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Abstract

Background: Mitochondria are central to the metabolism of cells and participate in many regulatory and signaling events.
They are looked upon as dynamic tubular networks. We showed recently that the Carboxy-Terminal Modulator Protein
(CTMP) is a mitochondrial protein that may be released into the cytosol under apoptotic conditions.

Methodology/Principal Findings: Here we report an unexpected function of CTMP in mitochondrial homeostasis. In this
study, both full length CTMP, and a CTMP mutant refractory to N-terminal cleavage and leading to an immature protein
promote clustering of spherical mitochondria, suggesting a role for CTMP in the fission process. Indeed, cellular depletion of
CTMP led to accumulation of swollen and interconnected mitochondria, without affecting the mitochondrial fusion process.
Importantly, in vivo results support the relevance of these findings, as mitochondria from livers of adult CTMP knockout
mice had a similar phenotype to cells depleted of CTMP.

Conclusions/Significance: Together, these results lead us to propose that CTMP has a major function in mitochondrial
dynamics and could be involved in the regulation of mitochondrial functions.
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Introduction

Mitochondria are the site of metabolic and survival functions

important in organism development, immunity, aging and

pathogenesis [1–3]. It is becoming clear that these crucial

functions within the cell rely on the integrity of the complex

double-membrane mitochondria structure that compartmentalizes

vastly different enzymatic activities, mainly involved in oxidative

phosphorylation [4], the TCA cycle, gluconeogenesis [5], death

signal integration [6,7] and the amplification and transmission of

mitochondrial DNA (mtDNA) [8]. Mitochondria within healthy

cells are often organized into a dynamic tubular and branched

network that undergoes intensive remodeling in response to

various stimuli related to cell death [9–11] as well as metabolic and

developmental processes [12]. The anti-apoptotic Bcl-2 family

member Bcl-xL and the antagonist BH3 only proteins Bak/Bax

were shown to regulate mitochondrial shape in healthy cells as well

as in cells undergoing apoptosis [13,14]. Thus, the increasing

reports of the involvement of signaling proteins in the modulation

of mitochondria expose a link between mitochondrial function and

dynamics in the regulation of metabolism, cell death, neurotrans-

mission, cell cycle control and development [15].

Studies with yeast led to the identification of the conserved

mammalian ‘‘mitochondria-shaping’’ proteins. Profusion proteins,

such as the dynamin-related protein mitofusins 1 and 2 (Mfn1 and

Mfn2), are integral components of the outer mitochondrial

membrane (OMM), essential to mitochondria tethering and fusion

[16,17]. These proteins act together with the optic atrophy protein

1 (OPA1), and an inner mitochondrial membrane (IMM) located

dynamin-like GTPase mutated in heritable optical atrophy [18].

Conversely, the dynamin-related protein 1 (Drp1/DNM1) is a

cytosolic protein, recruitment of which to the OMM by the

anchored fission 1 protein (Fis1p/FIS1) adaptor initiates and

controls the fission and distribution of mitochondria in cells [19].

Previously, we identified the Carboxy-Terminal Modulator

Protein (CTMP) in a two-hybrid search for PKB/Akt binding

partners [20]. CTMP has been shown to inhibit PKB/Akt

activation at the plasma membrane in response to various stimuli

and also to have tumor suppressor-like functions. This notion was

strengthened by the observation that primary glioblastomas exhibit

downregulation of CTMP mRNA levels due to promoter

hypermethylation [21]. We recently reported the mitochondrial

localization of endogenous and exogenous CTMP [22]. CTMP

exhibits a dual sub-mitochondrial localization as a membrane-
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bound pool and a free pool of mature CTMP in the inter-

membrane space; it was released from the mitochondria into the

cytosol early during apoptosis. CTMP overexpression was associ-

ated with an increase in mitochondrial membrane depolarization,

caspase-3 and polyADP-ribose polymerase (PARP) cleavage. In

contrast, CTMP knockdown resulted in a marked reduction in the

loss of mitochondrial membrane potential as well as a decrease in

caspase-3 and PARP activation. Mutant CTMP retained in the

mitochondria lost its capacity to sensitize cells to apoptosis. Thus,

proper maturation of CTMP appears essential for its pro-apoptotic

function. Finally, we demonstrated that CTMP delayed PKB/Akt

phosphorylation following cell death induction, suggesting that

CTMP regulates apoptosis via inhibition of PKB/Akt.

Here we show that compromising Carboxy-Terminal Modula-

tor Protein (CTMP) integrity by preventing its N-terminal

cleavage by point mutation or by a knockdown approach affected

mitochondrial network organization in cells. CTMP depletion did

not affect mitochondria intercomplementation but enhanced the

interconnected network, suggesting that CTMP positively influ-

ences the mitochondrial fission process, arguing for a potential role

of CTMP in regulating mitochondrial functions.

Results

A defect in N terminal cleavage of CTMP expression leads
to swollen mitochondria

HeLa cells transfected with full-length CTMP GFP-tagged

expressed CTMP in the mitochondria (Fig. 1A). Cells expressing

high levels of CTMP induced a change in mitochondrial

phenotype in some cells, with more rounded shaped mitochondria

evident in these cells (Fig. 1A, lower panels). CTMP contains a

conserved N-terminal cleavable mitochondrial localization signal

(MLS) and is located almost exclusively in mammalian cell

mitochondria. CTMP has been found to be strongly associated

with the inner mitochondrial membrane or free in the inter-

membrane space [22]. Most MLS are cleaved by a mitochondrial

processing peptidase (MPP) that recognizes a special sequence

comprising a positive arginine residue at position 22 and/or 210

from the cleavage site [23,24]. The CTMP sequence displays a

highly probable R-2 site at serine 35, surrounded by a

hydrophobic residue at +1 and a serine at +2. A CTMP mutant

(m5) in which R34, F36 and S37/38 have been mutated to alanine

(Fig. 1B) leads to the expression of a non-mature CTMP that still

bears the MLS and that cannot be released to the cytosol after

apoptosis induction [22]. Similar to full-length CTMP, we

observed that over-expression of a CTMP mutant m5 refractory

to N-terminal cleavage promoted the formation of rounded, ball-

shaped mitochondria, compared with the tubular structures

observed in cells transfected with the wild-type protein (Fig. 1C),

or untransfected cells (Fig. S1). It should be noted that CTMP

subcellular distribution was not affected by its over-expression.

These data led us to hypothesize that CTMP may regulate

mitochondrial biogenesis.

Loss of CTMP affects mitochondria morphology
Mitochondrial dynamics is regulated by continuous fusion and

fission events. Previous reports indicate that cellular depletion of

pro-fission proteins, such as Drp1 or the pro-fusion proteins Mfn-1

and -2, leads to the formation of an interconnected or a

fragmented mitochondrial network, respectively [16,17,25]. In

contrast, overexpression of Mfn-1 or Mfn-2 produces an

imbalance in mitochondrial dynamics in a dose-dependent

manner and subsequently the perinuclear clustering of the entire

mitochondrial network. The putative involvement of CTMP in

mitochondrial network rearrangement was further investigated by

siRNA-mediated depletion of CTMP in HeLa cells. Efficient and

reproducible knockdown of CTMP protein was achieved in cells

transfected with two independent CTMP siRNAs (Si#1 and

Si#2) compared with the mock siRNA (Si-cont) (Fig. 2A).

Cells expressing RFP-labeled mitochondria (mt-RFP) were used

to monitor the impact of CTMP depletion on mitochondrial

network organization. In these cells, loss of CTMP protein led to a

twofold decrease in tubular mitochondrial subpopulation (type II)

compared with control cells (Fig. 2B). Although most CTMP-

negative cells displayed filamentous mitochondria, detailed

confocal examination showed the accumulation of a mixed

network of interconnected swollen and thick mitochondria

(Fig. 2C; type I Si-CTMP#1 and #2) compared with the Si-

cont transfected cells (Fig. 2C; type I Si-cont). To further explore

the correlation between CTMP protein depletion and mitochon-

dria remodeling at the single-cell level, tetracycline repressor-

expressing HeLa cells were stably transfected with sh-RNA

specifically targeting CTMP (CTMP-Sh; targeting a sequence

distinct from the previously described Si#1 and Si#2) or control

sh-RNA (Fig. 3A). We confirmed that organization of the

mitochondria network in CTMP-depleted cells was similar to

the previously observed network (Fig. 3B). The population of cells

exhibiting a swollen interconnected mitochondrial network was

evident 3 days after tetracycline treatment (Fig. 3C). Combined,

these results strongly suggest that the modulation of CTMP

protein levels and maturation affect mitochondrial shape.

CTMP depletion does not impair mitochondrial fusion
To determine whether loss of CTMP function affected

mitochondrial fusion or fission, an intermitochondrial comple-

mentation assay was carried out using CTMP-depleted cells

[26,27]. Forty-eight hours after transfection with CTMP siRNA

(Si#1, Si#2) or the siRNA control (Si-cont), HeLa cells carrying

labeled mitochondria (mt-GFP and mt-RFP) were mixed in equal

proportions and fused by addition of PEG 1500. Heterokaryons

were fixed at the indicated times and mitochondrial fusion kinetics

assessed by examination using confocal microscopy of the yellow

fluorescence resulting from the mixing of matrix-targeted GFP and

RFP mitochondria (Fig. 4A). CTMP-depleted cells completed

mitochondria fusion with kinetics comparable to those of control

cells (Fig. 4B). These data suggested that CTMP is not critical for

the mitochondrial fusion process and further supports the

conclusion that the effects of CTMP depletion result from an

altered fission process.

CTMP deletion reveals an extensively interconnected
mitochondrial network in mouse liver

We next examined the effect of CTMP deletion on mitochon-

drial shape at the whole organism level. CTMP knockout mice

generated in our lab were viable and fertile and showed no obvious

phenotype. A summary of the knockout strategy is given in Fig. 5A,

B. We further validated the mitochondrial localization of CTMP

in mouse tissue. Immunodetection of CTMP protein in wild-type

(WT), heterozygous and homozygous knockout mice showed a

correlation between loss of CTMP protein and CTMP allele

disruption (data not shown). Mitochondria from WT and CTMP

knockout (2/2) mouse livers were purified by differential and

density gradient centrifugation (Fig. 5C, left panel). Immunoblot

analysis of the collected fractions demonstrated the purity of the

mitochondria (cytochrome c and mHsp70) and the absence of

cytosolic contaminants (actin). As expected, CTMP immunodetec-

tion showed that mouse CTMP protein co-purified with the

mitochondrial fraction, as confirmed by the loss of a signal in

CTMP and Mitochondria Dynamic
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Figure 1. Interfering with CTMP maturation leads to swollen mitochondria. (A) Full length human CTMP tagged with GFP was transfected
into HeLa cells at low (upper panels) or high (lower panels) levels of expression. Mitochondria were visualized with Mitotracker Red. Merged
fluorescence indicates CTMP-GFP expression in mitochondria. The round appearance of mitochondria is visible in cells with high levels of CTMP
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samples from CTMP knockout mice (Fig. 5C). Electron micros-

copy of thin liver sections from WT and CTMP knockout mice

revealed a correlation between the ablation of CTMP and the

appearance of elongated mitochondria (Fig. 5D lower panels),

compared with the round and compact mitochondria in the liver

of wild-type animals (Fig. 5D upper panels). Accordingly,

mitochondria were found to be elongated in hepatocytes isolated

from CTMP knockout mice (2/2), compared with round and

compact mitochondria observed in hepatocytes of wild-type

animals (Fig. S2). Interestingly, loss of CTMP did not interfere

with mitochondria biogenesis, since the number of mitochondrial

DNA copies measured by real time PCR was the same in brown

adipose tissue (Fig. S3A) and in hepatocytes (Fig. S3B) from both

WT and knockout animals (2/2). Taken together, these results

demonstrate that depletion of CTMP protein impairs mitochon-

dria shape and structure both in vitro and in vivo.

Discussion

We provide here the first evidence that CTMP, previously

reported to be an inhibitor of PKB/Akt [20], is involved in the

modulation of mitochondria homeostasis. We have shown that

interference with CTMP expression and/or protein maturation

critically affected mitochondria morphology. Loss of cellular

CTMP expression led to the establishment of an interconnected

mitochondrial network in 40% of cells without affecting cell

viability (data not shown). Furthermore, CTMP knockdown

appeared to have a second long-term effect leading to the

accumulation of swollen mitochondria, either interconnected or

tubular. Importantly, such a phenotype has been reported

previously in cells depleted for proteins involved in the regulation

of the mitochondrial fission process, such as Drp1 or the recently

identified Drp1-binding protein MARCH-5 [14,28]. Mitochon-

dria from CTMP knockdown cells efficiently fuse in vitro,

suggesting that the observed phenotype, presumably caused by

imbalanced fusion/fission, does not result from a dysfunction in

mitochondrial fusion. Indeed, we provide evidence that CTMP

function in mitochondria is tightly linked to its submitochondrial

distribution, where it is found in both soluble and membrane-

bound mitochondrial fractions [22]. Expression of a non-cleavable

mutant of CTMP (refractory to mitochondrial membrane

peptidase cleavage) in HeLa cells promoted dissociation of the

mitochondrial network into individual round-shaped, dilated

mitochondria.

We recently reported that CTMP is released early from

mitochondria into the cytosol upon apoptosis and we demonstrat-

Figure 2. Loss of CTMP affects mitochondria morphology. (A) Immunoblot detection of CTMP using 75 mg of protein lysates extracted from
Hela cells 48 h after transfection with control SiRNA (cont) or CTMP SiRNA#1 or #2. (B) Representative confocal picture of mitochondria shape in
HeLa cells expressing mt-RFP and treated as in (A). (C) Morphological analysis of mitochondria shape in HeLa cells treated as in (A). For each
experiment, at least 200 cells were counted in three distinct fields. Data are means6SEM, n = 2. The differences in mean values are statistically
significant (Si cont compared to Si-CTMP#1 and Si-CTMP#2) as determined by 1-way ANOVA; * P#0.05, ** P#0.001.
doi:10.1371/journal.pone.0005471.g002

expression (lower panels). (B) Amino acid sequence of the R-2 predicted MPP cleavage site (indicated by the arrow) in human CTMP and a CTMP
mutant (m5) in which R34, F36 and S37/38 have been mutated to alanine. (C) Twenty-four hours after transfection with CTMP-IRES-GFP or the m5
point mutant, HeLa cells were fixed and stained for CTMP and mitochondria as indicated. A detail of the squared area is shown in the right panel.
Representative confocal pictures of three independent experiments are shown.
doi:10.1371/journal.pone.0005471.g001
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ed that CTMP overexpression is associated with an increase in

mitochondrial membrane depolarization and the activation of

apoptotic markers such as caspase-3 and PARP. Furthermore, we

observed that CTMP depletion or a defect in CTMP maturation

leads to inhibition of apoptosis. We suggested that CTMP

regulates apoptosis via PKB/Akt inhibition since we detected a

delay in PKB/Akt phosphorylation in cells overexpressing CTMP

in which apoptosis was induced [22]. Similarly, other recent

reports suggest that the regulation of OPA1 relies on the activity of

a presenilin-associated rhomboid-like protein (PARL), a protease

that regulates OPA1 release into the inner mitochondrial space

[29]. Furthermore, Cipolat et al. [30] suggested that the loss of this

soluble OPA1 species in PARL2/2 cells is responsible for their

extreme sensitivity to apoptotic stimuli. They further proposed a

complex mechanism by which both soluble and inner mitochon-

drial membrane-anchored OPA1 regulates the tight closure of the

mitochondria cristae, preventing massive release of cytochrome c

into the inter-mitochondrial space.

Taken together, these observations lead us to hypothesize that

accumulation of a premature form of CTMP in the inner

mitochondrial membrane (due to inhibition of mitochondrial

membrane peptidase cleavage) may be responsible for the

observed mitochondrial phenotype. Moreover, in vitro character-

ization of the molecular mechanisms regulating inner mitochon-

drial membrane dynamics are as yet poorly understood.

Surprisingly, a subtle abnormal mitochondrial phenotype in the

Figure 3. CTMP expression affects mitochondrial network organization. (A) Confocal microscopy of CTMP expression in tetracycline
inducible HeLa clones stably expressing pTer plasmid coding for a control short hairpin (Sh-cont) or a short hairpin directed against CTMP (Sh#1 and
Sh#2). Cells were visualized by immunofluorescence after 5 days culture in the presence or absence of tetracycline (2 mg/mL), together with the
MitoTracker Red. (B) Representative confocal pictures of mitochondrial shape in tetracycline-inducible HeLa clones cultured 5 days in the presence of
tetracycline. Mitochondria were visualized with MitoTracker Red. (C) Morphological analysis of mitochondria shape in HeLa Tet-on clones treated as in
(A) for 3, 4 or 5 days. For each experiment, at least 200 cells were counted in three distinct fields. Data are means6SEM, n = 2. The differences in mean
values are statistically significant (Sh#2 minus tetracycline compared to Sh#2 plus tetracycline) as determined by 1-way ANOVA; ** P#0.001.
doi:10.1371/journal.pone.0005471.g003
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Figure 4. CTMP is not required for mitochondrial fusion. (A) Hela cells expressing mt-RFP and mt-GFP transfected with either siRNA#1 and
#2 against CTMP or the siRNA control were fused in 50% PEG1500 for 60 s, washed and fixed at different times (4, 6 and 8 h). (B) Time-course of
mitochondrial fusion in HeLa cells treated as in (A). Mitochondrial fusion was measured from 30 randomly selected polykaryons and classified as
described in (A), n = 2.
doi:10.1371/journal.pone.0005471.g004
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brain tissue of PKB/Akt knockout mice has been reported recently

[31]. These animals display fewer and larger mitochondrial

structures, and the authors suggest that PKB/Akt plays a

significant role in mitochondrial biogenesis. In addition, PKB/

Akt has been shown to translocate to the outer mitochondrial

membrane, following plasma membrane activation [32–34].

Although the biological significance of the translocation of active

PKB/Akt to the mitochondria is not yet clear, it has been reported

to be cell-type and stimulus-specific [35,36]. Thus, CTMP may

modulate PKB/Akt activity in a specific subcellular compartment,

e.g. the mitochondria or the cytosol, depending on the nature of

the stimulus (survival or apoptosis). Further investigation is needed

to integrate the direct and/or indirect modulation of PKB/Akt

activity in this model and more experiments will be required to

address the biological activity of CTMP.

Striking similarities exist between the mitochondria network

rearrangement observed in CTMP knockdown cells and those

already reported in cells knocked down for the Drp1 fission protein

or cells missing a functional OPA1 protein [14,29]. Nonetheless,

the loss of electron absorbance observed in CTMP knockout mice

liver mitochondria further supports the involvement of CTMP in

the maintenance of inner mitochondrial membrane integrity.

Thus, the phenotype observed following CTMP depletion with

respect to mitochondrial network rearrangements is less penetrant

than those already reported for the key mitochondria-shaping

proteins. Moreover, CTMP protein depletion did not affect HeLa

cell growth or mitochondrial transmembrane potential measured

in vitro (data not shown). Most interestingly, it has been shown that

CTMP interacts with LETM1, another mitochondrial protein

involved in mitochondrial morphology [37]. LETM1 is located in

the inner membrane of mitochondria and oligomerized in higher

molecular weight complexes [38]. LETM1 has been found to be

deleted in Wolf-Hirschorn syndrome (WHS), a complex congenital

syndrome characterized by microcephaly, growth and mental

retardation, seizures, epilepsy and other associated symptoms

[39,40]. LETM1 is considered as playing a major role in the

pathogenesis of seizures. The function of LETM1 in apoptosis,

mitochondrial homeostasis and mitochondrial dynamics is well

documented, although the different reports drew different

conclusions [37,38,41]. Thus, it will be very exciting to further

investigate the interplay between CTMP and LETM1 in

regulating mitochondrial dynamics and functions in future studies.

In particular, it would be of interest to explore the phenotype of

CTMP knockout mice in the context of Wolf-Hirschorn

syndrome.

It is plausible that CTMP mediates its effect by modulating the

activity of the key regulators of mitochondrial dynamics and

further experiments should address the biological mechanism by

which CTMP regulates mitochondrial functions. We have

demonstrated already that CTMP exhibits a dual submitochon-

drial localization. Therefore, the tight association between CTMP

protein integrity and maintenance of mitochondria shape observed

in this study provides a novel opportunity to investigate the

mitochondrial function of CTMP in metabolic regulation.

Materials and Methods

Cloning and plasmids construction
All CTMP untagged plasmids used in this study were constructed

following PCR amplification of hCTMP cDNA [20] and inserted

into the BamHI and EcoRI sites of the pcDNA4-IRES-GFP plasmid

[42]. CTMP point mutant (m5) was generated by site-directed

mutagenesis. To C-terminally tag the CTMP protein, the

pcDNA3.1-Myc-RFP plasmid was constructed by subcloning the

mRFP1 (monomeric Red Fluorescent Protein 1) cDNA [43] into the

KpnI and EcorV sites of the hygromycin resistant vector pcDNA3.1-

Myc. The following sequences encoded the CTMP-SiRNA#1 59-

UCGUCAUGACUGCCAAUCU-39 59- AGAUUGGCAGUCA-

UGACGA-39 and CTMP Si-RNA#2 59-CCCAUUUUCUUGA-

CCCAAA-39, 59- UUUGGGUCAAG AAAAUGGG-39 used in this

study. The control SiRNAs were directed against the fluorescein

protein 59-UUCUCCGAACGUGUCACGU-39 and 59-ACGUGA-

CACGU UCGGAGAA-39 (Quiagen). To stably induce expression of

short hairpins in cells, the CTMP-specific tandem sequences 59-

GATCCCAAGACCCTATACTCAGA GGCGTTCAAGAGAC-

GCCTCTGAGTAGGGTCTTTTTGGAAA-39 and 59- AGCT-

TTT CCAAAAAGACCCTACTCAGAGGCGTCTCTTGAAC-

GCCTCTGAGT ATGGG TCGG-39 were cloned in the BglII/

HindIII sites of pTer vector [44]. The pTer control construct (cont-

Sh) used was directed against luciferase as previously described [45]

or a scramble sequence 59GATCCCA GAGACAGCTACCAAG-

GACTTCAAGAGAGTCCTTGGTAGCTGTCTCTTTTTTG-

GAAA 39and 59-AGCTTTTCCAAAAAAGAGACAGCTAC-

CAAGGACTCTCTTGAAGTCCTTGGTAG CTG TCT

CTGG39. All construct sequences were confirmed using an ABI

PRISM 3700 DNA Analyzer (Applied Biosystems).

Antibodies
CTMP monoclonal antibodies were generated by repeated

immunization of BALB/c mice with 50–100 mg of purified full-

length His-CTMP protein (produced in E. coli), using Stimune

(Prionics AG, Schlieren Switzerland) as an adjuvant. Two months

after the priming injection, spleenic lymphocytes cells were fused

with P3AG8.653 myelanoma cell line (ATCC) and cultured

according to standard procedures. After ELISA screening of

hybridomas clone supernatants, epitope mapping was carried out

for the clone used in this study (52F11) using the GST-CTMP

deletion mutant and synthetic polypeptides. The monoclonal anti-

CTMP antibody characterized is IgG1. Anti-a-tubulin (YL 1/2)

antibody was used as hybridoma supernatants. The commercial

mouse anti-mHsp70 (JG1) was from Affinity BioReagents, mouse

anti-cytochrome c was from R&D System and rat a-actin was

from Santa Cruz Biotechnology.

Transient and stable transfections
HeLa cells were grown in Dulbecco’s Medium (Gibco)

supplemented with 10% fetal calf serum. HeLa cell lines stably

expressing the tetraycline repressor (HeLa Tet-on) and/or

mitochondria-labeled cells (mt-GFP, mt-RFP) were cultured in

Figure 5. The mitochondrial network is extensively interconnected in CTMP knockout mice liver. (A) Summary of the knockout strategy
used to generate CTMP knockout mice. (B) Genotyping of CTMP +/+ (wild-type), +/2 (heterozygous) and 2/2 (knockout) mice. Genomic DNA was
digested using Spe1 and probed using a CTMP cDNA fragment. A wild-type band (9 kb, lower band) and a CTMP knockout band (14 kb, upper band)
are indicated. (C) Summary of the mitochondria purification strategy outlined in Materials and Methods (left panel). Percoll gradient-isolated liver
mitochondria from wild-type (WT) or CTMP knockout (2/2) mice were separated by SDS-PAGE and immunoblotted for a-actin, mHsp70, cytochrome
c and CTMP (right panel). (D) Representative electron micrographs of liver mitochondria ultrastructure in (top) wild-type and (bottom) CTMP
knockout mice. Arrows indicate normal liver mitochondria (top) and elongated mitochondria (bottom). Representative images of mitochondria shape
from different experiments (blind) are shown at different magnifications (611,000, 614,000, 628,000).
doi:10.1371/journal.pone.0005471.g005
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medium supplemented with 100 ng/mL and 0.4 mg/mL G418

(Sigma), respectively. For transfection, cells were plated in 6-well

plates or 10-cm dishes and transfected the following day at 60%

confluence using Lipofectamine 2000 following the manufacturer’s

instruction (Invitrogen). Small inhibitory RNA delivery was

achieved with Oligofectamine (Invitrogen). Stable clones express-

ing CTMP short hairpins or negative controls were selected 48 h

after transfection by addition of 0.8 mg/mL Zeocin and positive

clones were further maintained in 0.4 mg/mL Zeocin.

Protein extraction and mitochondria isolation
For whole cell extracts, cells were washed in 16 PBS and

resuspended in lysis buffer (50 mM Tris [pH 7.4], 150 mM

NaCl, 10% glycerol, 0.5% NP40, 0.5 mM Na-orthovanadate,

50 mM NaF, 80 mM b-glycerophosphate, 10 mM Na-pyro-

phosphate, 1 mM dithiothreitol, 1 mM EGTA, 10 mg leupep-

tin/ml and 10 mg aprotinin/ml). Mitochondria isolation was

carried out as previously described [41]. Briefly, cells were

washed twice in 100 mM sucrose, 1 mM ethylene glycol-bis(b-

aminoethyl ether)-tetraacetic acid (EGTA), 20 mM 3-(N-mor-

pholino) propanesulfonic acid (MOPS), pH 7.4 and 1 mg/mL

BSA. The pellet was resuspended in the same buffer solution

supplemented with 10 mM triethanolamine, 5% (v/v) Percoll,

0.1 mg/mL digitonin for 3 min at 4uC and homogenized with a

Potter homogenizer (10 strokes, 1’000 rpm) before being diluted

1/5 in 300 mM sucrose, 1 mM EGTA, 20 mM MOPS, pH 7.4

and 1 mg/mL BSA, and centrifuged at 2’500 g for 5 min at

4uC. The supernatant containing mitochondria was collected

and centrifuged at 10’000 g for 10 min at 4uC to collect

mitochondria as a pellet. Isolated mitochondria were washed

twice in the same conditions before being resuspended and

further processed.

Western-blotting
For Western blot analysis, protein lysates were prepared by

homogenization of various organs in lysis buffer (50 mM Tris-

HCl, pH 8.0, 120 mM NaCl, 1% NP-40, 40 mM b-glycerophos-

phate, 10% glycerol, 4 mM leupeptin, 0.05 mM phenylmethylsul-

fonyl fluoride, 1 mM benzamidine, 50 mM NaF, 1 mM Na3VO4,

5 mM EDTA, 1 mM Microcystin LR). Homogenates were

centrifuged twice (13’000 rpm for 10 min at 4uC) to remove cell

debris. Protein concentrations were determined using the Bradford

assay. Proteins were separated by 12% or 10% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and then transferred to

Immobilon-P polyvinylidene difluoride membranes (Millipore).

Immunostaining
For immunostaining, cells were grown on coverslips for 24 h

following transfection with different plasmids or siRNAs. Where

mitochondria were visualized by MitoTracker Red, cells were

treated with 300 nM MitoTracker Red CMXRos for 15 min

before being washed in PBS and fixed in 3% paraformaldehyde/

2% sucrose. Cells were further permeabilized using 0.2% Triton

6100 (3 min at room temperature) before being washed in PBS

and incubated together with an appropriate dilution of the

primary antibody for 1 h at room temperature in 1% BSA/1%

goat serum. This was followed by incubation with secondary

antibodies at 1:100 for 45 min at room temperature. After a final

washing, coverslips were mounted in Vectashield medium (Vector

lab) and visualized on a laser scanning microscope (Olympus

FV500). Confocal images were processed using the Imaris

program (Bitplane AG, Zürich, Switzerland) and Photoshop 6.0

(Adobe System Inc).

Mitochondria intercomplementation
HeLa cells carrying different fluorescent mitochondria (mt-RFP

or mt-GFP) were mixed 1/1 and plated on coverslips 24 h after

transfection. Mt-GFP HeLa cells were pre-treated for 20 h with

1 mM trichostatin to increase GFP expression levels. After washes

in FCS-free DMEM, droplets of 50% PEG 1500 were added

directly to cells and aspirated after 45–60 s. After several washes,

cells were collected and fixed at the indicated times and processed

for immunofluorescence. Heterokaryons were visualized by DNA

staining of the nucleus (To-Pro-3 iodide) and/or a-tubulin

staining.

Generation of CTMP knockout mice
For the generation of CTMP mutant mice, a mouse genomic

DNA fragment containing exons 2 and 3 was cloned into the

pBluescript vector and a Not1 site was generated in exon 2. A

,5-kb IRES-lacZ-Neo cassette was inserted into the NotI site,

which introduced a translational frame shift. The targeting

vector was linearized and electroporated into 129/Ola ES cells.

ES cell clones were screened by Southern blotting. DNA was

digested with SpeI and probed with an external probe. An

internal probe was then used on KpnI-digested DNA for further

characterization of ES cell clones that were positive for

homologous recombination. Correctly targeted ES cells were

used to generate chimeras. Male chimeras were mated with

wild-type C57BL/6 females to obtain CTMP+/2 mice, which

were intercrossed to produce CTMP homozygous mutants.

Progeny were genotyped for the presence of a targeted allele by

multiplex PCR.

Liver mitochondria isolation
All steps were carried out at 4uC. Mice were housed and

terminated according to Swiss legislation. Following termination,

freshly dissected liver tissues were immersed and extracted in MSH

buffer (pH 7,3) (5 mM HEPES, 70 mM sucrose, 210 mM manni-

tol, supplemented with 1 mM EDTA), before homogenization in a

glass homogenizer (at 500 rpm) in MSH Buffer (supplemented with

anti-proteases inhibitors) and centrifugation for 10 min at 800 g.

The fat coat was removed after centrifugation (10,000 g for 10 min

at 4uC) and the pellet was manually resuspended in 80 ml of

mitochondrial isolation buffer (MSH buffer: 36 ml/ml aprotinin,

5 ml/ml PMSF, 1 ml/ml leupeptin). A crude mitochondrial pellet

was isolated by differential centrifugation (3,000 g, 10,000 g and

9,000 g) before being layered on top of a 20-mL Percoll solution

(39.3 ml of Percoll, 73.5 ml of 10 mM HEPES, and 13.2 ml of

2.5 M sucrose) and centrifuged at 26,000 rpm for 45 min at 4uC. A

pure mitochondria layer was collected below the peroxisome layer

and washed twice in mitochondrial isolation buffer before being

submitted to protein quantification.

Transmission electron microscopy
Samples were collected from the same regions of liver (left lobe and

median lobe neighboring the gallbladder) for both wild-type [2

females (27,5 and 42 weeks old) and 1 male (42 weeks old)] and

CTMP knockout mice [2 females (27,5 and 42 weeks old) and 1 male

(42 weeks old)] and immediately fixed for 1 h in 3% paraformalde-

hyde and 0.5% glutaraldehyde in PBS puffer (pH 7.4), washed twice

in PBS and post-fixed for 1 h in 1% osmium tetroxide (OSO4). After

dehydration with a graded ethanol series (50–100%) and infiltration

in 100% acetone, samples were embedded using an Epoxy-

Embedding kit (Epon, FLUKA) for 24 h at 60uC. Thin sections

(60–70nm) were obtained on Ultracut (Reichert-Jung) and analyzed

on a TEM Moragni 268D (Philips) at 80 kV.

CTMP and Mitochondria Dynamic

PLoS ONE | www.plosone.org 9 May 2009 | Volume 4 | Issue 5 | e5471



Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0005471.s001 (2.26 MB TIF)

Figure S2

Found at: doi:10.1371/journal.pone.0005471.s002 (3.10 MB TIF)

Figure S3

Found at: doi:10.1371/journal.pone.0005471.s003 (1.17 MB TIF)

Supplementary Text S1

Found at: doi:10.1371/journal.pone.0005471.s004 (0.03 MB

DOC)

Acknowledgments

We acknowledge our FMI colleagues and core facilities for contributions to

this study. We thank Dr. M. Rojo (INSERM, Université Pierre et Marie
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