IPA (padj ≤ 0.5).
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single treatments (Figure 5E). Interestingly, the Th1 pathway
was upregulated, while the Th17 pathway was downregulated in
the combined treatment. Notably, cytokine-activation alone
induced an upregulation of both Th1 and Th17 pathways.
Overall, these results show that TCR-dependent and
-independent activation led to distinct molecular effects on the
pathway level after 16h of stimulation in human MAIT cells on
the proteome layer.

To identify key proteins involved in TCR-dependent and
TCR-independent activation of MAIT cells also on the proteome
level, we again applied WGCNA. We obtained nine modules that
were correlated to the three treatments and the unstimulated
control (Supplementary Figure 4A), resulting in three modules
with a significant correlation with at least one treatment and one
module with a significant correlation for two treatments
Frontiers in Immunology | www.frontiersin.org 11
(Figure 6A). Due to significant correlations with MAIT cells
stimulated with a combination of cytokines and anti-TCR
antibodies, we selected the blue and the turquoise module for
further analysis, containing 539 and 941 proteins, respectively
(Supplementary Figure 4B). IPA showed enrichment of core
pathways involved in Th cell activation, JAK/STAT, CD40 and
EIF2 Signalling for the blue module (Figure 6B), that were
positively associated to activated cells and negatively to
untreated controls (Figure 6A). In contrast, the turquoise
module that negatively correlates with MAIT cell activation
showed enrichment of pathways related to, e.g., TCR
signalling, Oxidative Phosphorylation, or Mitochondrial
Dysfunction (Figure 6B). Further, key proteins were identified
based on their intramodular connectivity (module membership,
MM) and protein trait significance (protein significance, PS).
A B

DC

FIGURE 6 | Weighted Gene Correlation Network Analysis of the proteome of activated MAIT cells. (A) Module trait correlation plot showing 25 by color-labeled
modules, containing co-abundant proteins, that were correlated to the four treatments. Correlation coefficients were added as numbers and corresponding p-values
as asterisks with ***≤0.001 **≤0.01 and *≤0.05. (B) IPA enrichment of proteins from the blue and the turquoise module. Key driver proteins of activated MAIT cells
from the modules turquoise (C) and blue (D) with absolute MM and PS ≥0.5 and connectivity threshold of ≥0.25. Log2(FC) of IL-12/IL-18 + a-CD3/a-CD28-activated
MAIT cells compared to unstimulated controls are displayed with significantly regulated proteins (p-value ≤0.05) in bold. Proteins in grey were only quantified in
activated samples, thus Log2(FC) is not available.
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We considered proteins with an absolute MM and PS correlation
≥0.5 as key proteins with minimal connectivity of 0.25
(Supplementary Figure 4C). For the turquoise module, we
obtained 121 putative key proteins, including CD3G, ZAP70
and JAK1, that were downregulated after activation (Figure 6C).
For the blue module, key proteins involved in activation were
strongly upregulated, e.g., CD69, CD71 (TFRC), REL, IFNg,
Granzyme B or CD40LG (Figure 6D). Interestingly, we could
identify three sub-clusters showing central proteins with a high
connectivity to other key drivers, i.e., MTHFD2, CD40L or
LAG3. MTHFD2 was also identified as a key driver in the
transcriptome of a-CD3/a-CD28-stimulated MAIT cells.
Depending on the mode of activation, abundance of these
three key regulators differed (Supplementary Figure 4D).

Cross-Validation of MAIT Cell Activation
by Transcriptome and Proteome
A multi-omics approach allows the cross-validation of
investigated omics layers. Thus, and to analyze whether the
integration of transcriptome and proteome adds additional
insights regarding the mechanism of activation of MAIT cells,
we correlated transcriptomic and proteomics data generated
within this study. The correlation of proteome and
transcriptome on the global level was moderate with
correlation coefficients (r) between 0.2 and 0.3 (Figure 7A).
However, considering only differentially expressed transcripts
(p.adj ≤0.01) and proteins (p-value ≤0.05) revealed high
correlation coefficients with the highest correlation for IL-12/
IL-18 proteome/E. coli transcriptome (Figure 7A), indicating a
substantial role of cytokine-mediated MAIT cell activation
during bacterial infection.

Further, we correlated mRNA and protein profiles for those
assigned to particular pathways based on IPA results, focusing on
the Th1 and Th17 pathways. We found highly diverse correlation
patterns between transcriptome and proteome for both pathways
in the various treatments with r = 0 - 0.98 (Supplementary
Figure 5). The most significant correlation was observed for both
the Th1 and Th17 pathways comparing the transcriptome of
E. coli-activated MAIT cells and the proteome of cytokine-
activated MAIT cells (Figures 7B, C).

Overall, the results indicate that protein and mRNA signature
differ at the single-molecule level but showed a similar direction
for significantly regulated mRNAs or proteins and thus on the
pathway level.

The MAIT Metabolome During TCR-
Dependent and -Independent Activation
Cellular metabolism has been shown to be a key regulator of
immune cell function and consequently, regulating homeostasis
and inflammation (68). Thus, we next analyzed the metabolome
of TCR-dependent and -independent activated MAIT cells using
an untargeted approach. Cells from 4 different donors were
stimulated in accordance with the proteomics data and
analyzed by high-resolution MS, resulting in 986 features and
389 identified metabolites (Supplementary Table 4). Principal
component analysis showed only a minor separation of
Frontiers in Immunology | www.frontiersin.org 12
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treatments and controls (Supplemetary Figure 6A).
Interestingly, we observed a high overlap of all metabolites but
only a minimal overlap of differentially abundant metabolites
between the distinct treatments (Supplementary Figures 6B, C).
Again, differentially abundance analyses revealed the most
changes in MAIT cells stimulated with a combination of anti-
CD3/CD28 antibodies and IL-12/IL-18 (Supplementary
Figure 6D and Supplementary Table 4), which is in
agreement with the proteomics results.

The Role of Selected Key Drivers in MAIT
Cell Activation
Next, we validated selected key drivers in TCR-dependent and
-independent activation. TWIST-1 and MTHFD2 mRNA
expression were both increased in MAIT cell activation with
stronger responses in TCR-independent activation (Figures
8A, B), The highest induction of gene expression was observed
for MAIT cells treated with a combination of TCR-dependent
and -independent activation for both investigated key drivers
(Figures 8A, B). For CD40L and LAG3, we observed increased
cell surface levels only when cells were stimulated with cytokines
or cytokines combined with a-TCR antibodies (Figures 8C, D),
thus confirming the omics results.

Finally, we evaluated the effects of TWIST1 inhibition on
TCR-dependent and -independent activation in MAIT cells
using the small molecule inhibitor harmine (69). Treatment
with harmine did not significantly affect cell viability (Figure
9A), but we observed an increase in cell surface expression of the
activation marker CD69 (Figure 9B). At the same time, cytokine
release of almost all investigated 13 cytokines was affected in at
least one of the treatments (Figures 9C–I). TWIST1 inhibition
increased IL-17 and GZMA release of non-stimulated cells, while
all other effects were associated to downregulation of effector-
molecule release (Figures 9J–O), suggesting a supporting role in
the activation of gene expression in MAIT cells.
DISCUSSION

MAIT cells are essential players in the early immune response,
providing quick and efficient immune protection against
bacterial and viral infections. In chronic inflammatory
disorders, e.g., autoimmune and metabolic diseases, MAIT cells
can contribute to maintaining the pathology, rendering them
attractive targets for therapeutic approaches. Hence, mechanistic
understanding of MAIT cell activation is of high relevance. Using
a multi-omics approach with untargeted transcriptomics,
proteomics and metabolomics, we provide in-depth insights
into the mechanisms underlying the activation of human
MAIT cells.

Pathway analysis of differentially expressed transcripts
revealed that E.coli induced more substantial changes than
TCR-stimulation on the pathway level. These variations may
be explained by the distinct transcription factor expression of the
mode of activation, showing that MAIT cells undergo a
differential transcriptional reprogramming. Besides the
Frontiers in Immunology | www.frontiersin.org 13
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described typical MAIT cell transcription factors RORC,
ZBTB16/PLZF, TBX21/T-bet (63), EOMES, PRDM1/BLIMP-1
and GATA3 (19), we found many other TFs differentially
expressed, whose expression profiles varied between the two
modes of activation. As an important consequence, we also
observed differences in the effector function. Activated MAIT
cells release pro-inflammatory cytokines and cytotoxic effector
molecules like granzymes or perforin (14). In our study, we
present a deep cytokine, effector molecule and chemokine profile
of activated, circulating MAIT cells. We found that besides the
already known cytokines IFNg, TNF and IL-17, MAIT cells
induce expression of a variety of cytokines, chemokines and
effector molecules, whose relevance needs to be addressed in
Frontiers in Immunology | www.frontiersin.org 14
further studies. Depending on the mode of activation, these
expression profiles differ, which is in accordance with
Lamichhanne et al. (19), although different time points of
activation were investigated. Moreover, our RNA-Seq data
provide even deeper coverage of the transcriptome with more
than 13000 protein-coding genes and hundreds of non-coding
transcripts, whose relevance needs to be investigated in further
studies. Moreover, by using a network-based analysis approach,
we identified novel key genes, that are either up- or
downregulated in distinct modes of activation. In E. coli-
activated MAIT cells, the transcription factor TWIST1 was
identified as key driver, showing a high connectivity to
cytokine and chemokine expression. TWIST1 expression has
A B
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FIGURE 9 | Effects of TWIST1 inhibition in activated MAIT cells. MAIT cells were stimulated with IL-12/IL-18, a-CD3/a-CD28, or a combination of both and (A) cell
viability using propidium iodide staining, (B) CD69 cell surface expression using an anti-CD69 antibody as well as cytokine (C–I) or cytotoxic effector molecule release

(J–O) using the LEGENDplex™ Human CD8/NK Panel bead assay were determined by flow cytometry (mean +SEM, n = 3). Levels of significances are given as
p-values with ****≤0.0001, ***≤0.001, **≤0.01 and *≤0.05.
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been shown to be induced by signalling pathways linked to
NfKB (70), NFAT (71), TCR (71) or STAT3 (72) and STAT4
(71). Signalling pathways related to those transcription factors,
e.g., Th17 or cytokine signalling were both upregulated in our
transcriptome and proteome data sets. However, TWIST1
expression was only upregulated in E. coli-stimulated cells,
while no expression was detected in a-CD3/a-CD28 (TCR)-
activated cells. Quantification of mRNA level confirmed that
cytokine-induced activation has a higher effect on TWIST1
mRNA level than TCR-induced activation at 16h of
stimulation. This suggests a regulation of TWIST1 expression
by TCR-independent mechanisms in MAIT cells, or a different
dynamic of TCR-induced expression. Considering the function,
TWIST1 can act as both activator and repressor of gene
expression and was shown to negatively regulate the T helper
cell compartment (71, 73), particularly the Th17 development
(74). In our study, inhibition of TWIST1 by a small molecule
modulated the release of cytokines and effector molecules and
the expression of the activation marker CD69. Interestingly, our
results suggest that TWIST acts as an activator of most
investigated cytokines and effector molecules since inhibition
of TWIST1 decreased their release. This contrasts to effects
observed in other T cell subset before (71), but MAIT cells are
a distinct subset with distinct effector function. Moreover,
previous studies focused on TCR-dependent effects of TWIST-
1 function in T helper cells, while observed upregulation of
TWIST1 mRNA in MAIT cells mainly depended on TCR-
independent mechanisms. Hence, TWIST1-induced cellular
mechanisms may be different in MAIT cells. Nevertheless, the
utilization of small molecule inhibitors in primary human cells
may have undesired side-effects, requiring investigation of the
underlying molecular mechanisms resulting in the here observed
TWIST1-dependent activation of gene expression that should be
assessed in further studies.

While the transcriptomic data generated in this study give
mainly information on the regulation of cellular processes, the
proteome and themetabolome provide the most information on the
phenotype. We thus aimed to analyze the phenotypic response of
TCR-dependent and -independent activation of MAIT cells. So far,
only global proteomic data of ex vivo and unstimulated MAIT cells
(16) and no global metabolomic data of MAIT cells were available.
Our study provides an in-depth proteomic and metabolomic profile
of different modes of activated MAIT cells. The analysis revealed
that most proteome and metabolome changes occur when MAIT
cells are activated in a combination of TCR-dependent and
-independent manner. To date, metabolomic data analysis is
unfortunately limited due to the lack of valid identification of
detected features, thus hampering conclusions on regulated
metabolites. However, the here presented metabolomic data
confirm that metabolome changes also depend on the mode
of activation.

Nevertheless, by using a network-based analysis approach of the
proteomic data, we identified novel key proteins, that are either up-
or downregulated during activation. Proteins that were upregulated
could be separated into three major clusters, withMTHFD2, CD40L
and LAG3 as central proteins of each of those clusters.
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The mitochondrial bifunctional methylenetetrahydrofolate
dehydrogenase/cyclohydrolase MTHFD2 is a folated-coupled
enzyme that was shown to be highly expressed in proliferating
CD4+ T cells, and overexpression led to an increased proliferation
of cancer cells (75). Activation-induced proliferation of MAIT
cells has been shown earlier (14), and thus, MTHFD2 may serve
as an important regulator in this process. In our data, MTHFD2
was particularly highly expressed in MAIT cells stimulated by a
combination of TCR-dependent and -independent activation and
showed a high co-expression with proteins relevant in activation,
e.g., NFkB2, CD69 and IFN-g. Therefore, MTHFD2may also play
a role in establishing effector function during robust activation of
MAIT cells. In addition, MTHFD2 is induced downstream of
mTOR complex 1 (76), which is essential to integrate immune
signals from antigen-presenting cells, environmental cues, and
nutrients and controls T cell fate (77).

The costimulatory molecule CD40L (CD154) was determined as
a key connecting protein of the second cluster and was highly
upregulated only by combined treatment, but not by TCR- or
cytokine-stimulation alone. The relevance of CD40L expression in
MAIT cells has been shown earlier (19, 78). During activation,MAIT
cells upregulate CD40L, enabling them to mediate DC maturation
(78). Moreover, CD40L expression reflects the potential in providing
B cells (79). We observed a strong co-expression of CD40L with
CSTF2T, EIF3M, GOLGA4 and GBP5, as well as G3BP1.

Lymphocyte-activation gene (LAG)-3, the key protein of the
third cluster, was significantly more abundant only after
combined TCR-dependent and independent activation. LAG-3
is a transmembrane receptor and has been shown earlier to be
activated in T cells following TCR and/or cytokine stimulation,
promoting IFN-y, TNF or IL-12 production (80, 81). LAG-3 is a
co-inhibitory receptor, which binds to MHC class II on antigen-
presenting cells in order to suppress further T cell activation and
cytokine secretion, preventing excessive inflammation and
facilitating a state of immune homeostasis (82). LAG3
expression in conventional T cells renders them susceptible to
regulatory T cell subsets and affects differentiation (83). In patients
with inflammatory bowel disease, LAG-3 expressing T cells are
primarily found at sites of mucosal inflammation and their
numbers correlate with disease activity (80). LAG-3 expression
was accompanied by high IFN-g concentration in activated MAIT
cells, as previously shown for conventional T helper cells (84),
suggesting that circulating soluble LAG-3, as well as associated
proteins, e.g., STAT4 or IRF4, may be employed as a promising
biomarker of MAIT cell activation and disease activity in UC.

In contrast to the proteins that were upregulated in MAIT cell
activation, we also identified two protein clusters that were
downregulated. These contained mainly proteins connected to
the TCR pathway, probably due to ubiquitination processes to
down-regulate TCR signalling in the resolution phase of
inflammation to avoid chronic activation. Interestingly, we
identified C20orf27 (chromosome 20 open reading frame 27),
a functionally poorly described protein as central key driver.
Recently, C20orf27 has been shown to be involved in cell growth
and proliferation of colorectal cancer cells, promoting the
activation of the NfKB pathway (85), which is also
May 2021 | Volume 12 | Article 616967
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downstream of the TCR pathway. However, the functional role
of this protein in MAIT cells needs further investigations.

Multi-omics data integration has been proposed to reflect a
systemic understanding of cellular processes and thus give a more
complete view of cellular processes compared to single-omics
analyses that reveal only small subsets of effects (86). By
integrating multi-omics data, we found a rather moderate
positive correlation between transcript and protein expression,
with correlation coefficients between 0.2 and 0.4 for all analytes,
which is in accordance with other studies (17), suggesting a pivotal
role of posttranslational modifications or other regulatory
mechanisms, e.g., RNA stability or translational regulation. In
this study, the transcriptome of only 5 donors and the proteome
of only 4 donors were analyzed. An increased number of donors
and transcriptomic and protomics analyses from exactly the same
samples may even enhance the certainty of this correlation.
However, the here presented correlations between differentially
expressed transcripts and proteins were strong (r=0.5-0.7),
indicating a consistent regulation of transcription and translation
through external stimuli with even small donor numbers. Especially
for the Th1 and Th17 pathways, we got a deep coverage of these
pathways by multi-omics integration. Notably, we observed the
most significant correlation comparing the transcriptome of E. coli-
activatedMAIT cells and the proteome of cytokine-activatedMAIT
cells, indicating a substantial role of cytokines on the activation and
thus, effector functions of MAIT cells in bacterial infections. We,
accordingly, suggest considering cytokine effects when studying
bacterial activation of MAIT cells in vitro.

Furthermore, our data suggest a relevant role of the mode of
MAIT cell activation in the pathogenesis of Th1- and Th17-
driven diseases. The inflammatory cytokine milieu, e.g., sufficient
concentrations of IL-12 and IL-18, at mucosal surfaces where
MAIT cells reside, critically shapes T cell activation and
differentiation. This is particularly important in diseases, which
require MAIT cell-derived IFN-g for disease control, such as
pulmonary infections with Francisella tularensis (87) or
Legionella spp (87, 88), or viral infections as viral hepatitis C
(89). In addition, providing sufficient co-stimulatory signals may
be a promising strategy to overcome deficient IFN-g release from
circulating MAIT cells as observed in systemic lupus
erythematodes (90), inflammatory bowel disease (91), or liver
cirrhosis (92).

Certainly, we are aware of some limitations of our study. First,
MAIT cells are typically discriminated from other T cell subsets
using MR1-5-OP-RU tetramers (8). Here, we identified MAIT
cells based on their TCR Va7.2 and CD161 expression, which
might result in minimal cross-contamination with other T cell
subsets. Thus, the relevance of presented results, e.g., cytokines
or key drivers, should be evaluated in further studies using MR1-
5-OP-RU tetramer with larger cohorts in vitro and also in vivo.
Besides, the investigation of different types of infections
activating MAIT cells, e.g., viral versus bacterial infections,
may be addressed in further studies to evaluate the biological
importance, especially of the here identified key drivers.

However, our data set provides a detailed molecular analysis of
MAIT cell activation, giving insights into the induction of effector
Frontiers in Immunology | www.frontiersin.org 16
functions and showing that the mode of activation defines a
distinct transcriptomic, proteomic and metabolomic profile.
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